Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.721
Filter
1.
Nutrients ; 16(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38999894

ABSTRACT

Pre-pregnancy body mass index (pBMI) is a predictor of gestational weight gain (GWG). However, other factors, such as adipokines and inflammation markers, may also be associated with GWG. The aim of the study was to determine the association of leptin, adiponectin, irisin, and C-reactive protein, with GWG in adolescents. A longitudinal study was conducted from 2018 to 2023 in adolescents with a clinically healthy pregnancy. The assessments included sociodemographic and clinical data, pBMI, percent of body fat, serum concentrations of leptin, adiponectin, irisin, and high-sensitivity C-reactive protein (hsCRP), and total GWG adequacy. Cox regression models were performed, the outcome variables were inadequate and excessive GWG. In 198 participants, being overweight/obesity was marginally associated with a protective effect against inadequate GWG (HR = 0.44, 95%CI = 0.18-1.06), regardless of maternal characteristics and adipokines. Leptin (HR = 1.014, 95%CI = 1.008-1.021), and body fat percent (HR = 1.11, 95%CI = 1.05-1.17) were associated with a higher risk of excessive GWG, independent of other maternal variables such as pBMI, while adiponectin was associated with a lower risk. These findings suggest that, in Mexican adolescents, adipose tissue and its adipokines during pregnancy may play a more significant role in the final GWG than body weight.


Subject(s)
Adipokines , Adipose Tissue , Body Mass Index , Gestational Weight Gain , Leptin , Humans , Female , Pregnancy , Leptin/blood , Adolescent , Mexico/epidemiology , Adipokines/blood , Longitudinal Studies , Adiponectin/blood , Biomarkers/blood , C-Reactive Protein/analysis , C-Reactive Protein/metabolism
2.
BMC Pediatr ; 24(1): 426, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961351

ABSTRACT

BACKGROUND: Adipose tissue is significantly involved in inflammatory bowel disease (IBD). Vitamin D can affect both adipogenesis and inflammation. The aim of this study was to compare the production of selected adipokines, potentially involved in the pathogenesis of IBD - adiponectin, resistin, retinol binding protein 4 (RBP-4), adipocyte fatty acid binding protein and nesfatin-1 in children with IBD according to the presence of 25-hydroxyvitamin D (25(OH)D) deficiency. METHODS: The study was conducted as a case-control study in pediatric patients with IBD and healthy children of the same sex and age. In addition to adipokines and 25(OH)D, anthropometric parameters, markers of inflammation and disease activity were assessed in all participants. RESULTS: Children with IBD had significantly higher resistin levels regardless of 25(OH)D levels. IBD patients with 25(OH)D deficiency only had significantly lower RBP-4 compared to healthy controls and also compared to IBD patients without 25(OH)D deficiency. No other significant differences in adipokines were found in children with IBD with or without 25(OH)D deficiency. 25(OH)D levels in IBD patients corelated with RBP-4 only, and did not correlate with other adipokines. CONCLUSIONS: Whether the lower RBP-4 levels in the 25(OH)D-deficient group of IBD patients directly reflect vitamin D deficiency remains uncertain. The production of other adipokines does not appear to be directly related to vitamin D deficiency.


Subject(s)
Adipokines , Vitamin D Deficiency , Vitamin D , Humans , Vitamin D Deficiency/complications , Vitamin D Deficiency/blood , Male , Female , Child , Case-Control Studies , Adipokines/blood , Adolescent , Vitamin D/blood , Vitamin D/analogs & derivatives , Retinol-Binding Proteins, Plasma/metabolism , Retinol-Binding Proteins, Plasma/analysis , Resistin/blood , Nucleobindins/blood , Adiponectin/blood , Adiponectin/deficiency , Calcium-Binding Proteins/blood , Fatty Acid-Binding Proteins/blood , DNA-Binding Proteins/blood , Biomarkers/blood , Inflammatory Bowel Diseases/blood , Inflammatory Bowel Diseases/complications
3.
Ageing Res Rev ; 99: 102402, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38977081

ABSTRACT

Alzheimer's disease (AD) is a leading cause of cognitive impairment worldwide. Overweight and obesity are strongly associated with comorbidities, such as hypertension, diabetes, and insulin resistance (IR), which contribute substantially to the development of AD and subsequent morbidity and mortality. Adipose tissue (AT) is a highly dynamic organ composed of a diverse array of cell types, which can be classified based on their anatomic localization or cellular composition. The expansion and remodeling of AT in the context of obesity involves immunometabolic and functional shifts steered by the intertwined actions of multiple immune cells and cytokine signaling within AT, which contribute to the development of metabolic disorders, IR, and systemic markers of chronic low-grade inflammation. Chronic low-grade inflammation, a prolonged, low-dose stimulation by specific immunogens that can progress from localized sites and affect multiple organs throughout the body, leads to neurodystrophy, increased apoptosis, and disruption of homeostasis, manifesting as brain atrophy and AD-related pathology. In this review, we sought to elucidate the mechanisms by which AT contributes to the onset and progression of AD in obesity through the mediation of chronic low-grade inflammation, particularly focusing on the roles of adipokines and AT-resident immune cells.


Subject(s)
Adipose Tissue , Alzheimer Disease , Inflammation , Obesity , Humans , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/etiology , Obesity/metabolism , Obesity/immunology , Adipose Tissue/metabolism , Adipose Tissue/pathology , Adipose Tissue/immunology , Inflammation/metabolism , Inflammation/pathology , Animals , Adipokines/metabolism
4.
Mol Genet Genomic Med ; 12(7): e2482, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38958168

ABSTRACT

BACKGROUND: Marfan syndrome (MFS) is a hereditary connective tissue disorder involving multiple systems, including ophthalmologic abnormalities. Most cases are due to heterozygous mutations in the fibrillin-1 gene (FBN1). Other associated genes include LTBP2, MYH11, MYLK, and SLC2A10. There is significant clinical overlap between MFS and other Marfan-like disorders. PURPOSE: To expand the mutation spectrum of FBN1 gene and validate the pathogenicity of Marfan-related genes in patients with MFS and ocular manifestations. METHODS: We recruited 318 participants (195 cases, 123 controls), including 59 sporadic cases and 88 families. All patients had comprehensive ophthalmic examinations showing ocular features of MFS and met Ghent criteria. Additionally, 754 cases with other eye diseases were recruited. Panel-based next-generation sequencing (NGS) screened mutations in 792 genes related to inherited eye diseases. RESULTS: We detected 181 mutations with an 84.7% detection rate in sporadic cases and 87.5% in familial cases. The overall detection rate was 86.4%, with FBN1 accounting for 74.8%. In cases without FBN1 mutations, 23 mutations from seven Marfan-related genes were identified, including four pathogenic or likely pathogenic mutations in LTBP2. The 181 mutations included 165 missenses, 10 splicings, three frameshifts, and three nonsenses. FBN1 accounted for 53.0% of mutations. The most prevalent pathogenic mutation was FBN1 c.4096G>A. Additionally, 94 novel mutations were detected, with 13 de novo mutations in 14 families. CONCLUSION: We expanded the mutation spectrum of the FBN1 gene and provided evidence for the pathogenicity of other Marfan-related genes. Variants in LTBP2 may contribute to the ocular manifestations in MFS, underscoring its role in phenotypic diversity.


Subject(s)
Fibrillin-1 , High-Throughput Nucleotide Sequencing , Marfan Syndrome , Mutation , Humans , Marfan Syndrome/genetics , Marfan Syndrome/pathology , Female , Male , Fibrillin-1/genetics , Adult , Child , Adolescent , Middle Aged , Child, Preschool , Eye Diseases/genetics , Eye Diseases/pathology , Pedigree , East Asian People , Adipokines
5.
Clin Interv Aging ; 19: 1259-1272, 2024.
Article in English | MEDLINE | ID: mdl-39011312

ABSTRACT

Postmenopausal osteoporosis (PMOP) is a major health problem affecting millions of women worldwide. PMOP patients are often accompanied by abnormal accumulation of bone marrow adipose tissue (BMAT). BMAT is a critical regulator of bone homeostasis, and an increasing BMAT volume is negatively associated with bone mass reduction or fracture. BMAT regulates bone metabolism via adipokines, cytokines and the immune system, but the specific mechanisms are largely unknown. This review emphasizes the impact of estrogen deficiency on bone homeostasis and BMAT expansion, and the mechanism by which BMAT regulates PMOP, providing a promising strategy for targeting BMAT in preventing and treating PMOP.


Subject(s)
Adipose Tissue , Bone Marrow , Osteoporosis, Postmenopausal , Humans , Adipose Tissue/metabolism , Female , Bone Density , Adipokines/metabolism , Estrogens/metabolism , Bone and Bones/metabolism , Animals , Cytokines/metabolism , Homeostasis
6.
J Am Heart Assoc ; 13(14): e033232, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38958128

ABSTRACT

BACKGROUND: Thoracic aortic aneurysm (TAA) is associated with significant morbidity and mortality. Although individuals with family histories of TAA often undergo clinical molecular genetic testing, adults with nonsyndromic TAA are not typically evaluated for genetic causes. We sought to understand the genetic contribution of both germline and somatic mosaic variants in a cohort of adult individuals with nonsyndromic TAA at a single center. METHODS AND RESULTS: One hundred eighty-one consecutive patients <60 years who presented with nonsyndromic TAA at the Massachusetts General Hospital underwent deep (>500×) targeted sequencing across 114 candidate genes associated with TAA and its related functional pathways. Samples from 354 age- and sex-matched individuals without TAA were also sequenced, with a 2:1 matching. We found significant enrichments for germline (odds ratio [OR], 2.44, P=4.6×10-6 [95% CI, 1.67-3.58]) and also somatic mosaic variants (OR, 4.71, P=0.026 [95% CI, 1.20-18.43]) between individuals with and without TAA. Likely genetic causes were present in 24% with nonsyndromic TAA, of which 21% arose from germline variants and 3% from somatic mosaic alleles. The 3 most frequently mutated genes in our cohort were FLNA (encoding Filamin A), NOTCH3 (encoding Notch receptor 3), and FBN1 (encoding Fibrillin-1). There was increased frequency of both missense and loss of function variants in TAA individuals. CONCLUSIONS: Likely contributory dominant acting genetic variants were found in almost one quarter of nonsyndromic adults with TAA. Our findings suggest a more extensive genetic architecture to TAA than expected and that genetic testing may improve the care and clinical management of adults with nonsyndromic TAA.


Subject(s)
Aortic Aneurysm, Thoracic , Genetic Predisposition to Disease , Germ-Line Mutation , Mosaicism , Humans , Male , Female , Aortic Aneurysm, Thoracic/genetics , Aortic Aneurysm, Thoracic/diagnosis , Adult , Middle Aged , Receptor, Notch3/genetics , Fibrillin-1/genetics , Case-Control Studies , Phenotype , Filamins/genetics , Risk Factors , High-Throughput Nucleotide Sequencing , Adipokines
7.
Food Funct ; 15(14): 7658-7668, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38953736

ABSTRACT

Obesity is often accompanied by low-grade chronic inflammation and metabolic syndrome. It has been established that microbiota influences many physiological processes, including the development of obesity, and dysbiosis has been observed in obese individuals. In this study, we aimed to evaluate the impact of a new probiotic formulation, containing two probiotic strains and the bioactive compound octacosanol, on body weight, metabolic parameters, and concentrations of certain adipocytokines and appetite-regulating hormones in obese women. This double blind placebo-controlled supplementary intervention study included twenty-five women in the intervention group and twenty-three in the placebo group, and it lasted 12 weeks. Daily oral supplementation included 7 × 1010 CFU of Lactiplantibacillus plantarum 299v (DSM9843), 5 × 109 CFU of Saccharomyces cerevisiae var. boulardii (DBVPG6763), and 40 mg of octacosanol or placebo. Body weight, metabolic parameters, adipocytokines, and appetite-regulating hormones were assessed before (T0) and after the intervention (T1). After the intervention, significantly lower median concentrations of CRP (p = 0.005) and IL-6 (p = 0.012) were measured in the intervention group than the baseline, while the median concentrations of ghrelin (p = 0.026) and HDL-cholesterol (p = 0.03) were significantly increased. The intervention group had lower CRP levels (p = 0.023) and higher ghrelin levels (p = 0.006) than the placebo group. Significant changes in BMI between groups were not observed. In summary, although the new probiotic formulation showed beneficial effects on IL-6, CRP, HDL, and ghrelin levels, its potential effects on regulating triglyceride, insulin, and glucose levels require further studies before the novel dietary intervention could be considered a useful adjuvant therapy and an effective strategy for the management of obesity and obesity-associated comorbidities.


Subject(s)
Adipokines , Obesity , Probiotics , Humans , Female , Probiotics/pharmacology , Probiotics/therapeutic use , Obesity/diet therapy , Obesity/metabolism , Double-Blind Method , Adult , Adipokines/blood , Adipokines/metabolism , Middle Aged , Ghrelin/blood , Appetite/drug effects , Lactobacillus plantarum , Body Weight/drug effects , C-Reactive Protein/metabolism
8.
BMC Psychiatry ; 24(1): 479, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951775

ABSTRACT

BACKGROUND: Increasing evidence suggests that leptin is involved in the pathology of autism spectrum disorder (ASD). In this study, our objective was to investigate the levels of leptin in the blood of children with ASD and to examine the overall profile of adipokine markers in ASD through meta-analysis. METHODS: Leptin concentrations were measured using an enzyme-linked immunosorbent assay (ELISA) kit, while adipokine profiling, including leptin, was performed via meta-analysis. Original reports that included measurements of peripheral adipokines in ASD patients and healthy controls (HCs) were collected from databases such as Web of Science, PubMed, and Cochrane Library. These studies were collected from September 2022 to September 2023 and followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Standardized mean differences were calculated using a random effects model for the meta-analysis. Additionally, we performed meta-regression and explored heterogeneity among studies. RESULTS: Our findings revealed a significant increase in leptin levels in children with ASD compared to HCs (p = 0.0319). This result was consistent with the findings obtained from the meta-analysis (p < 0.001). Furthermore, progranulin concentrations were significantly reduced in children with ASD. However, for the other five adipokines analyzed, there were no significant differences observed between the children with ASD and HCs children. Heterogeneity was found among the studies, and the meta-regression analysis indicated that publication year and latitude might influence the results of the meta-analysis. CONCLUSIONS: These findings provide compelling evidence that leptin levels are increased in children with ASD compared to healthy controls, suggesting a potential mechanism involving adipokines, particularly leptin, in the pathogenesis of ASD. These results contribute to a better understanding of the pathology of ASD and provide new insights for future investigations.


Subject(s)
Adipokines , Autism Spectrum Disorder , Leptin , Humans , Autism Spectrum Disorder/blood , Leptin/blood , Child , Adipokines/blood , Biomarkers/blood
9.
Zhonghua Yan Ke Za Zhi ; 60(7): 601-610, 2024 Jul 11.
Article in Chinese | MEDLINE | ID: mdl-38955762

ABSTRACT

Objective: To investigate the characteristics of posterior segment lesions in Marfan syndrome (MFS) patients and their relationship with anterior segment biometric parameters and FBN1 genotype. Methods: A cross-sectional study was conducted. A total of 121 MFS patients, 76 males and 45 females, with an average age of (11.72±11.66) years, who visited the Department of Ophthalmology, Eye & ENT Hospital of Fudan University from January 2013 to March 2023 were included. The presence of posterior scleral staphyloma was observed using B-mode ultrasound, and macular lesions were identified and classified using the atrophy-traction-neovascularization system based on ultra-widefield fundus images, color fundus images, and optical coherence tomography scans. Anterior segment biometric parameters, including axial length of the eye, average corneal curvature, corneal astigmatism, horizontal corneal diameter, anterior chamber depth, and lens thickness, were collected, and the direction and extent of lens dislocation were observed. Molecular genetic analysis of FBN1 gene mutations in patients was performed using next-generation sequencing based on a panel of ocular genetic diseases, and the impact of the genotype and anterior segment biometric parameters on the posterior segment manifestations was analyzed. Results: Sixty patients exhibited posterior segment lesions, including retinal detachment (4 cases, 3.31%), macular lesions (47 cases, 38.84%), and posterior scleral staphyloma (54 cases, 44.63%). There was statistically significant difference in axial length of the eye between patients with and without posterior scleral staphyloma [23.09 (22.24, 24.43) and 27.04 (25.44, 28.88) mm], between patients with and without macular lesions [23.16 (22.24, 24.61) and 27.04 (25.74, 28.78) mm], and between patients with and without atrophic macular lesions [23.16 (22.24, 24.61) and 27.04 (25.74, 28.79) mm] (all P<0.001). There was statistically significant difference in anterior chamber depth between patients with and without macular lesions [3.11 (2.75, 3.30) and 3.34 (3.09, 3.60) mm] (P<0.05). There was also statistically significant difference in corneal astigmatism between patients with and without posterior scleral staphyloma [2.15 (1.20, 2.93) and 1.40 (1.00, 2.20) diopters] (P<0.05). The location and region of the FBN1 gene mutation not only showed statistically significant difference from the positive rates of posterior scleral staphyloma and macular lesions (all P<0.05), but also influenced the occurrence of atrophic macular lesions (both P<0.05). Patients with FBN1 mutations located in the transforming growth factor ß regulatory sequence had the highest proportion of posterior scleral staphyloma and macular lesions (both 10/11). Conclusions: Posterior scleral staphyloma and macular lesions have a relatively high incidence in MFS patients and tend to progress to more severe grades. The age, axial length of the eye, anterior chamber depth, corneal astigmatism, and location and region of the FBN1 gene mutation are factors affecting the posterior segment lesions in MFS patients.


Subject(s)
Fibrillin-1 , Genotype , Marfan Syndrome , Adolescent , Child , Female , Humans , Male , Young Adult , Adipokines , Anterior Eye Segment , Biometry , Cross-Sectional Studies , Fibrillin-1/genetics , Macular Degeneration/genetics , Marfan Syndrome/genetics , Mutation , Posterior Eye Segment/pathology , Infant, Newborn , Infant , Child, Preschool
12.
Article in English | MEDLINE | ID: mdl-38944333

ABSTRACT

The discovery that metabolic alterations often coexist with neurodegenerative conditions has sparked interest in the examination of metabolic regulatory factors as potential modulators of brain health. Here, we examined the role of adipokines (leptin, adiponectin, resistin, and IL6) and insulin on different markers of brain atrophy in participants on the spectrum of Alzheimer's Disease. We included 566 participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset with 1063 follow-up time points (average follow-up: one year); and examined the association between metabolic regulatory factors and volumetric MRI values, white matter hyperintensities, and measures of cognitive impairment. Higher leptin, resistin, IL6, and insulin were associated with markers of cerebral atrophy, such as lower total brain volume, or higher ventricular volume. Higher leptin and resistin were also associated with greater impairment in daily life activities. Higher adiponectin was associated with lower ventricle volume. There was no association between adipokines or insulin with white matter hyperintensities. Our findings indicate a co-occurrence between alterations in metabolic regulatory factors and in brain volume along the preclinical to clinical spectrum of Alzheimer's Disease. These results suggest that strategies aimed at promoting metabolic health may positively impact brain health.


Subject(s)
Adipokines , Alzheimer Disease , Atrophy , Biomarkers , Brain , Cognitive Dysfunction , Insulin , Magnetic Resonance Imaging , Humans , Alzheimer Disease/blood , Alzheimer Disease/pathology , Alzheimer Disease/diagnostic imaging , Atrophy/pathology , Male , Female , Aged , Adipokines/blood , Cognitive Dysfunction/blood , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/pathology , Brain/diagnostic imaging , Brain/pathology , Insulin/blood , Biomarkers/blood , Aged, 80 and over
13.
Diabetes Res Clin Pract ; 213: 111730, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38866185

ABSTRACT

AIMS: This research aimed to clarify the relationship between serum asprosin levels and the occurrence of type 2 diabetes mellitus (T2DM) in light of mixed findings about the role of asprosin in T2DM and the lack of studies on its effects on prediabetic conditions. METHODS: In this observational analysis the cohort included 252 adults aged22-69 recruitedfromJinan Central Hospital were categorized into three groups, normal glucose tolerance (NGT), impaired glucose regulation (IGR) and T2DM groups. Serum asprosin levels were measured using enzyme linked immunosorbent assay (ELISA). Additionally, all participants underwent assessments of various anthropometric and biochemical markers. RESULTS: Analysis revealed a notable increase in serum asprosin levels among individuals with newly diagnosed T2DM, with IGR subjects also demonstrating slightly elevated asprosin levels compared to the healthy group. Further stratification by quartiles of asprosin levels revealed a progressive increase in the proportions of IGR + T2DM patients, highlighting a potential association between elevated asprosin and increased T2DM risk. The Receiver Operating Characteristic (ROC) curve analysis for the efficacy of asprosin in identifying IGR + T2DM yielded an area under curve (AUC) of 0.853 (95 % CI: 0.808-0.899), pointing a threshold value of 4.95 ng/ml for asprosin. CONCLUSIONS: This investigation revealed that individuals with prediabetes and those newly diagnosed with T2DM exhibit increased serum asprosin levels, suggesting that elevated asprosin concentrations are linked to early disturbances in glucose homeostasis.


Subject(s)
Diabetes Mellitus, Type 2 , Fibrillin-1 , Prediabetic State , Humans , Diabetes Mellitus, Type 2/blood , Prediabetic State/blood , Middle Aged , Male , Female , Fibrillin-1/blood , Adult , Aged , Blood Glucose/analysis , Blood Glucose/metabolism , Biomarkers/blood , Glucose Intolerance/blood , Adipokines
14.
Nutrients ; 16(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38892541

ABSTRACT

Children with a history of extrauterine growth restriction (EUGR), later at prepubertal age, exhibit an increased metabolic risk including risen insulin resistance and low-grade inflammation. However, the progression of such metabolic changes after puberty and the lasting health implications have not yet been investigated. The objective of this study was to ascertain whether young adults with a history of EUGR faced increased vulnerability to metabolic disorders. A study was conducted comparing a group of adults with a history of EUGR with a healthy reference group. A total of 110 young adults (36 from the EUGR group and 74 from the control group) were included. Anthropometric variables, blood pressure (BP), general biochemical parameters, plasma inflammatory biomarkers, and adipokines were assessed. Compared to the reference group, the EUGR group had a shorter height and body weight with higher lean mass and waist circumference, as well as a greater percentage of individuals with high BP. In addition, EUGR patients had higher values of insulin, HOMA-IR, nerve growth factor, and leptin, and lower levels of adiponectin and resistin. The present study suggests that young adults with a history of EUGR present increased metabolic risk factors therefore, clinical follow-up should be considered.


Subject(s)
Inflammation , Humans , Male , Female , Young Adult , Inflammation/blood , Biomarkers/blood , Insulin Resistance , Adult , Risk Factors , Growth Disorders/etiology , Growth Disorders/epidemiology , Adipokines/blood , Blood Pressure
15.
J Sports Sci Med ; 23(2): 366-395, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38841642

ABSTRACT

Breast cancer survivors with obesity are at a high risk of cancer recurrence, comorbidity, and mortality. This review aims to systematically evaluate the effects of combined aerobic and resistance training (CART) on body composition, lipid homeostasis, inflammation, adipokines, cancer-related fatigue, sleep, and quality of life in breast cancer patients and survivors with overweight/obesity. An electronic search was conducted in PubMed, Web of Science, Scopus, Science Direct, Cochrane, and Google Scholar databases from inception up to January 8, 2024. Randomized controlled trials (RCTs) meeting the inclusion criteria were selected for the analysis. The Cochrane risk of bias tool was used to assess eligible studies, and the GRADE method to evaluate the quality of evidence. A random-effects model was used, and data were analyzed using mean (MD) and standardized mean differences (SMD) for continuous variables with 95% confidence intervals (CI). We assessed the data for risk of bias, heterogeneity, sensitivity, reporting bias, and quality of evidence. A total of 17 randomized controlled trials were included in the systematic review involving 1,148 female patients and survivors (mean age: 54.0 ± 3.4 years). The primary outcomes showed significant improvements in body mass index (SMD -0.57 kg/m2, p = 0.04), body fat (SMD -0.50%, p = 0.02), fat mass (SMD -0.63 kg, p = 0.04), hip circumference (MD -3.14 cm, p = 0.02), and fat-free mass (SMD 1.03 kg, p < 0.001). The secondary outcomes indicated significant increases in high-density lipoprotein cholesterol (MD -0.05 mmol/L, p = 0.008), natural killer cells (SMD 0.42%, p = 0.04), reductions in triglycerides (MD -81.90 mg/dL, p < 0.01), total cholesterol (SMD -0.95 mmol/L, p < 0.01), tumor necrosis factor α (SMD -0.89 pg/mL, p = 0.03), and leptin (SMD -0.63 ng/mL, p = 0.03). Also, beneficial alterations were found in cancer-related fatigue (SMD -0.98, p = 0.03), sleep (SMD -1.17, p < 0.001), and quality of life (SMD 2.94, p = 0.02) scores. There was very low to low confidence in the estimated effect of most of the outcomes. The present findings reveal that CART could be considered an adjunct therapy in supporting the conventional clinical approach observed following exercise. However, further high-quality research is needed to evaluate whether CART would be a valuable intervention to lower aggressive pharmacologic use in breast cancer patients with overweight/obesity.


Subject(s)
Body Composition , Breast Neoplasms , Cancer Survivors , Obesity , Quality of Life , Randomized Controlled Trials as Topic , Resistance Training , Humans , Female , Resistance Training/methods , Obesity/therapy , Cardiometabolic Risk Factors , Adipokines/blood , Exercise , Fatigue/etiology , Sleep/physiology , Overweight/therapy
16.
BMC Endocr Disord ; 24(1): 83, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849768

ABSTRACT

OBJECTIVE: Meteorin-like (Metrnl), a secreted myokine, is a newly discovered neurotrophic factor. The aim of this study was to determine if there is a correlation between the Metrnl level and diabetic peripheral neuropathy (DPN). METHODS: The investigation was conducted on a sample of 80 patients with type 2 diabetes mellitus (T2DM) and 60 healthy controls. The T2DM patients were categorized into two subgroups based on skin biopsy: the DPN subgroup (n = 20) and the diabetes without neuropathy subgroup (n = 60). RESULTS: The T2DM groups had higher serum Metrnl concentrations compared with the controls. The serum Metrnl concentration was significantly lower in the DPN group than in T2DM patients without neuropathy. Logistic regression analysis demonstrated a notable correlation between serum Metrnl and DPN (OR: 0.997, 95% CI: 0.995-1.000, P < 0.05). Serum Metrnl level was negatively correlated with age and SBP after a simple logistic regression analysis. CONCLUSION: Serum Metrnl concentration is independently correlated with DPN.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Neuropathies , Humans , Diabetic Neuropathies/blood , Diabetic Neuropathies/diagnosis , Diabetic Neuropathies/pathology , Diabetic Neuropathies/etiology , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/complications , Male , Female , Middle Aged , Case-Control Studies , Aged , Biomarkers/blood , Adipokines
17.
Int J Mol Sci ; 25(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38892118

ABSTRACT

The connection between body weight alterations and Alzheimer's disease highlights the intricate relationship between the brain and adipose tissue in the context of neurological disorders. During midlife, weight gain increases the risk of cognitive decline and dementia, whereas in late life, weight gain becomes a protective factor. Despite their substantial impact on metabolism, the role of adipokines in the transition from healthy aging to neurological disorders remains largely unexplored. We aim to investigate how the adipose tissue milieu and the secreted adipokines are involved in the transition between biological and pathological aging, highlighting the bidirectional relationship between the brain and systemic metabolism. Understanding the function of these adipokines will allow us to identify biomarkers for early detection of Alzheimer's disease and uncover novel therapeutic options.


Subject(s)
Adipokines , Adipose Tissue , Alzheimer Disease , Brain , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Humans , Adipokines/metabolism , Adipose Tissue/metabolism , Brain/metabolism , Brain/pathology , Animals , Biomarkers , Aging/metabolism
18.
Tissue Eng Part C Methods ; 30(7): 279-288, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38943281

ABSTRACT

The synthesis and assembly of mature, organized elastic fibers remains a limitation to the clinical use of many engineered tissue replacements. There is a critical need for a more in-depth understanding of elastogenesis regulation for the advancement of methods to induce and guide production of elastic matrix structures in engineered tissues that meet the structural and functional requirements of native tissue. The dramatic increase in elastic fibers through normal pregnancy has led us to explore the potential role of mechanical stretch in combination with pregnancy levels of the steroid hormones 17ß-estradiol and progesterone on elastic fiber production by human uterine myometrial smooth muscle cells in a three-dimensional (3D) culture model. Opposed to a single strain regimen, we sought to better understand how the amplitude and frequency parameters of cyclic strain influence elastic fiber production in these myometrial tissue constructs (MTC). Mechanical stretch was applied to MTC at a range of strain amplitudes (5%, 10%, and 15% at 0.5 Hz frequency) and frequencies (0.1 Hz, 0.5 Hz, 1 Hz, and constant 0 Hz at 10% amplitude), with and without pregnancy-level hormones, for 6 days. MTC were assessed for cell proliferation, matrix elastin protein content, and expression of the main elastic fiber genes, tropoelastin (ELN) and fibrillin-1 (FBN1). Significant increases in elastin protein and ELN and FBN1 mRNA were produced from samples subjected to a 0.5 Hz, 10% strain regimen, as well as samples stretched at higher amplitude (15%, 0.5 Hz) and higher frequency (1 Hz, 10%); however, no significant effects because of third-trimester mimetic hormone treatment were determined. These results establish that a minimum level of strain is required to stimulate the synthesis of elastic fiber components in our culture model and show this response can be similarly enhanced by increasing either the amplitude or frequency parameter of applied strain. Further, our results demonstrate strain alone is sufficient to stimulate elastic fiber production and suggest hormones may not be a significant factor in regulating elastin synthesis. This 3D culture model will provide a useful tool to further investigate mechanisms underlying pregnancy-induced de novo elastic fiber synthesis and assembly by uterine smooth muscle cells.


Subject(s)
Elastin , Myometrium , Stress, Mechanical , Humans , Female , Elastin/metabolism , Elastin/biosynthesis , Myometrium/metabolism , Myometrium/cytology , Cells, Cultured , Pregnancy , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/cytology , Tropoelastin/metabolism , Cell Culture Techniques, Three Dimensional/methods , Fibrillin-1/metabolism , Fibrillins/metabolism , Microfilament Proteins/metabolism , Microfilament Proteins/genetics , Tissue Engineering/methods , Estradiol/biosynthesis , Estradiol/pharmacology , Estradiol/metabolism , Models, Biological , Adipokines
19.
Curr Med Sci ; 44(3): 463-474, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38900388

ABSTRACT

Excessive fat deposition in obese subjects promotes the occurrence of metabolic diseases, such as type 2 diabetes mellitus (T2DM), cardiovascular diseases, and non-alcoholic fatty liver disease (NAFLD). Adipose tissue is not only the main form of energy storage but also an endocrine organ that not only secretes adipocytokines but also releases many extracellular vesicles (EVs) that play a role in the regulation of whole-body metabolism. Exosomes are a subtype of EVs, and accumulating evidence indicates that adipose tissue exosomes (AT Exos) mediate crosstalk between adipose tissue and multiple organs by being transferred to targeted cells or tissues through paracrine or endocrine mechanisms. However, the roles of AT Exos in crosstalk with metabolic organs remain to be fully elucidated. In this review, we summarize the latest research progress on the role of AT Exos in the regulation of metabolic disorders. Moreover, we discuss the potential role of AT Exos as biomarkers in metabolic diseases and their clinical application.


Subject(s)
Adipose Tissue , Exosomes , Metabolic Diseases , Exosomes/metabolism , Humans , Adipose Tissue/metabolism , Metabolic Diseases/metabolism , Diabetes Mellitus, Type 2/metabolism , Biomarkers/metabolism , Animals , Non-alcoholic Fatty Liver Disease/metabolism , Obesity/metabolism , Adipokines/metabolism , Chronic Disease
20.
Lipids Health Dis ; 23(1): 192, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38909257

ABSTRACT

BACKGROUND: Overweight, often known as obesity, is the abnormal and excessive accumulation of fat that exposes the health of a person at risk by increasing the likelihood that they may experience many chronic conditions. Consequently, obesity has become a global health threat, presenting serious health issues, and attracting a lot of attention in the healthcare profession and the scientific community. METHOD: This study aims to explore the anti-adipogenic properties of 7-MEGA™ in an attempt to address obesity, using both in vitro and in vivo research. The effects of 7MEGA™ at three distinct concentrations were investigated in obese mice who were given a high-fat diet (HFD) and 3T3-L1 adipocytes. RESULTS: 7MEGA™ decreased the total fat mass, overall body weight, and the perirenal and subcutaneous white adipose tissue (PWAT and SWAT) contents in HFD mice. Additionally, 7MEGA™ showed promise in improving the metabolic health of individuals with obesity and regulate the levels of insulin hormone, pro-inflammatory cytokines and adipokines. Furthermore, Peroxisome proliferator-activated receptors (PPAR) α and γ, Uncoupling Protein 1 (UCP-1), Sterol Regulatory Element-Binding Protein 1 (SREBP-1), Fatty Acid-Binding Protein 4 (FABP4), Fatty Acid Synthase (FAS), Acetyl-CoA Carboxylase (ACC), Stearoyl-CoA Desaturase-1 (SCD-1) and CCAAT/Enhancer-Binding Protein (C/EBPα) were among the adipogenic regulators that 7MEGA™ could regulate. CONCLUSION: In summary, this study uncovered that 7MEGA™ demonstrates anti-adipogenic and anti-obesity effects, suggesting its potential in combating obesity.


Subject(s)
3T3-L1 Cells , Adipocytes , Adipogenesis , Diet, High-Fat , Mice, Inbred C57BL , Obesity , Animals , Diet, High-Fat/adverse effects , Adipogenesis/drug effects , Obesity/metabolism , Mice , Adipocytes/drug effects , Adipocytes/metabolism , Male , PPAR gamma/metabolism , PPAR gamma/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Stearoyl-CoA Desaturase/metabolism , Stearoyl-CoA Desaturase/genetics , Mice, Obese , Fatty Acid-Binding Proteins/metabolism , Fatty Acid-Binding Proteins/genetics , Adipokines/metabolism , Anti-Obesity Agents/pharmacology , Uncoupling Protein 1/metabolism , Uncoupling Protein 1/genetics , Adipose Tissue, White/metabolism , Adipose Tissue, White/drug effects , CCAAT-Enhancer-Binding Proteins
SELECTION OF CITATIONS
SEARCH DETAIL