Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 316
Filter
2.
Elife ; 132024 Mar 12.
Article in English | MEDLINE | ID: mdl-38470102

ABSTRACT

Perirenal adipose tissue (PRAT) is a unique visceral depot that contains a mixture of brown and white adipocytes. The origin and plasticity of such cellular heterogeneity remains unknown. Here, we combine single-nucleus RNA sequencing with genetic lineage tracing to reveal the existence of a distinct subpopulation of Ucp1-&Cidea+ adipocytes that arises from brown-to-white conversion during postnatal life in the periureter region of mouse PRAT. Cold exposure restores Ucp1 expression and a thermogenic phenotype in this subpopulation. These cells have a transcriptome that is distinct from subcutaneous beige adipocytes and may represent a unique type of cold-recruitable adipocytes. These results pave the way for studies of PRAT physiology and mechanisms controlling the plasticity of brown/white adipocyte phenotypes.


Subject(s)
Adipocytes, Beige , Adipose Tissue , Mice , Animals , Adipose Tissue/metabolism , Adipocytes, White , Adipocytes, Brown/metabolism , Thermogenesis/genetics , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/physiology
3.
Sci Signal ; 16(812): eadm9735, 2023 11 21.
Article in English | MEDLINE | ID: mdl-37988453

ABSTRACT

A monocyte population induced by weight loss promotes white fat beiging to limit weight regain.


Subject(s)
Adipose Tissue, Beige , Adipose Tissue, White , Monocytes , Weight Gain , Weight Loss , Adipose Tissue, White/physiology , Adipose Tissue, Beige/physiology
4.
Int J Mol Sci ; 24(11)2023 May 25.
Article in English | MEDLINE | ID: mdl-37298226

ABSTRACT

Adipose tissue (AT) can be classified into two different types: (i) white adipose tissue (WAT), which represents the largest amount of total AT, and has the main function of storing fatty acids for energy needs and (ii) brown adipose tissue (BAT), rich in mitochondria and specialized in thermogenesis. Many exogenous stimuli, e.g., cold, exercise or pharmacological/nutraceutical tools, promote the phenotypic change of WAT to a beige phenotype (BeAT), with intermediate characteristics between BAT and WAT; this process is called "browning". The modulation of AT differentiation towards WAT or BAT, and the phenotypic switch to BeAT, seem to be crucial steps to limit weight gain. Polyphenols are emerging as compounds able to induce browning and thermogenesis processes, potentially via activation of sirtuins. SIRT1 (the most investigated sirtuin) activates a factor involved in mitochondrial biogenesis, peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), which, through peroxisome proliferator-activated receptor γ (PPAR-γ) modulation, induces typical genes of BAT and inhibits genes of WAT during the transdifferentiation process in white adipocytes. This review article aims to summarize the current evidence, from pre-clinical studies to clinical trials, on the ability of polyphenols to promote the browning process, with a specific focus on the potential role of sirtuins in the pharmacological/nutraceutical effects of natural compounds.


Subject(s)
Sirtuins , Humans , Polyphenols/pharmacology , PPAR gamma , Obesity , Adipose Tissue, White/physiology , Adipose Tissue, Brown/physiology , Thermogenesis/genetics
5.
Acta Physiol (Oxf) ; 238(1): e13935, 2023 05.
Article in English | MEDLINE | ID: mdl-36650072

ABSTRACT

AIM: Valuable studies have tested the role of UCP1 on body temperature maintenance in mice, and we sought to knockout Ucp1 in rats (Ucp1-/- ) to provide insight into thermogenic mechanisms in larger mammals. METHODS: We used CRISPR/Cas9 technology to create Ucp1-/- rats. Body weight and adiposity were measured, and rats were subjected to indirect calorimetry. Rats were maintained at room temperature or exposed to 4°C for either 24 h or 14 days. Analyses of brown and white adipose tissue and skeletal muscle were conducted via histology, western blot comparison of oxidative phosphorylation proteins, and qPCR to compare mitochondrial DNA levels and mRNA expression profiles. RNA-seq was performed in skeletal muscle. RESULTS: Ucp1-/- rats withstood 4°C for 14 days, but core temperature steadily declined. All rats lost body weight after 14 days at 4°C, but controls increased food intake more robustly than Ucp1-/- rats. Brown adipose tissue showed signs of decreased activity in Ucp1-/- rats, while mitochondrial lipid metabolism markers in white adipose tissue and skeletal muscle were increased. Ucp1-/- rats displayed more visible shivering and energy expenditure than controls at 4°C. Skeletal muscle transcriptomics showed more differences between genotypes at 23°C than at 4°C. CONCLUSION: Room temperature presented sufficient cold stress to rats lacking UCP1 to activate compensatory thermogenic mechanisms in skeletal muscle, which were only activated in control rats following exposure to 4°C. These results provide novel insight into thermogenic responses to UCP1 deficiency; and highlight Ucp1-/- rats as an attractive translational model for the study of thermogenesis.


Subject(s)
Adipose Tissue, Brown , Cold Temperature , Animals , Rats , Adipose Tissue, Brown/physiology , Adipose Tissue, White/physiology , Body Weight , Mammals , Mitochondrial Proteins/metabolism , Thermogenesis , Uncoupling Protein 1/metabolism
6.
Small ; 19(6): e2205933, 2023 02.
Article in English | MEDLINE | ID: mdl-36461678

ABSTRACT

The rapid, simple and low-cost preparation of DNA micro-nano-architectures remain challenging in biosensing and therapy. Polymerase chain reaction (PCR)-driven DNA micro-nano-flowers are used to construct a nanosized baicalin-compressed-aptamer-nanodrug (bcaND) via one-pot assembly for targeted and synergistic anti-obesity. In the design, the tailored Adipo-8 (tAdi-8) overhang in the PCR amplicon displays anti-obesity targeting activity, while the baicalin loaded in the bcaND by embedding the amplicon plays a three-fold role as a lipid-lowering factor, bcaND size compressor, and uncoupling protein-1 (UCP1)-raised thermogenic activator. The ingenious bcaND represents an advanced multifunctional nanomaterial capable of adjusting the morphology at an optimal 400/1 molar ratio of Mg2+ to phosphate groups, compressing the size from 2.699 µm to 214.76 nm using 1 mg/mL baicalin at a temperature of 70 °C, an effective payload with amplicons of up to 98.94%, and a maximum baicalin load of 86.21 g/g DNA. Responsive release in acidic conditions (pH 5.0) occurs within 72 h, accelerating thermogenesis via UCP1 up-regulation by 2.5-fold in 3T3-L1-preadipocytes and 13.7-fold in the white-adipose-tissue (WAT) of mice, targeting adipocytes and visceral white adipose tissue. It plays an efficient synergistic role in obesity therapy in vitro and in vivo, providing a new direction for DNA self-assembly nanotechnology.


Subject(s)
Nanoparticles , Obesity , Mice , Animals , Obesity/drug therapy , Obesity/genetics , Adipocytes , Adipose Tissue, White/physiology , Nanoparticles/therapeutic use , Mice, Inbred C57BL
8.
Front Endocrinol (Lausanne) ; 13: 849877, 2022.
Article in English | MEDLINE | ID: mdl-35250892

ABSTRACT

During the first month of postnatal life, adipose tissue depots of mice go through a drastic, but transient, remodeling process. Between postnatal days 10 and 20, several white fat depots display a strong and sudden surge in beige adipocyte emergence that reverts until day 30. At the same time, brown fat depots appear to undergo an opposite phenomenon. We comprehensively describe these events, their depot specificity and known environmental and genetic interactions, such as maternal diet, housing temperature and mouse strain. We further discuss potential mechanisms and plausible purposes, including the tempting hypothesis that postnatal transient remodeling creates a lasting adaptive capacity still detectable in adult animals. Finally, we propose postnatal adipose tissue remodeling as a model process to investigate mechanisms of beige adipocyte recruitment advantageous to cold exposure or adrenergic stimulation in its entirely endogenous sequence of events without external manipulation.


Subject(s)
Adipocytes, Beige , Obesity , Adipose Tissue, Brown/physiology , Adipose Tissue, White/physiology , Animals , Diet , Mice
9.
Int J Mol Sci ; 23(4)2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35216219

ABSTRACT

Pancreatic steatosis associates with ß-cell failure and may participate in the development of type-2-diabetes. Our previous studies have shown that diabetes-susceptible mice accumulate more adipocytes in the pancreas than diabetes-resistant mice. In addition, we have demonstrated that the co-culture of pancreatic islets and adipocytes affect insulin secretion. The aim of this current study was to elucidate if and to what extent pancreas-resident mesenchymal stromal cells (MSCs) with adipogenic progenitor potential differ from the corresponding stromal-type cells of the inguinal white adipose tissue (iWAT). miRNA (miRNome) and mRNA expression (transcriptome) analyses of MSCs isolated by flow cytometry of both tissues revealed 121 differentially expressed miRNAs and 1227 differentially expressed genes (DEGs). Target prediction analysis estimated 510 DEGs to be regulated by 58 differentially expressed miRNAs. Pathway analyses of DEGs and miRNA target genes showed unique transcriptional and miRNA signatures in pancreas (pMSCs) and iWAT MSCs (iwatMSCs), for instance fibrogenic and adipogenic differentiation, respectively. Accordingly, iwatMSCs revealed a higher adipogenic lineage commitment, whereas pMSCs showed an elevated fibrogenesis. As a low degree of adipogenesis was also observed in pMSCs of diabetes-susceptible mice, we conclude that the development of pancreatic steatosis has to be induced by other factors not related to cell-autonomous transcriptomic changes and miRNA-based signals.


Subject(s)
Adipogenesis/physiology , Adipose Tissue, White/physiology , Cell Differentiation/physiology , Mesenchymal Stem Cells/physiology , Pancreas/physiology , Adipocytes/physiology , Adipogenesis/genetics , Animals , Bone Marrow Cells/physiology , Cell Differentiation/genetics , Cell Proliferation/genetics , Cell Proliferation/physiology , Gene Expression Profiling/methods , Male , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , Stromal Cells/physiology , Transcriptome/genetics
10.
Acta Physiol (Oxf) ; 234(3): e13785, 2022 03.
Article in English | MEDLINE | ID: mdl-34995401

ABSTRACT

AIM: With exercise, white adipose tissues (WAT) are readily convertible to a "brown-like" state, altering from lipid-storing to energy-catabolizing function, which counteracts obesity and increases insulin sensitivity. Sestrin2 (SESN2) is a stress-inducible protein that can regulate the cold-induced increase of uncoupling protein 1 (UCP1), which is paramount for the thermogenic capacity of brown-like WAT. This study aimed to elucidate the necessity of SESN2 in mediating exercise-induced browning of WAT. METHODS: We used 8-week, male wild-type and SESN2 knockout C57BL/6J mice to explore the potential role of SESN2 in the exercise-induced WAT browning process. Over a 3-week intervention (sedentary versus treadmill exercise, normal chow versus 60% high-fat diet), we examined the exercise-induced alterations of the browning phenotype in different depots of white fat. In vitro, 3T3-L1 pre-adipocytes and primary adipocytes were used to determine the potential mechanism. RESULTS: Our data revealed that SESN2 was required for the exercise-induced subcutaneous WAT (scWAT) browning. This may be mediated by higher fibronectin type III domain containing 5 (FNDC5) contents in scWAT locally, rather than skeletal muscle FNDC5 expression and circulating serum irisin levels. SESN2 ablation significantly impaired the exercise-improved glucose metabolism, where browning of scWAT may serve as an essential pathway. Moreover, SESN2 ablation significantly attenuated the exercise-promoted respiratory exchange ratio and indexes of energy metabolism (oxygen uptake and energy expenditure). CONCLUSION: Taken together, our results provided evidence that SESN2 is a key integrating factor in driving the diverse metabolic benefits conferred by aerobic exercise.


Subject(s)
Adipose Tissue, Brown , Adipose Tissue, White , Peroxidases , Physical Conditioning, Animal , Thermogenesis , Adipose Tissue, Brown/physiology , Adipose Tissue, White/physiology , Animals , Diet, High-Fat , Fibronectins/metabolism , Male , Mice , Mice, Inbred C57BL , Peroxidases/genetics , Transcription Factors/metabolism , Uncoupling Protein 1/metabolism
11.
Br J Nutr ; 127(2): 161-164, 2022 01 28.
Article in English | MEDLINE | ID: mdl-35016740

ABSTRACT

I had been working on the endocrine and signalling role of white adipose tissue (WAT) since 1994 following the identification of the ob (Lep) gene(1), this after some 15 years investigating the physiological role of brown adipose tissue. The ob gene, a mutation in which it is responsible for the profound obesity of ob/ob (Lepob/Lepob) mice, is expressed primarily in white adipocytes and encodes the pleiotropic hormone leptin. The discovery of this adipocyte hormone had wide-ranging implications, including that white fat has multiple functions that far transcend the traditional picture of a simple lipid storage organ.


Subject(s)
Adipokines , Adipose Tissue, White , Adipocytes , Adipose Tissue, Brown/physiology , Adipose Tissue, White/physiology , Animals , Inflammation , Leptin/genetics , Mice
12.
J Endocrinol Invest ; 45(1): 139-148, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34232475

ABSTRACT

PURPOSE: Caloric restriction (CR) and Roux-en-Y Gastric Bypass (RYGB) are considered effective means of body weight control, but the mechanism by which CR and RYGB protect against high-fat diet (HFD)-induced obesity remains elusive. The browning of white adipose tissue (WAT) is a potential approach to combat obesity. Here we assess whether browning of WAT is involved in CR- and RYGB-treatment. METHODS: The average size of adipocytes was determined by histological analysis. Expression of thermogenic genes in both human subjects and mice were measured by quantitative real-time PCR and immunohistochemical staining. RESULTS: The average size of adipocytes was bigger, while the expression of thermogenic genes such as uncoupling protein 1 (UCP1), nuclear factor erythroid-2 like 1 (NRF1) and PPARγ coactivator-1 α (PGC1α) were lower in the WAT of obese subjects when compared to lean controls. Both CR and RYGB promoted weight and fat loss. Increment of the average adipocytes size and down-regulation of thermogenic genes were significantly reversed by both CR and RYGB in the WAT of obese mice. CONCLUSIONS: Our findings showed that CR and RYGB significantly improved high-fat diet-induced lipid accumulation by promoting the browning of WAT.


Subject(s)
Adipose Tissue, Brown/physiology , Adipose Tissue, White/physiology , Caloric Restriction , Gastric Bypass , Obesity , Adipocytes, Brown/physiology , Adipocytes, White/physiology , Adult , Animals , Cell Transdifferentiation , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Obesity/diet therapy , Obesity/physiopathology , Obesity/surgery
13.
Endocrinology ; 163(1)2022 01 01.
Article in English | MEDLINE | ID: mdl-34223880

ABSTRACT

Adipose tissue distribution in the human body is highly heterogeneous, and the relative mass of different depots is differentially associated with metabolic disease risk. Distinct functions of adipose depots are mediated by their content of specialized adipocyte subtypes, best exemplified by thermogenic adipocytes found in specific depots. Single-cell transcriptome profiling has been used to define the cellular composition of many tissues and organs, but the large size, buoyancy, and fragility of adipocytes have rendered it challenging to apply these techniques to understand the full complexity of adipocyte subtypes in different depots. Discussed here are strategies that have been recently developed for investigating adipocyte heterogeneity, including single-cell RNA-sequencing profiling of the stromal vascular fraction to identify diverse adipocyte progenitors, and single-nuclei profiling to characterize mature adipocytes. These efforts are yielding a more complete characterization of adipocyte subtypes in different depots, insights into the mechanisms of their development, and perturbations associated with different physiological states such as obesity. A better understanding of the adipocyte subtypes that compose different depots will help explain metabolic disease phenotypes associated with adipose tissue distribution and suggest new strategies for improving metabolic health.


Subject(s)
Adipocytes/cytology , Adipose Tissue/metabolism , Adipogenesis , Adipose Tissue, Beige/physiology , Adipose Tissue, Brown/physiology , Adipose Tissue, White/physiology , Animals , Body Height , Body Mass Index , Body Weight , Cell Differentiation , Cell Separation , Humans , Mice , Single-Cell Analysis , Stem Cells/cytology , Stromal Vascular Fraction/metabolism , Thermogenesis
14.
Diabetes ; 71(2): 249-263, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34732538

ABSTRACT

The increasing prevalence of obesity has resulted in demands for the development of new effective strategies for obesity treatment. Withaferin A (WA) shows a great potential for prevention of obesity by sensitizing leptin signaling in the hypothalamus. However, the mechanism underlying the weight- and adiposity-reducing effects of WA remains to be elucidated. In this study, we report that WA treatment induced white adipose tissue (WAT) browning, elevated energy expenditure, decreased respiratory exchange ratio, and prevented high-fat diet-induced obesity. The sympathetic chemical denervation dampened the WAT browning and also impeded the reduction of adiposity in WA-treated mice. WA markedly upregulated the levels of Prdm16 and FATP1 (Slc27a1) in the inguinal WAT (iWAT), and this was blocked by sympathetic denervation. Prdm16 or FATP1 knockdown in iWAT abrogated the WAT browning-inducing effects of WA and restored the weight gain and adiposity in WA-treated mice. Together, these findings suggest that WA induces WAT browning through the sympathetic nerve-adipose axis, and the adipocytic Prdm16-FATP1 pathway mediates the promotive effects of WA on white adipose browning.


Subject(s)
Adipose Tissue, Brown/drug effects , Adipose Tissue, White/drug effects , Obesity/prevention & control , Withanolides/pharmacology , Adipose Tissue, Brown/innervation , Adipose Tissue, Brown/physiology , Adipose Tissue, White/innervation , Adipose Tissue, White/physiology , Animals , Cell Transdifferentiation/drug effects , Cell Transdifferentiation/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Diet, High-Fat , Fatty Acid Transport Proteins/genetics , Fatty Acid Transport Proteins/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Obesity/etiology , Obesity/genetics , Obesity/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Sympathetic Nervous System/drug effects , Sympathetic Nervous System/physiology , Transcription Factors/genetics , Transcription Factors/metabolism
15.
Int J Mol Sci ; 22(24)2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34948432

ABSTRACT

(1) Background: studies on the long-term dynamic changes in fat depot metabolism in response to a high-fat diet (HFD) on hepatic lipid deposition and insulin resistance are sparse. This study investigated the dynamic changes produced by HFD and the production of dysfunctional fat depots on insulin resistance and liver lipid metabolism. (2) Methods: mice fed a chow or HFD (45% kcal fat) diet had three fat depots, liver, and blood collected at 6, 10, 20, and 30 weeks. Anthropometric changes and gene markers for adipogenesis, thermogenesis, ECM remodeling, inflammation, and tissue insulin resistance were measured. (3) Results: early responses to the HFD were increased body weight, minor deposition of lipid in liver, increased adipocyte size, and adipogenesis. Later changes were dysfunctional adipose depots, increased liver fat, insulin resistance (shown by changes in ITT) accompanied by increased inflammatory markers, increased fibrosis (fibrosis > 2-fold, p < 0.05 from week 6), and the presence of crown cells in white fat depots. Later, changes did not increase thermogenic markers in response to the increased calories and decreased UCP1 and PRDM16 proteins in WAT. (4) Conclusions: HFD feeding initially increased adipocyte diameter and number, but later changes caused adipose depots to become dysfunctional, restricting adipose tissue expansion, changing the brown/beige ratios in adipose depots, and causing ectopic lipid deposition and insulin resistance.


Subject(s)
Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Diet, High-Fat , Insulin Resistance , Lipid Metabolism , Liver/metabolism , Adipogenesis , Adipose Tissue, Brown/physiology , Adipose Tissue, White/physiology , Animals , Cross-Sectional Studies , Male , Mice , Mice, Inbred C57BL , Thermogenesis
17.
Nutrients ; 13(11)2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34835983

ABSTRACT

We investigated the effects of a novel multi-ingredient supplement comprised of polyphenol antioxidants and compounds known to facilitate mitochondrial function and metabolic enhancement (ME) in a mouse model of obesity. In this study, 6-week-old male C57/BL6J mice were placed on a high-fat diet (HFD; ~60% fat) for 6 weeks, with subsequent allocation into experimentalgroups for 4 weeks: HFD control, HFD + ME10 (10 components), HFD + ME7 (7 components), HFD + ME10 + EX, HFD + EX (where '+EX' animals exercised 3 days/week), and chow-fed control. After the intervention, HFD control animals had significantly greater body weight and fat mass. Despite the continuation of HFD, animals supplemented with multi-ingredient ME or who performed exercise training showed an attenuation of fat mass and preservation of lean body mass, which was further enhanced when combined (ME+EX). ME supplementation stimulated the upregulation of white and brown adipose tissue mRNA transcripts associated with mitochondrial biogenesis, browning, fatty acid transport, and fat metabolism. In WAT depots, this was mirrored by mitochodrial oxidative phosphorylation (OXPHOS) protein expression, and increased in vivo fat oxidation measured via CLAMS. ME supplementation also decreased systemic and local inflammation markers. Herein, we demonstrated that novel multi-ingredient nutritional supplements induced significant fat loss independent of physical activity while preserving muscle mass in obese mice. Mechanistically, these MEs appear to act by inducing a browning program in white adipose tissue and decreasing other pathophysiological impairments associated with obesity, including mitochondrial respiration alterations induced by HFD.


Subject(s)
Adipose Tissue, Brown/physiology , Adipose Tissue, White/physiology , Diet, High-Fat , Dietary Supplements , Feeding Behavior , Weight Gain/physiology , Animals , Antioxidants/metabolism , Biomarkers/metabolism , Blood Circulation , Cell Respiration , Epididymis/metabolism , Lipid Metabolism/genetics , Male , Mice, Inbred C57BL , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Organelle Biogenesis , Oxidation-Reduction , Oxidative Phosphorylation , Phosphorylation , Physical Conditioning, Animal , RNA, Messenger/genetics , RNA, Messenger/metabolism , Superoxide Dismutase/metabolism , Up-Regulation , Weight Loss
18.
Food Funct ; 12(19): 9300-9314, 2021 Oct 04.
Article in English | MEDLINE | ID: mdl-34606525

ABSTRACT

In this study, Ougan juice (OJ) and lactic acid bacteria fermented Ougan juice (FOJ) were investigated individually for their capability of preventing obesity in high-fat diet (HFD)-fed C57BL/6J mice. After being administered with OJ or FOJ for 10 weeks, the body weight gain, hyperlipidemia, and gut microbiota dysbiosis of HFD-fed mice were examined. The results showed that OJ or FOJ supplementation inhibited weight gain, lowered fat accumulation, reduced liver steatosis, improved glucose homeostasis and insulin sensitivity, increased brown adipose tissue (BAT) activity, and promoted white adipose tissue (WAT) browning. Both OJ and FOJ additions increased the diversity of gut microbiota. OJ reduced the relative abundance of phylum Erysipelatoclostridiaceae and genus Erysipelatoclostridium and remarkably increased SCFA-producing bacteria Blautia, while FOJ reduced the ratio of Firmicutes to Bacteroidetes and enhanced the relative abundance of family Lactobacillaceae. Spearman's correlation analysis revealed that Akkermansia, Dubosiella, and Muribaculaceae were significantly negatively correlated with obesity-related indexes. In general, FOJ exhibited a better inhibitory effect on obesity than OJ, and the possible inhibitory mechanism lies in promoting WAT browning and increasing intestinal probiotics. This study provides the guidance for developing fermented Ougan juice as an obesity-inhibiting functional food.


Subject(s)
Citrus , Dietary Supplements , Fermented Beverages , Fruit and Vegetable Juices , Gastrointestinal Microbiome , Obesity/prevention & control , Adipose Tissue, Brown/physiology , Adipose Tissue, White/physiology , Animals , Blood Glucose/metabolism , Body Weight , Diet, High-Fat/adverse effects , Fermented Beverages/analysis , Flavonoids/analysis , Insulin Resistance , Liver/physiology , Male , Mice , Mice, Inbred C57BL , Obesity/etiology , Organ Size , Thermogenesis , Weight Gain
19.
Am J Physiol Endocrinol Metab ; 321(5): E592-E605, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34541875

ABSTRACT

Deletion of mechanistic target of rapamycin complex 2 (mTORC2) essential component rapamycin insensitive companion of mTOR (Rictor) by a Cre recombinase under control of the broad, nonadipocyte-specific aP2/FABP4 promoter impairs thermoregulation and brown adipose tissue (BAT) glucose uptake on acute cold exposure. We investigated herein whether adipocyte-specific mTORC2 deficiency affects BAT and inguinal white adipose tissue (iWAT) signaling, metabolism, and thermogenesis in cold-acclimated mice. For this, 8-wk-old male mice bearing Rictor deletion and therefore mTORC2 deficiency in adipocytes (adiponectin-Cre) and littermates controls were either kept at thermoneutrality (30 ± 1°C) or cold-acclimated (10 ± 1°C) for 14 days and evaluated for BAT and iWAT signaling, metabolism, and thermogenesis. Cold acclimation inhibited mTORC2 in BAT and iWAT, but its residual activity is still required for the cold-induced increases in BAT adipocyte number, total UCP-1 content and mRNA levels of proliferation markers Ki67 and cyclin 1 D, and de novo lipogenesis enzymes ATP-citrate lyase and acetyl-CoA carboxylase. In iWAT, mTORC2 residual activity is partially required for the cold-induced increases in multilocular adipocytes, mitochondrial mass, and uncoupling protein 1 (UCP-1) content. Conversely, BAT mTORC1 activity and BAT and iWAT glucose uptake were upregulated by cold independently of mTORC2. Noteworthy, the impairment in BAT and iWAT total UCP-1 content and thermogenic capacity induced by adipocyte mTORC2 deficiency had no major impact on whole body energy expenditure in cold-acclimated mice due to a compensatory activation of muscle shivering. In conclusion, adipocyte mTORC2 deficiency impairs, through different mechanisms, BAT and iWAT total UCP-1 content and thermogenic capacity in cold-acclimated mice, without affecting glucose uptake and whole body energy expenditure.NEW & NOTEWORTHY BAT and iWAT mTORC2 is inhibited by cold acclimation, but its residual activity is required for cold-induced increases in total UCP-1 content and thermogenic capacity, but not glucose uptake and mTORC1 activity. The impaired BAT and iWAT total UCP-1 content and thermogenic capacity induced by adipocyte mTORC2 deficiency are compensated by activation of muscle shivering in cold-acclimated mice.


Subject(s)
Acclimatization/physiology , Adipocytes/metabolism , Adipose Tissue, Brown/physiology , Adipose Tissue, White/physiology , Energy Metabolism/physiology , Glucose/metabolism , Mechanistic Target of Rapamycin Complex 2/deficiency , Thermogenesis/genetics , Animals , Cold Temperature , Gene Deletion , Gene Expression Regulation/genetics , Gene Expression Regulation/physiology , Male , Mechanistic Target of Rapamycin Complex 2/genetics , Mice , Mice, Inbred C57BL , Uncoupling Protein 1
20.
Int J Mol Sci ; 22(17)2021 Aug 27.
Article in English | MEDLINE | ID: mdl-34502211

ABSTRACT

Obesity is a condition characterized by uncontrolled expansion of adipose tissue mass resulting in pathological weight gain. Histone deacetylases (HDACs) have emerged as crucial players in epigenetic regulation of adipocyte metabolism. Previously, we demonstrated that selective inhibition of class I HDACs improves white adipocyte functionality and promotes the browning phenotype of murine mesenchymal stem cells (MSCs) C3H/10T1/2 differentiated to adipocytes. These effects were also observed in db/db and diet induced obesity mouse models and in mice with adipose-selective inactivation of HDAC3, a member of class I HDACs. The molecular basis of class I HDACs action in adipose tissue is not deeply characterized and it is not known whether the effects of their inhibition are exerted on adipocyte precursors or mature adipocytes. Therefore, the aim of the present work was to explore the molecular mechanism of class I HDAC action in adipocytes by evaluating the effects of HDAC3-specific silencing at different stages of differentiation. HDAC3 was silenced in C3H/10T1/2 MSCs at different stages of differentiation to adipocytes. shRNA targeting HDAC3 was used to generate the knock-down model. Proper HDAC3 silencing was assessed by measuring both mRNA and protein levels of mouse HDAC3 via qPCR and western blot, respectively. Mitochondrial DNA content and gene expression were quantified via qPCR. HDAC3 silencing at the beginning of differentiation enhanced adipocyte functionality by amplifying the expression of genes regulating differentiation, oxidative metabolism, browning and mitochondrial activity, starting from 72 h after induction of differentiation and silencing. Insulin signaling was enhanced as demonstrated by increased AKT phosphorylation following HDAC3 silencing. Mitochondrial content/density did not change, while the increased expression of the transcriptional co-activator Ppargc1b suggests the observed phenotype was related to enhanced mitochondrial activity, which was confirmed by increased maximal respiration and proton leak linked to reduced coupling efficiency. Moreover, the expression of pro-inflammatory markers increased with HDAC3 early silencing. To the contrary, no differences in terms of gene expression were found when HDAC3 silencing occurred in terminally differentiated adipocyte. Our data demonstrated that early epigenetic events mediated by class I HDAC inhibition/silencing are crucial to commit adipocyte precursors towards the above-mentioned metabolic phenotype. Moreover, our data suggest that these effects are exerted on adipocyte precursors.


Subject(s)
Adipose Tissue, Brown/physiology , Adipose Tissue, White/physiology , Cell Differentiation , Gene Expression Regulation , Histone Deacetylases/metabolism , Mitochondria/metabolism , Phenotype , Adipose Tissue, Brown/cytology , Adipose Tissue, White/cytology , Animals , Histone Deacetylases/genetics , Mice , Mice, Inbred C3H
SELECTION OF CITATIONS
SEARCH DETAIL
...