Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.270
Filter
1.
Iran J Med Sci ; 49(6): 377-383, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38952640

ABSTRACT

Background: Children with Congenital Adrenal Hyperplasia (CAH) have a higher chance of hypertension. The likelihood of hypertension is higher in CAH children who get fludrocortisone medication and have an over-suppression. Plasma renin activity (PRA) is a sensitive indicator when the fludrocortisone dose is insufficient. The objective of this study is to assess the relationship between plasma renin activity with hypertension in 21-hydroxylase-deficient (21-OHD) CAH children. Methods: This cross-sectional observational analytical study was conducted in 2019 at the Pediatric Endocrinology Outpatient Clinic in Dr. Cipto Mangunkusumo Hospital (RSCM), Jakarta, Indonesia. The subjects were 21-OHD CAH children, aged >6 months to 18 years who had already taken hydrocortisone with or without fludrocortisone for at least 6 months, and were divided into hypertension and non-hypertension groups. The subjects were selected by a consecutive sampling method. Data was analyzed using SPSS software (version 23.0) with unpaired t test analysis and multiple logistic regression test. Statistical significance was achieved if P<0.05. Results: Forty 21-OHD CAH patients were included, and 20 subjects (50%) had hypertension. A higher incidence of hypertension was found in salt-wasting CAH than in simple virilizing types (59.3% vs 30.8%). There was a significant mean difference in PRA levels between hypertension and non-hypertension groups in salt-wasting patients (P=0.016). A significant difference between the last dose of hydrocortisone with the number of hypertension patients in salt-wasting patients (P=0.032) was found, and low PRA levels showed a 1.09 times higher risk of hypertension. Conclusion: Children with salt-wasting CAH with low PRA levels had a higher risk of getting hypertension.


Subject(s)
Adrenal Hyperplasia, Congenital , Hydrocortisone , Hypertension , Renin , Humans , Adrenal Hyperplasia, Congenital/complications , Adrenal Hyperplasia, Congenital/blood , Adrenal Hyperplasia, Congenital/physiopathology , Adrenal Hyperplasia, Congenital/drug therapy , Renin/blood , Child , Hypertension/blood , Female , Male , Cross-Sectional Studies , Child, Preschool , Adolescent , Hydrocortisone/blood , Hydrocortisone/analysis , Hydrocortisone/therapeutic use , Infant , Indonesia/epidemiology , Fludrocortisone/therapeutic use
2.
Adv Pediatr ; 71(1): 135-149, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38944479

ABSTRACT

Congenital adrenal hyperplasia (CAH) is an autosomal recessive genetic condition caused by various enzyme deficiencies that result in disruptions of pathways of adrenal steroidogenesis. 21-hydroxylase deficiency is the most common form of CAH and has a variable phenotype which ranges a spectrum, from the most severe salt-wasting type to the simple-virilizing type and the least severe nonclassical form. Patients with CAH are at risk for various comorbidities due to the underlying adrenal hormone production imbalance as well as the treatment of the condition, which typically includes supraphysiologic glucocorticoid dosing. Children and adults require frequent monitoring and careful medication dosing adjustment. However, there are multiple novel therapies on the horizon that offer promise to patients with CAH in optimizing their treatment regimens and reducing the risk of comorbidities.


Subject(s)
Adrenal Hyperplasia, Congenital , Glucocorticoids , Humans , Adrenal Hyperplasia, Congenital/diagnosis , Adrenal Hyperplasia, Congenital/therapy , Adrenal Hyperplasia, Congenital/drug therapy , Glucocorticoids/therapeutic use , Child
3.
Eur J Med Genet ; 69: 104950, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38830573

ABSTRACT

Newborn screening (NBS) for congenital adrenal hyperplasia (CAH) based on hormonal testing is successfully implemented in many countries. However, this method cannot detect non-classic CAH and has high false positive rates. We have developed a novel MALDI-TOF MS assay that can identify common variants and deletions of CYP21A2 in the Chinese population. Thirty-seven clinical patients with CAH confirmed by Sanger sequencing and MLPA analysis were detected by MALDI-TOF MS assay. Two CYP21A2 variants were detected in 30 patients and one CYP21A2 variant was detected in 7 patients. The MALDI-TOF MS assay detected 67 mutant alleles in 37 patients with a detection rate of 90.5%. Sanger sequencing revealed that three variants in seven patients were not included in the designed panel. Eleven distinct CYP21A2 variants were identified, including five missense variants, two nonsense variants, two large gene deletions, one splice variant, and one frameshift variant. The most frequent variant was c.293-13C > G (37.84%), followed by c.518T > A (21.62%) and exon 1-7 deletion (17.57%). The high-throughput MALDI-TOF MS assay that can simultaneously detect common variants and deletions of CYP21A2. This assay can be used for population-based genetic screening and rapid detection of suspected patients, and is expected to be a valuable complement to biochemical-based testing for the detection of CAH.


Subject(s)
Adrenal Hyperplasia, Congenital , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Steroid 21-Hydroxylase , Humans , Steroid 21-Hydroxylase/genetics , Adrenal Hyperplasia, Congenital/genetics , Adrenal Hyperplasia, Congenital/diagnosis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/standards , Female , Male , Infant, Newborn , Neonatal Screening/methods , Infant , Genetic Testing/methods , Genetic Testing/standards , Gene Deletion
4.
Curr Opin Pediatr ; 36(4): 456-462, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38832930

ABSTRACT

PURPOSE OF REVIEW: 21-Hydroxylase deficiency (21-OHD), the most common form of congenital adrenal hyperplasia, is an autosomal recessive disorder caused by pathogenic variants in CYP21A2 . Although this disorder has been known for several decades, many challenges related to its monitoring and treatment remain to be addressed. The present review is written to describe an overview of biochemical monitoring of this entity, with particular focus on overnight fasting urine pregnanetriol. RECENT FINDINGS: We have conducted a decade-long research project to investigate methods of monitoring 21-OHD in children. Our latest studies on this topic have recently been published. One is a review of methods for monitoring 21-OHD. The other was to demonstrate that measuring the first morning PT level may be more practical and useful for biochemical monitoring of 21-OHD. The first morning pregnanetriol (PT), which was previously reported to reflect a long-term auxological data during the prepubertal period, correlated more significantly than the other timing PT in this study, with 17-OHP, before the morning medication. SUMMARY: In conclusion, although the optimal method of monitoring this disease is still uncertain, the use of overnight fasting urine pregnanetriol (P3) as a marker of 21-OHD is scientifically sound and may be clinically practical.


Subject(s)
Adrenal Hyperplasia, Congenital , Fasting , Pregnanetriol , Humans , Adrenal Hyperplasia, Congenital/diagnosis , Adrenal Hyperplasia, Congenital/urine , Adrenal Hyperplasia, Congenital/drug therapy , Child , Pregnanetriol/urine , Fasting/urine , Biomarkers/urine , Biomarkers/blood , Steroid 21-Hydroxylase/genetics , Steroid 21-Hydroxylase/urine , Biological Monitoring/methods
5.
Eur J Med Genet ; 69: 104952, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38852772

ABSTRACT

21-hydroxylase deficiency stands as the most prevalent form of congenital adrenal hyperplasia, primarily resulting from mutations in the CYP21A2 gene. On the other hand, mutations within the CYP17A1 gene lead to 17α-hydroxylase/17,20-lyase enzyme deficiencies. The scarcity of 17-OH deficiency is noteworthy, accounting for less than 1% of all congenital adrenal hyperplasia cases. The male patient, born from a first-degree cousin marriage, exhibited several symptoms, including left undescended testis, micropenis, penile chord, left sensorineural hearing loss, and gynecomastia. He reported micropenis as a concern at the age of 13.5 years. His hormone profile revealed high levels of serum 17-hydroxyprogesterone, progesterone, and pregnenolone. In this case with a 46 XY karyotype, suspicions arose regarding Cytochrome P450 oxidoreductase deficiency due to ambiguous genitalia and an atypical hormone profile. Analysis unveiled two distinct homozygous and pathogenic variants in the CYP21A2 and CYP17A1 genes. Notably, mineralocorticoid precursors escalated, while cortisol and sex steroid precursors decreased during the high (250 mcg) dose ACTH stimulation test. The mutation c.1169C > G (p.Thr390Arg) in CYP17A1, which is the second documented case in literature, stands out due to its unique set of accompanying features. Mutations occurring in CYP21A2 and CYP17A1 result in complete or partial enzyme deficiencies, and the detection of homozygous mutations in two different enzyme systems within the steroidogenic pathway is noteworthy.


Subject(s)
Adrenal Hyperplasia, Congenital , Steroid 17-alpha-Hydroxylase , Steroid 21-Hydroxylase , Humans , Adrenal Hyperplasia, Congenital/genetics , Male , Steroid 17-alpha-Hydroxylase/genetics , Steroid 21-Hydroxylase/genetics , Adolescent , Mutation
6.
Zhonghua Yi Xue Za Zhi ; 104(22): 2074-2078, 2024 Jun 11.
Article in Chinese | MEDLINE | ID: mdl-38858218

ABSTRACT

This study reports a family of patients with 11ß-hydroxylase deficiency (11ß-OHD) caused by a novel mutation in the CYP11B1 gene, and analyzes its clinical and genetic characteristics. The clinical data of a patient with intractable hypertension at Air Force Medical Center on May 16, 2014 were retrospectively analyzed. The patient was clinically diagnosed with congenital adrenal cortical hyperplasia. The clinical data of the patient were further collected and the peripheral blood samples of the patient, his parents and his sister were collected for CYP11B1(NM_000497) gene sequencing, suggesting that the patient had compound heterozygous mutations in exon 1:c.199delG, p.Glu67Lysfs*9 and exon 5:c.905_907 delATGinsTT, p.Asp302Valfs*23, both of which were pathogenic variants. The patient's father and sister carried heterozygous mutations in exon 1:c.199delG, p.Glu67Lysfs*9, and the mother carried heterozygous mutations in exon 5:c.905_907delATGinsTT, p.Asp302Valfs*23. This study is the first to report a new compound heterozygous mutation in exon 1:c.199delG and exon 5 c.905_907 delATGinsTT of CYP11B1 gene, enriching the database of 11ß-OHD mutations and providing information to further understand the genetic mechanism of the disease.


Subject(s)
Adrenal Hyperplasia, Congenital , Mutation , Steroid 11-beta-Hydroxylase , Humans , Steroid 11-beta-Hydroxylase/genetics , Adrenal Hyperplasia, Congenital/genetics , Male , Female , Retrospective Studies , Exons , Heterozygote , Pedigree
8.
Front Endocrinol (Lausanne) ; 15: 1402579, 2024.
Article in English | MEDLINE | ID: mdl-38841305

ABSTRACT

The term 'differences of sex development' (DSD) refers to a group of congenital conditions that are associated with atypical development of chromosomal, gonadal, and/or anatomical sex. DSD in individuals with a 46,XX karyotype can occur due to fetal or postnatal exposure to elevated amount of androgens or maldevelopment of internal genitalia. Clinical phenotype could be quite variable and for this reason these conditions could be diagnosed at birth, in newborns with atypical genitalia, but also even later in life, due to progressive virilization during adolescence, or pubertal delay. Understand the physiological development and the molecular bases of gonadal and adrenal structures is crucial to determine the diagnosis and best management and treatment for these patients. The most common cause of DSD in 46,XX newborns is congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency, determining primary adrenal insufficiency and androgen excess. In this review we will focus on the other rare causes of 46,XX DSD, outside CAH, summarizing the most relevant data on genetic, clinical aspects, puberty and fertility outcomes of these rare diseases.


Subject(s)
Adrenal Hyperplasia, Congenital , Fertility , Hormone Replacement Therapy , Puberty , Humans , Adrenal Hyperplasia, Congenital/drug therapy , Adrenal Hyperplasia, Congenital/genetics , Fertility/drug effects , Female , Male , Disorders of Sex Development/genetics , Sexual Development/genetics
9.
Int J Mol Sci ; 25(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38791102

ABSTRACT

Congenital Adrenal Hyperplasia (CAH) is an autosomal recessive disorder impairing cortisol synthesis due to reduced enzymatic activity. This leads to persistent adrenocortical overstimulation and the accumulation of precursors before the blocked enzymatic step. The predominant form of CAH arises from mutations in CYP21A2, causing 21-hydroxylase deficiency (21-OHD). Despite emerging treatment options for CAH, it is not always possible to physiologically replace cortisol levels and counteract hyperandrogenism. Moreover, there is a notable absence of an effective in vivo model for pre-clinical testing. In this work, we developed an animal model for CAH with the clinically relevant point mutation p.R484Q in the previously humanized CYP21A2 mouse strain. Mutant mice showed hyperplastic adrenals and exhibited reduced levels of corticosterone and 11-deoxycorticosterone and an increase in progesterone. Female mutants presented with higher aldosterone concentrations, but blood pressure remained similar between wildtype and mutant mice in both sexes. Male mutant mice have normal fertility with a typical testicular appearance, whereas female mutants are infertile, exhibit an abnormal ovarian structure, and remain in a consistent diestrus phase. Conclusively, we show that the animal model has the potential to contribute to testing new treatment options and to prevent comorbidities that result from hormone-related derangements and treatment-related side effects in CAH patients.


Subject(s)
Adrenal Hyperplasia, Congenital , Disease Models, Animal , Steroid 21-Hydroxylase , Animals , Adrenal Hyperplasia, Congenital/genetics , Adrenal Hyperplasia, Congenital/pathology , Adrenal Hyperplasia, Congenital/metabolism , Steroid 21-Hydroxylase/genetics , Steroid 21-Hydroxylase/metabolism , Mice , Female , Male , Humans , Corticosterone/metabolism , Corticosterone/blood , Aldosterone/metabolism , Adrenal Glands/metabolism , Adrenal Glands/pathology , Mutation , Progesterone/metabolism
10.
Curr Opin Pediatr ; 36(4): 463-466, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38747200

ABSTRACT

PURPOSE OF REVIEW: Congenital adrenal hyperplasia (CAH) is a relatively common disorder and one of the most challenging conditions seen by pediatric endocrinologists. Poor linear growth in CAH has been recognized for many years. There are new insights to explain this abnormality and shed light on strategies to promote normal growth. RECENT FINDINGS: Published data suggest that the dose of hydrocortisone during two critical periods of rapid growth, namely infancy and at puberty, has a fundamental effect on growth velocity, and by definition adult height. To prevent over-treatment, hydrocortisone dosage should remain within the range of 10-15 mg/m 2 body surface area per day. Precursor steroids such as 17-hydroxy progesterone (17OHP) should not be suppressed to undetectable levels. In fact, 17OHP should always be measurable, as complete suppression suggests over-treatment. SUMMARY: CAH is a challenging disorder. High-quality compliance within the consultation setting, with the patient seeing the same specialist at every visit, will be rewarded by improved long-term growth potential. Quality auxological monitoring can avoid phases of growth suppression. New therapy with CRH receptor antagonists may lead to a more nuanced approach by allowing fine tuning of hydrocortisone replacement without the need to suppress ACTH secretion.


Subject(s)
Adrenal Hyperplasia, Congenital , Hydrocortisone , Humans , Adrenal Hyperplasia, Congenital/drug therapy , Adrenal Hyperplasia, Congenital/diagnosis , Child , Adolescent , Hydrocortisone/therapeutic use , Body Height/drug effects , Growth Disorders/drug therapy , Growth Disorders/etiology , Infant , Child, Preschool
11.
Sci Rep ; 14(1): 12058, 2024 05 27.
Article in English | MEDLINE | ID: mdl-38802468

ABSTRACT

Testicular adrenal rest tumor (TART) is a prevalent complication associated with congenital adrenal hyperplasia (CAH), culminating in gonadal dysfunction and infertility. Early hormonal intervention is preventive, but excessive glucocorticoid poses risks. Developing reliable methods for early TART diagnosis and monitoring is crucial. The present study aims to formulate a scoring system to identify high-risk infertility through analysis of TART ultrasound features. Grayscale and power Doppler ultrasound were employed in this retrospective study to evaluate testicular lesions in male CAH patients. Lesion assessment encompassed parameters such as range, echogenicity, and blood flow, and these were subsequently correlated with semen parameters. Results of 49 semen analyzes from 35 patients demonstrated a notable inverse correlation between lesion scores and both sperm concentration (rs = - 0.83, P < 0.001) and progressive motility (rs = - 0.56, P < 0.001). The ROC curve areas for evaluating oligospermia and asthenozoospermia were calculated as 0.94 and 0.72, respectively. Establishing a lesion score threshold of 6 revealed a sensitivity of 75.00% and specificity of 93.94% for oligospermia and a sensitivity of 53.85% and specificity of 100.00% for asthenozoospermia. These findings underscore the potential utility of incorporating ultrasound into routine CAH patient management, facilitating timely interventions to preserve male fertility.


Subject(s)
Adrenal Hyperplasia, Congenital , Infertility, Male , Ultrasonography , Humans , Male , Adrenal Hyperplasia, Congenital/complications , Adrenal Hyperplasia, Congenital/diagnostic imaging , Adult , Retrospective Studies , Infertility, Male/etiology , Infertility, Male/diagnostic imaging , Ultrasonography/methods , Risk Assessment , Semen Analysis , Testis/diagnostic imaging , Testis/pathology , Young Adult , Adrenal Rest Tumor/diagnostic imaging
12.
Front Endocrinol (Lausanne) ; 15: 1372887, 2024.
Article in English | MEDLINE | ID: mdl-38752171

ABSTRACT

Differences/disorders of sex development (DSD) comprise a large group of rare congenital conditions. 46,XX DSD, excluding congenital adrenal hyperplasia (CAH), represent only a small number of these diseases. Due to the rarity of non-CAH 46,XX DSD, data on this sex chromosomal aberration were confined to case reports or case series with small numbers of patients. As the literature is still relatively sparse, medical data on the long-term effects of these pathologies remain scarce. In this review, we aim to provide an overview of current data on the long-term follow-up of patients with non-CAH 46,XX DSD, by covering the following topics: quality of life, gender identity, fertility and sexuality, global health, bone and cardiometabolic effects, cancer risk, and mortality. As non-CAH 46,XX DSD is a very rare condition, we have no accurate data on adult QoL assessment for these patients. Various factors may contribute to a legitimate questioning about their gender identity, which may differ from their sex assigned at birth. A significant proportion of gender dysphoria has been reported in various series of 46,XX DSD patients. However, it is difficult to give an accurate prevalence of gender dysphoria and gender reassignment in non-CAH 46,XX DSD because of the rarity of the data. Whatever the aetiology of non-CAH 46,XX DSD, fertility seems to be impaired. On the other hand, sexuality appears preserved in 46,XX men, whereas it is impaired in women with MRKH syndrome before treatment. Although there is still a paucity of data on general health, bone and cardiometabolic effects, and mortality, it would appear that the 46,XX DSD condition is less severely affected than other DSD conditions. Further structured and continued multi-center follow-up is needed to provide more information on the long-term outcome of this very rare non-CAH 46,XX DSD condition.


Subject(s)
46, XX Disorders of Sex Development , Quality of Life , Female , Humans , Male , Adrenal Hyperplasia, Congenital/complications , Disorders of Sex Development/genetics , Fertility , Gender Identity
13.
Zoolog Sci ; 41(3): 263-274, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38809865

ABSTRACT

cytochrome P-450, 21-hydroxylase (cyp21a2), encodes an enzyme required for cortisol biosynthesis, and its mutations are the major genetic cause of congenital adrenal hyperplasia (CAH) in humans. Here, we have generated a null allele for the medaka cyp21a2 with a nine base-pair insertion which led to a truncated protein. We have observed a delay in hatching and a low survival rate in homozygous mutants. The interrenal gland (adrenal counterpart in teleosts) exhibits hyperplasia and the number of pomca-expressing cells in the pituitary increases in the homozygous mutant. A mass spectrometry-based analysis of whole larvae confirmed a lack of cortisol biosynthesis, while its corresponding precursors were significantly increased, indicating a systemic glucocorticoid deficiency in our mutant model. Furthermore, these phenotypes at the larval stage are rescued by cortisol. In addition, females showed complete sterility with accumulated follicles in the ovary while male homozygous mutants were fully fertile in the adult mutants. These results demonstrate that the mutant medaka recapitulates several aspects of cyp21a2-deficiency observed in humans, making it a valuable model for studying steroidogenesis in CAH.


Subject(s)
Oryzias , Steroid 21-Hydroxylase , Animals , Oryzias/genetics , Steroid 21-Hydroxylase/genetics , Steroid 21-Hydroxylase/metabolism , Female , Male , Glucocorticoids/metabolism , Hyperplasia/genetics , Hyperplasia/veterinary , Hydrocortisone/metabolism , Adrenal Hyperplasia, Congenital/genetics , Adrenal Hyperplasia, Congenital/veterinary , Mutation , Fish Diseases/genetics , Larva/genetics , Larva/metabolism
14.
Front Endocrinol (Lausanne) ; 15: 1352552, 2024.
Article in English | MEDLINE | ID: mdl-38699383

ABSTRACT

Congenital adrenal hyperplasia (CAH) and Williams Syndrome (WS; MIM # 194050) are distinct genetic conditions characterized by unique clinical features. 21-Hydroxylase deficiency (21-OHD; MIM #201910), the most common form of CAH, arises from mutations in the CYP21A2 gene, resulting in virilization of the external genitalia in affected females, early puberty in males, and short stature. Williams syndrome, caused by a microdeletion of 7q11.23, presents with distinctive facial features, intellectual disability, unique personality traits, early puberty, and short stature. This case report describe the clinical features of a 4-year-old girl referred due to progressive virilization and developmental delay. Genetic analysis confirmed concurrent CAH and WS, identifying a novel mutation in the CYP21A2 gene (c.1442T>C). Following corticosteroid therapy initiation, the patient developed central precocious puberty. This case report delves into the pubertal change patterns in a patient affected by overlapping genetic conditions, providing valuable insights in to the intricate clinical manifestation and management of these rare complex disorders.


Subject(s)
Adrenal Hyperplasia, Congenital , Puberty, Precocious , Virilism , Williams Syndrome , Humans , Female , Adrenal Hyperplasia, Congenital/complications , Adrenal Hyperplasia, Congenital/diagnosis , Adrenal Hyperplasia, Congenital/genetics , Puberty, Precocious/diagnosis , Puberty, Precocious/genetics , Puberty, Precocious/etiology , Williams Syndrome/complications , Williams Syndrome/genetics , Williams Syndrome/diagnosis , Child, Preschool , Virilism/genetics , Virilism/diagnosis , Steroid 21-Hydroxylase/genetics , Mutation
15.
Front Endocrinol (Lausanne) ; 15: 1354759, 2024.
Article in English | MEDLINE | ID: mdl-38812815

ABSTRACT

Prenatal-onset androgen excess leads to abnormal sexual development in 46,XX individuals. This androgen excess can be caused endogenously by the adrenals or gonads or by exposure to exogenous androgens. The most common cause of 46,XX disorders/differences in sex development (DSD) is congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency, comprising >90% of 46,XX DSD cases. Deficiencies of 11ß-hydroxylase, 3ß-hydroxysteroid dehydrogenase, and P450-oxidoreductase (POR) are rare types of CAH, resulting in 46,XX DSD. In all CAH forms, patients have normal ovarian development. The molecular genetic causes of 46,XX DSD, besides CAH, are uncommon. These etiologies include primary glucocorticoid resistance (PGCR) and aromatase deficiency with normal ovarian development. Additionally, 46,XX gonads can differentiate into testes, causing 46,XX testicular (T) DSD or a coexistence of ovarian and testicular tissue, defined as 46,XX ovotesticular (OT)-DSD. PGCR is caused by inactivating variants in NR3C1, resulting in glucocorticoid insensitivity and the signs of mineralocorticoid and androgen excess. Pathogenic variants in the CYP19A1 gene lead to aromatase deficiency, causing androgen excess. Many genes are involved in the mechanisms of gonadal development, and genes associated with 46,XX T/OT-DSD include translocations of the SRY; copy number variants in NR2F2, NR0B1, SOX3, SOX9, SOX10, and FGF9, and sequence variants in NR5A1, NR2F2, RSPO1, SOX9, WNT2B, WNT4, and WT1. Progress in cytogenetic and molecular genetic techniques has significantly improved our understanding of the etiology of non-CAH 46,XX DSD. Nonetheless, uncertainties about gonadal function and gender outcomes may make the management of these conditions challenging. This review explores the intricate landscape of diagnosing and managing these conditions, shedding light on the unique aspects that distinguish them from other types of DSD.


Subject(s)
46, XX Disorders of Sex Development , Adrenal Hyperplasia, Congenital , Humans , Adrenal Hyperplasia, Congenital/genetics , Adrenal Hyperplasia, Congenital/diagnosis , Adrenal Hyperplasia, Congenital/therapy , 46, XX Disorders of Sex Development/genetics , 46, XX Disorders of Sex Development/diagnosis , Female , Male , Disorders of Sex Development/genetics , Disorders of Sex Development/diagnosis
16.
Discov Med ; 36(184): 1012-1019, 2024 May.
Article in English | MEDLINE | ID: mdl-38798260

ABSTRACT

BACKGROUND: 17α-hydroxylase/17,20-lyase deficiency (17OHD) is an autosomal recessive genetic disorder caused by a mutation of the cytochrome P450, family 17, subfamily A, polypeptide 1 (CYP17A1). This study reports the case of a 22-year-old Chinese patient (46, XY) with 17OHD and a unilateral adrenal space-occupying lesion. METHODS: The patient underwent serological, radiographic, genetic, and molecular analyses including whole-genome exome sequencing through high-throughput sequencing (HTS) technology to analyze the genetic conditions of both the patient and her parents. Additionally, chromosomal karyotype analysis was performed. The impact of the novel mutation on protein conformation was investigated by examining the three-dimensional structure of human CYP17A1 using the SWISS-MODEL website tool (PDB code 3RUK). RESULTS: The patient had a chromosomal karyotype 46, XY, and presented with hypertension, hypokalemia, and male pseudohermaphroditism. Furthermore, decreased levels of testosterone, dehydroepiandrosterone sulfate, and estradiol, along with increased levels of progesterone, luteinizing hormone, and follicle-stimulating hormone (FSH), were observed. DNA sequencing revealed a homozygous mutation (c.908G>A, p.G303A) in the fifth exon of the CYP17A1. Both parents carried a heterozygous c.908G>A mutation in the same exon, confirming the inheritance of the patient's exonic mutation. CONCLUSION: For the first time, this study reports a novel homozygous mutation (c.908G>A in the fifth exon) in CYP17A1. Modeling analysis of CYP17A1 suggested that the substitution of glycine with aspartic acid at position 303 induces alterations in the number, structure, and electrostatic potential of the protein's local binding sites. The p.G303A mutation may possess pathogenic properties. Our study expands the mutation spectrum of CYP17A1.


Subject(s)
Adrenal Hyperplasia, Congenital , Homozygote , Steroid 17-alpha-Hydroxylase , Humans , Steroid 17-alpha-Hydroxylase/genetics , Female , Adrenal Hyperplasia, Congenital/genetics , Young Adult , Asian People/genetics , Male , Genotype , Mutation, Missense , East Asian People
17.
J Pediatr Endocrinol Metab ; 37(5): 419-424, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38557593

ABSTRACT

OBJECTIVES: The most suitable biochemical markers for therapy adjustment in patients with congenital adrenal hyperplasia are controversial. 11-Oxygenated androgens are a promising new approach. The objective of this study was to investigate the diurnal rhythm of 11-ketotestosterone in children and adolescents in saliva and to correlate it with salivary 17-hydroxyprogesterone. METHODS: Fifty-one samples of steroid day-profiles from 17 patients were additionally analysed for 11-ketotestosterone, retrospectively. All patients were treated in our university outpatient clinic for paediatric endocrinology between 2020 and 2022. Steroid day-profiles of 17 patients could be examined. The cohort showed a balanced sex ratio. The median age was 13 years. The measurements for 17-hydroxyprogesterone were carried out during routine care by immunoassay. The measurements of 11-ketotestosterone were performed from frozen saliva samples using an implemented in-house protocol for liquid chromatography-tandem mass spectrometry (LC-MS/MS). The most important outcome were the absolute values for 11-ketotestosterone, their diurnal rhythmicity and the correlation with 17-hydroxyprogesterone. RESULTS: Both steroids show a circadian diurnal rhythm. 17-hydroxyprogesterone and 11-ketotestosterone correlate significantly. 11-Ketotestosterone showed a positive correlation with BMI at all times of the day. CONCLUSIONS: 11-Ketotestosterone shows circadian rhythmicity in our cohort and correlates with 17-hydroxyprogesterone. These findings serve as an important basis for prospective research into 11-oxygenated androgens as therapeutic markers in paediatrics. However, 11-ketotestosterone appears to be very dependent on BMI.


Subject(s)
17-alpha-Hydroxyprogesterone , Adrenal Hyperplasia, Congenital , Circadian Rhythm , Saliva , Testosterone , Testosterone/analogs & derivatives , Humans , Adrenal Hyperplasia, Congenital/drug therapy , Adrenal Hyperplasia, Congenital/metabolism , Female , Saliva/chemistry , Saliva/metabolism , 17-alpha-Hydroxyprogesterone/analysis , 17-alpha-Hydroxyprogesterone/metabolism , Male , Adolescent , Child , Testosterone/analysis , Testosterone/metabolism , Retrospective Studies , Biomarkers/analysis , Biomarkers/metabolism , Prognosis , Follow-Up Studies , Child, Preschool , Tandem Mass Spectrometry
19.
Orphanet J Rare Dis ; 19(1): 167, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637882

ABSTRACT

The report covers the current and past activities of the department Molecular Genetics-Function and Therapy (MGFT) at the Cyprus Institute of Neurology and Genetics (CING), an affiliated Reference Center for the European Reference Network on Rare Endocrine Conditions (Endo-ERN).The presented data is the outcome of > 15 years long standing collaboration between MGFT and endocrine specialists from the local government hospitals and the private sector. Up-to-date > 2000 genetic tests have been performed for the diagnosis of inherited rare endocrine disorders. The major clinical entities included Congenital Adrenal Hyperplasia (CAH) due to pathogenic variants in CYP21A2 gene and Multiple Endocrine Neoplasia (MEN) type 2 due to pathogenic variants in the RET proto-oncogene. Other rare and novel pathogenic variants in ANOS1, WDR11, FGFR1, RNF216, and CHD7 genes were also found in patients with Congenital Hypogonadotropic Hypogonadism. Interestingly, a few patients with Disorders of Sexual Differentiation (DSD) shared rare pathogenic variants in the SRD5A2, HSD17B3 and HSD3B2 while patients with Glucose and Insulin Homeostasis carried theirs in GCK and HNF1A genes. Lastly, MGFT over the last few years has established an esteemed diagnostic and research program on premature puberty with emphasis on the implication of MKRN3 gene on the onset of the disease and the identification of other prognosis biomarkers.As an Endo-ERN member MGFT department belongs to this large European network and holds the same humanistic ideals which aim toward the improvements of health care for patients with rare endocrine conditions in respect to improved and faster diagnosis.


Subject(s)
Adrenal Hyperplasia, Congenital , Endocrine System Diseases , Multiple Endocrine Neoplasia Type 2a , Humans , Cyprus , Multiple Endocrine Neoplasia Type 2a/diagnosis , Multiple Endocrine Neoplasia Type 2a/genetics , Endocrine System Diseases/diagnosis , Endocrine System Diseases/genetics , Adrenal Hyperplasia, Congenital/diagnosis , Adrenal Hyperplasia, Congenital/genetics , Genetic Testing , Ubiquitin-Protein Ligases , Steroid 21-Hydroxylase/genetics , Membrane Proteins/genetics , 3-Oxo-5-alpha-Steroid 4-Dehydrogenase
SELECTION OF CITATIONS
SEARCH DETAIL
...