Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 123
1.
Cardiovasc Pathol ; 70: 107617, 2024.
Article En | MEDLINE | ID: mdl-38309490

The telocyte (TC) is a new interstitial cell type described in a wide variety of organs and loose connective tissues around small vessels, but its presence in large arteries remains unexplored. TCs have small cell bodies and remarkably thin, long, moniliform processes called telopods (Tps). Using transmission electron microscopy and immunofluorescence, we identified TCs in normal human thoracic aortas and in those with aneurysm or acute dissection (TAAD). In normal aortas the TCs were distributed throughout the connective tissue of the adventitial layer, in its innermost portion and at the zone of transition with the medial layer, with their long axes oriented parallel to the external elastic lamellae, forming a three-dimensional network, without prevalence in the media layer. In contrast, TAAD TCs were present in the medial layer and in regions of neovascularization. The most important feature of the adventitia of diseased aortas was the presence of numerous contacts between TCs and stem cells, including vascular progenitor cells. Although the biologically functional correlations need to be elucidated, the morphological observations presented here provide strong evidence of the involvement of TCs in maintaining vascular homeostasis in pathological situations of tissue injury.


Aorta, Thoracic , Aortic Dissection , Homeostasis , Microscopy, Electron, Transmission , Telocytes , Humans , Telocytes/pathology , Telocytes/metabolism , Telocytes/ultrastructure , Aortic Dissection/pathology , Aortic Dissection/physiopathology , Aortic Dissection/metabolism , Aorta, Thoracic/pathology , Aorta, Thoracic/metabolism , Male , Middle Aged , Aged , Adventitia/pathology , Adventitia/metabolism , Aortic Aneurysm, Thoracic/pathology , Aortic Aneurysm, Thoracic/metabolism , Aortic Aneurysm, Thoracic/physiopathology , Female , Telopodes/pathology , Telopodes/metabolism , Adult , Fluorescent Antibody Technique , Case-Control Studies
2.
JCI Insight ; 9(3)2024 Jan 04.
Article En | MEDLINE | ID: mdl-38175709

Abdominal aortic aneurysm (AAA) is a chronic inflammatory disease characterized by the expansion of the aortic wall. One of the most significant features is the infiltration of macrophages in the adventitia, which drives vasculature remodeling. The role of macrophage-derived interferon regulatory factor 5 (IRF5) in macrophage infiltration and AAA formation remains unknown. RNA sequencing of AAA adventitia identified Irf5 as the top significantly increased transcription factor that is predominantly expressed in macrophages. Global and myeloid cell-specific deficiency of Irf5 reduced AAA progression, with a marked reduction in macrophage infiltration. Further cellular investigations indicated that IRF5 promotes macrophage migration by direct regulation of downstream phosphoinositide 3-kinase γ (PI3Kγ, Pik3cg). Pik3cg ablation hindered AAA progression, and myeloid cell-specific salvage of Pik3cg restored AAA progression and macrophage infiltration derived from Irf5 deficiency. Finally, we found that IRF5 and PI3Kγ expression in the adventitia is significantly increased in patients with AAA. These findings reveal that the IRF5-dependent regulation of PI3Kγ is essential for AAA formation.


Adventitia , Aortic Aneurysm, Abdominal , Humans , Adventitia/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Aortic Aneurysm, Abdominal/metabolism , Macrophages/metabolism , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism
3.
Biomaterials ; 301: 122245, 2023 10.
Article En | MEDLINE | ID: mdl-37467597

Open vascular reconstructions such as bypass are common treatments for cardiovascular disease. Unfortunately, neointimal hyperplasia (IH) follows, leading to treatment failure for which there is no approved therapy. Here we combined the strengths of tailoring nanoplatforms for open vascular reconstructions and targeting new epigenetic mechanisms. We produced adhesive nanoparticles (ahNP) that could be pen-brushed and immobilized on the adventitia to sustainably release pinometostat, an inhibitor drug selective to the epigenetic writer DOT1L that catalyzes histone-3 lysine-79 dimethylation (H3K79me2). This treatment not only reduced IH by 76.8% in injured arteries mimicking open reconstructions in obese Zucker rats with human-like diseases but also avoided the shortcoming of endothelial impairment in IH management. In mechanistic studies, chromatin immunoprecipitation (ChIP) sequencing revealed co-enrichment of the histone mark H3K27ac(acetyl) and its reader BRD4 at the gene of aurora kinase B (AURKB), where H3K79me2 was also enriched as indicated by ChIP-qPCR. Accordingly, DOT1L co-immunoprecipitated with H3K27ac. Furthermore, the known IH driver BRD4 governed the expression of DOT1L which controlled AURKB's protein level, revealing a BRD4- > DOT1L- > AURKB axis. Consistently, AURKB-selective inhibition reduced IH. Thus, this study presents a prototype nanoformulation suited for open vascular reconstructions, and the new insights into chromatin modulators may aid future translational advances.


Adventitia , Nuclear Proteins , Rats , Animals , Humans , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Adventitia/metabolism , Neointima/drug therapy , Transcription Factors/metabolism , Rats, Zucker , Epigenesis, Genetic , Endothelium , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Cell Cycle Proteins/genetics
4.
Sci Rep ; 13(1): 5545, 2023 04 04.
Article En | MEDLINE | ID: mdl-37015954

Subarachnoid hemorrhage being the rupture of intracranial aneurysm (IA) as a major cause has quite poor prognosis, despite the modern technical advances. Thereby, the mechanisms underlying the rupture of lesions should be clarified. Recently, we and others have clarified the formation of vasa vasorum in IA lesions presumably for inflammatory cells to infiltrate in lesions as the potential histopathological alternation leading to rupture. In the present study, we clarified the origin of vasa vasorum as arteries located at the brain surface using 3D-immunohistochemistry with tissue transparency. Using Hypoxyprobe, we then found the presence of hypoxic microenvironment mainly at the adventitia of intracranial arteries where IA is formed. In addition, the production of vascular endothelial growth factor (VEGF) from cultured macrophages in such a hypoxic condition was identified. Furthermore, we found the accumulation of VEGF both in rupture-prone IA lesions induced in a rat model and human unruptured IA lesions. Finally, the VEGF-dependent induction of neovessels from arteries on brain surface was confirmed. The findings from the present study have revealed the potential role of hypoxic microenvironment and hypoxia-induced VEGF production as a machinery triggering rupture of IAs via providing root for inflammatory cells in lesions to exacerbate inflammation.


Intracranial Aneurysm , Humans , Rats , Animals , Intracranial Aneurysm/pathology , Vascular Endothelial Growth Factor A , Vasa Vasorum/pathology , Inflammation/pathology , Adventitia/metabolism
5.
Transl Res ; 255: 128-139, 2023 05.
Article En | MEDLINE | ID: mdl-36566014

Takayasu arteritis (TAK) is a chronic large vessel disease characterized by aortic fibrotic thickening, which was mainly mediated by activation of aorta adventitial fibroblasts (AAFs). Our previous genetic study demonstrated that TAK-associated locus IL6 rs2069837 regulated glycoprotein non-metastatic melanoma protein B (GPNMB) expression. Thus, this study aimed to investigate the pathogenic role of GPNMB in TAK. Through pathological staining, we find that GPNMB was mainly expressed in vascular adventitia and positively correlated with adventitial extracellular matrix (ECM) expression in TAK vascular lesion. Specifically, GPNMB was increased in adventitial CD68+ macrophages, which were closely located with CD90+ adventitial fibroblasts. In in-vitro cell culture, THP-1-derived macrophages with GPNMB overexpression promoted ECM expression in AAFs. This effect was also confirmed in aortic tissue or AAFs culture with GPNMB overexpression or active GPNMB protein stimulation. Mechanistically, Co-IP assay and siRNA or inhibitor intervention demonstrated that integrin αVß1 receptor mediated GPNMB effect on AAFs, which also activated downstream Akt and Erk pathway in AAFs. Furthermore, we showed that leflunomide treatment inhibited GPNMB-mediated fibrosis in AAFs, as well as GPNMB expression in macrophages, which were also partially validated in leflunomide-treated patients. Taken together, these data indicated that macrophage-derived GPNMB promotes AAFs ECM expression via the integrin αVß1 receptor and Akt/Erk signaling pathway and leflunomide might play an anti-fibrotic role in TAK by interfering with the macrophage-derived GPNMB/AAFs axis. This study provides evidence that targeting GPNMB is a potential therapeutic strategy for treating vascular fibrosis in TAK.


Adventitia , Takayasu Arteritis , Humans , Adventitia/metabolism , Adventitia/pathology , Takayasu Arteritis/metabolism , Takayasu Arteritis/pathology , Proto-Oncogene Proteins c-akt/metabolism , Leflunomide/metabolism , Macrophages/pathology , Fibrosis , Aorta , Extracellular Matrix , Fibroblasts/pathology , Membrane Glycoproteins/genetics
6.
J Zhejiang Univ Sci B ; 23(12): 1014-1027, 2022 Dec 15.
Article En | MEDLINE | ID: mdl-36518054

OBJECTIVES: In this study, we explored how adiponectin mediated urotensin II (UII)|-induced tumor necrosis factor-|α (TNF-|α) and α|-smooth muscle actin (α|-SMA) expression and ensuing intracellular signaling pathways in adventitial fibroblasts (AFs). METHODS: Growth-arrested AFs and rat tunica adventitia of vessels were incubated with UII and inhibitors of signal transduction pathways for 1|‒|24 h. The cells were then harvested for TNF-α receptor (TNF-|α-R) messenger RNA (mRNA) and TNF-|α protein expression determination by reverse transcription-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. Adiponectin and adiponectin receptor (adipoR) expression was measured by RT-PCR, quantitative real-time PCR (qPCR), immunohistochemical analysis, and cell counting kit-8 (CCK-8) cell proliferation experiments. We then quantified TNF-α and α-SMA mRNA and protein expression levels by qPCR and immunofluorescence (IF) staining. RNA interference (RNAi) was used to explore the function of the adipoR genes. To investigate the signaling pathway, we applied western blotting (WB) to examine phosphorylation of adenosine 5'-monophosphate (AMP)|-activated protein kinase (AMPK). In vivo, an adiponectin (APN)|-knockout (APN-KO) mouse model mimicking adventitial inflammation was generated to measure TNF-α and α|-SMA expression by application of qPCR and IF, with the goal of gaining a comprehensive atlas of adiponectin in vascular remodeling. RESULTS: In both cells and tissues, UII promoted TNF-α protein and TNF-α-R secretion in a dose- and time-dependent manner via Rho/protein kinase C (PKC) pathway. We detected marked expression of adipoR1, T-cadherin, and calreticulin as well as a moderate presence of adipoR2 in AFs, while no adiponectin was observed. Globular adiponectin (gAd) fostered the growth of AFs, and acted in concert with UII to induce α-SMA and TNF-α through the adipoR1/T-cadherin/calreticulin/AMPK pathway. In AFs, gAd and UII synergistically induced AMPK phosphorylation. In the adventitial inflammation model, APN deficiency up-regulated the expression of α-SMA, UII receptor (UT), and UII while inhibiting TNF-|α expression. CONCLUSIONS: From the results of our study, we can speculate that UII induces TNF|-|α protein and TNF-|α|-R secretion in AFs and rat tunica adventitia of vessels via the Rho and PKC signal transduction pathways. Thus, it is plausible that adiponectin is a major player in adventitial progression and could serve as a novel therapeutic target for cardiovascular disease administration.


Adventitia , Tumor Necrosis Factor-alpha , Mice , Rats , Animals , Adventitia/metabolism , Tumor Necrosis Factor-alpha/metabolism , Calreticulin/metabolism , Vascular Remodeling , AMP-Activated Protein Kinases/metabolism , Cells, Cultured , RNA, Messenger/genetics , Inflammation
7.
Theranostics ; 12(10): 4718-4733, 2022.
Article En | MEDLINE | ID: mdl-35832088

Excessive sympathetic activity and norepinephrine (NE) release play crucial roles in the pathogeneses of hypertension. Sympathetic fibers innervate adventitia rather than media of arteries. However, the roles of NE in adventitial fibroblasts (AFs) are unknown. This study investigated the roles of NE in regulating AFs-derived extracellular vesicles (EVs) release and vascular smooth muscle cells (VSMCs) proliferation in hypertension. Methods: AFs and VSMCs were prepared from aorta of Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR). AFs were treated with NE (10 µM) for 24 h (every 6 h, 4 times), and cultured in exosomes-depleted medium for 48 h. EVs were isolated from AFs medium with ultracentrifugation for identification and transfer to VSMCs. Results: NE promoted AFs phenotypic transformation and proliferation, which were prevented by α-receptor antagonist phentolamine rather than ß-receptor antagonist propranolol. NE-treated AFs conditioned medium stimulated VSMCs proliferation, which was inhibited by either exosome inhibitor GW4869 or phentolamine. NE increased small EVs number, diameter and angiotensin converting enzyme (ACE) contents. The NE-induced EVs release was abolished by GW4869. The EVs from NE-treated AFs stimulated VSMCs proliferation, which was prevented by angiotensin II type 1 receptor antagonist losartan. The EVs from the ACE knockdown-treated AFs showed lower ACE contents, and lost their roles in stimulating VSMCs proliferation. Conclusion: NE promotes AFs-derived small EVs release and ACE transfer, and then causes VSMCs proliferation in hypertension. Intervention of AFs-derived EVs release may be potential therapeutics for excessive sympathetic activation-related vascular remodeling in hypertension.


Extracellular Vesicles , Hypertension , Adventitia/metabolism , Animals , Cell Proliferation , Cells, Cultured , Extracellular Vesicles/metabolism , Fibroblasts/metabolism , Hypertension/metabolism , Muscle, Smooth, Vascular/metabolism , Norepinephrine/metabolism , Norepinephrine/pharmacology , Phentolamine/metabolism , Phentolamine/pharmacology , Rats , Rats, Inbred WKY
8.
J Biomed Mater Res A ; 110(12): 1912-1920, 2022 12.
Article En | MEDLINE | ID: mdl-35770946

Pericytes are essential components of small blood vessels and are found in human aortic vasa vasorum. Prior work uncovered lower vasa vasorum density and decreased levels of pro-angiogenic growth factors in adventitial specimens of human ascending thoracic aortic aneurysm. We hypothesized that adventitial extracellular matrix (ECM) from normal aorta promotes pericyte function by increasing pericyte contractile function through mechanisms deficient in ECM derived from aneurysmal aortic adventitia. ECM biomaterials were prepared as lyophilized particulates from decellularized adventitial specimens of human and porcine aorta. Immortalized human aortic adventitia-derived pericytes were cultured within Type I collagen gels in the presence or absence of human or porcine adventitial ECMs. Cell contractility index was quantified by measuring the gel area immediately following gelation and after 48 h of culture. Normal human and porcine adventitial ECM increased contractility of pericytes when compared with pericytes cultured in absence of adventitial ECM. In contrast, aneurysm-derived human adventitial ECM failed to promote pericyte contractility. Pharmacological inhibition of TGFßR1 and antibody blockade of α2 ß1 integrin independently decreased porcine adventitial ECM-induced pericyte contractility. By increasing pericyte contractility, adventitial ECM may improve microvascular function and thus represents a candidate biomaterial for less invasive and preventative treatment of human ascending aortic disease.


Adventitia , Vasa Vasorum , Adventitia/metabolism , Animals , Biocompatible Materials/metabolism , Collagen Type I/metabolism , Extracellular Matrix , Humans , Hydrogels/metabolism , Hydrogels/pharmacology , Integrins/metabolism , Pericytes , Swine , Transforming Growth Factor beta/metabolism , Vasa Vasorum/metabolism
9.
Drug Deliv Transl Res ; 12(12): 2950-2959, 2022 12.
Article En | MEDLINE | ID: mdl-35378720

Neointimal hyperplasia is a persistent complication after vascular interventions, and it is also the leading cause of vascular graft restenosis and failure after arterial interventions, so novel treatment methods are needed to treat this complication. We hypothesized that adventitial injection of HA/SA hydrogel loaded with PLGA rapamycin nanoparticle (hydrogel-PLGA-rapamycin) could inhibit neointimal hyperplasia in a rat aortic wire injury model. The HA/SA hydrogel was fabricated by the interaction of hyaluronic acid (HA), sodium alginate (SA), and CaCO3; and loaded with PLGA rapamycin nanoparticle or rhodamine uniformly. A SD rat aortic wire injury induced neointimal hyperplasia model was developed, the control group only received wire injury, the adventitial application group received 10 µL hydrogel-PLGA-rapamycin after wire injury, and the adventitial injection group received 10 µL hydrogel-PLGA-rapamycin injected into the aortic adventitia after wire injury. Tissues were harvested at day 21 and analyzed by histology and immunohistochemical staining. Hydrogel loaded with rhodamine can be successfully injected into the aortic adventitia and was encapsuled by the adventitia. The hydrogel could be seen beneath the adventitia after adventitial injection but was almost degraded at day 21. There was a significantly thinner neointima in the adventitial application group and adventitial injection group compared to the control group (p = 0.0009). There were also significantly fewer CD68+ (macrophages) cells (p = 0.0012), CD3+ (lymphocytes) cells (p = 0.0011), p-mTOR+ cells (p = 0.0019), PCNA+ cells (p = 0.0028) in the adventitial application and adventitial injection groups compared to the control group. The endothelial cells expressed arterial identity markers (Ephrin-B2 and dll-4) in all these three groups. Adventitial injection of hydrogel-PLGA-rapamycin can effectively inhibit neointimal hyperplasia after rat aortic wire injury. This may be a promising drug delivery method and therapeutic choice to inhibit neointimal hyperplasia after vascular interventions.


Nanoparticles , Vascular System Injuries , Rats , Animals , Neointima/drug therapy , Neointima/metabolism , Neointima/pathology , Adventitia/metabolism , Adventitia/pathology , Hyperplasia/drug therapy , Hyaluronic Acid/pharmacology , Sirolimus/metabolism , Sirolimus/pharmacology , Endothelial Cells , Hydrogels , Rats, Sprague-Dawley , Rhodamines
10.
Gene ; 819: 146233, 2022 Apr 20.
Article En | MEDLINE | ID: mdl-35121027

BACKGROUND: Due to permanent aortic dilation, thoracic aortic aneurysm (TAA) is a life-threatening disease. Once ruptured, TAA has a high lethality and disability rate. Although studies have focused on transcriptomic alterations in TAA, more detailed analysis is still lacking, especially the different aortic intima-media and adventitia roles. This study aimed to identify the different co-expression patterns between the aortic intima-media and the adventitia underlying the aortic dilation. METHODS: We analyzed the gene expression profiles obtained from Gene Expression Omnibus (GEO, GSE26155) database. With a false discovery rate (FDR) < 0.05 and |log2FC| ≥ 1, 56 and 33 differential genes in the intima-media and adventitia, respectively, between the non-dilated and dilated status. Gene ontology (GO) and gene set enrichment analysis revealed that degranulation and activation of neutrophils play an essential role in the intima-media of dilated aortas. Through weighted gene co-expression network analysis (WGCNA), we identified essential co-expressed modules and hub genes to explore the biological functions of the dysregulated genes. RESULTS: Functional pathway analysis suggested that lipid metabolism, C-C motif chemokine pathways were significantly enriched in the adventitia, whereas ribosome proteins and related mRNA translation pathways were closely related to intima and media. Furthermore, the ssGSEA analysis indicated that macrophages, helper T cells, and neutrophils were higher in the intima-media of the dilated thoracic aorta. Finally, we validated the critical findings of the study with the murine model of TAA. CONCLUSION: This study identified and verified hub genes and pathways in aortic intima-media and adventitia prominently associated with aortic dilation, providing practical understanding in the perspective of searching for new molecular targets.


Adventitia/metabolism , Aortic Aneurysm, Thoracic/genetics , Aortic Aneurysm, Thoracic/metabolism , Aortic Diseases/genetics , Aortic Diseases/metabolism , Transcriptome , Tunica Intima/metabolism , Animals , Chemokines/metabolism , Dilatation, Pathologic/genetics , Dilatation, Pathologic/metabolism , Gene Expression Profiling/methods , Humans , Inflammation , Lipid Metabolism , RNA, Messenger/metabolism , Ribosomal Proteins/metabolism
11.
Biochem Biophys Res Commun ; 594: 38-45, 2022 02 26.
Article En | MEDLINE | ID: mdl-35066378

Recent studies have emphasized the role of vascular adventitia inflammation and immune response in hypertension. It has been reported that stromal cell-derived factor-1 (SDF-1) plays various biological functions through its receptors C-X-C motif chemokine receptor 4 (CXCR4) and CXCR7 in tumor growth and tissue repair. However, it is unclear that whether SDF-1/CXCR4/CXCR7 axis is involved in hypertensive vascular remodeling. In the present study, the involvement of SDF-1/CXCR4/CXCR7 axis was evaluated with lentivirus-mediated shRNA of SDF-1 and CXCR7, CXCR4 antagonist AMD3100 and CXCR7 agonist VUF11207 in angiotensin II (AngII)-induced hypertensive mice and in cultured adventitial fibroblasts (AFs). Results showed that AngII infusion markedly increased SDF-1 expressed in vascular adventitia, but not in media and endothelium. Importantly, blockade of SDF-1/CXCR4 axis strikingly potentiated AngII-induced adventitial thickening and fibrosis, as indicated by enhanced collagen I deposition. In contrast, CXCR7 shRNA largely attenuated AngII-induced adventitial thickness and fibrosis, whereas CXCR7 activation with VUF11207 significantly potentiated AngII-induced adventitial thickening and fibrosis. In consistent with these in vivo study, CXCR4 inhibition with AMD3100 and CXCR7 activation with VUF11207 aggravated AngII-induced inflammation, proliferation and migration in cultured AFs. In summary, these results suggested that SDF-1 exerted opposing effects through CXCR4 and CXCR7 in AngII-induced vascular adventitial remodeling.


Adventitia/metabolism , Angiotensin II/metabolism , Chemokine CXCL12/metabolism , Receptors, CXCR4/metabolism , Receptors, CXCR/metabolism , Animals , Benzylamines/pharmacology , Cell Movement/physiology , Cell Proliferation , Collagen/metabolism , Cyclams/pharmacology , Disease Models, Animal , Fibroblasts/pathology , Fibrosis , Hypertension/metabolism , Male , Mice , Mice, Inbred C57BL , Rats , Rats, Sprague-Dawley , Signal Transduction , Wound Healing
12.
Article En | MEDLINE | ID: mdl-34759019

BACKGROUND AND OBJECTIVES: Compared with stroke controls, patients with varicella zoster virus (VZV) vasculopathy have increased amyloid in CSF, along with increased amylin (islet amyloid polypeptide [IAPP]) and anti-VZV antibodies. Thus, we examined the gene expression profiles of VZV-infected primary human brain vascular adventitial fibroblasts (HBVAFs), one of the initial arterial cells infected in VZV vasculopathy, to determine whether they are a potential source of amyloid that can disrupt vasculature and potentiate inflammation. METHODS: Mock- and VZV-infected quiescent HBVAFs were harvested at 3 days postinfection. Targeted RNA sequencing of the whole-human transcriptome (BioSpyder Technologies, TempO-Seq) was conducted followed by gene set enrichment and pathway analysis. Selected pathways unique to VZV-infected cells were confirmed by enzyme-linked immunoassays, migration assays, and immunofluorescence analysis (IFA) that included antibodies against amylin and amyloid-beta, as well as amyloid staining by Thioflavin-T. RESULTS: Compared with mock, VZV-infected HBVAFs had significantly enriched gene expression pathways involved in vascular remodeling and vascular diseases; confirmatory studies showed secretion of matrix metalloproteinase-3 and -10, as well increased migration of infected cells and uninfected cells when exposed to conditioned media from VZV-infected cells. In addition, significantly enriched pathways involved in amyloid-associated diseases (diabetes mellitus, amyloidosis, and Alzheimer disease), tauopathy, and progressive neurologic disorder were identified; predicted upstream regulators included amyloid precursor protein, apolipoprotein E, microtubule-associated protein tau, presenilin 1, and IAPP. Confirmatory IFA showed that VZV-infected HBVAFs contained amyloidogenic peptides (amyloid-beta and amylin) and intracellular amyloid. DISCUSSION: Gene expression profiles and pathway enrichment analysis of VZV-infected HBVAFs, as well as phenotypic studies, reveal features of pathologic vascular remodeling (e.g., increased cell migration and changes in the extracellular matrix) that can contribute to cerebrovascular disease. Furthermore, the discovery of amyloid-associated transcriptional pathways and intracellular amyloid deposition in HBVAFs raise the possibility that VZV vasculopathy is an amyloid disease. Amyloid deposition may contribute to cell death and loss of vascular wall integrity, as well as potentiate chronic inflammation in VZV vasculopathy, with disease severity and recurrence determined by the host's ability to clear virus infection and amyloid deposition and by the coexistence of other amyloid-associated diseases (i.e., Alzheimer disease and diabetes mellitus).


Adventitia , Amyloid beta-Peptides/metabolism , Cerebrovascular Disorders , Fibroblasts , Varicella Zoster Virus Infection , Vascular Remodeling , Adventitia/cytology , Adventitia/metabolism , Adventitia/pathology , Adventitia/virology , Cells, Cultured , Cerebrovascular Disorders/metabolism , Cerebrovascular Disorders/pathology , Cerebrovascular Disorders/virology , Fibroblasts/cytology , Fibroblasts/metabolism , Fibroblasts/pathology , Fibroblasts/virology , Humans , Sequence Analysis, RNA , Transcriptome/physiology , Varicella Zoster Virus Infection/metabolism , Varicella Zoster Virus Infection/pathology , Varicella Zoster Virus Infection/virology , Vascular Remodeling/physiology
13.
Int J Mol Sci ; 24(1)2022 Dec 22.
Article En | MEDLINE | ID: mdl-36613617

Inflammation is closely associated with progression of vascular remodeling. The NLRP3 inflammasome is the key molecule that promotes vascular remodeling via activation of vascular adventitia fibroblast (VAF) proliferation and differentiation. VAFs have a vital effect on vascular remodeling that could be improved using hydroxysafflower yellow A (HSYA). However, whether HSYA ameliorates vascular remodeling through inhibition of NLRP3 inflammasome activation has not been explored in detail. Here, we cultured primary VAFs and analyzed the migration of VAFs induced by angiotensin II (ANG II) to determine the potential effects and mechanism of HSYA on VAF migration. The results thereof showed that HSYA remarkably inhibited ANG II-induced VAF migration, NLRP3 inflammasome activation, and the TLR4/NF-κB signaling pathway in a dose-dependent manner. In addition, it is worth noting that LPS promoted ANG II-induced VAF migration and NLRP3 inflammasome assembly, which could be significantly reversed using HSYA. Moreover, HSYA could be used to inhibit NLRP3 inflammasome activation by promoting autophagy. In conclusion, HSYA could inhibit ANG II-induced VAF migration through autophagy activation and inhibition of NLRP3 inflammasome activation through the TLR4/NF-κB signaling pathway.


Adventitia , Inflammasomes , Humans , Inflammasomes/metabolism , Adventitia/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NF-kappa B/metabolism , Vascular Remodeling , Toll-Like Receptor 4/metabolism , Fibroblasts/metabolism , Angiotensin II/pharmacology , Angiotensin II/metabolism , Autophagy
14.
Int J Mol Sci ; 22(22)2021 Nov 13.
Article En | MEDLINE | ID: mdl-34830167

BACKGROUND: Arteriovenous fistula (AVF) stenosis remains an important cause of AVF maturation failure, for which there are currently no effective therapies. We examined the pattern and phenotype of cellular proliferation at different timepoints in a mouse model characterized by a peri-anastomotic AVF stenosis. METHODS: Standard immunohistochemical analyses for cellular proliferation and macrophage infiltration were performed at 2, 7 and 14 d on our validated mouse model of AVF stenosis to study the temporal profile, geographical location and cellular phenotype of proliferating and infiltrating cells in this model. RESULTS: Adventitial proliferation and macrophage infiltration (into the adventitia) began at 2 d, peaked at 7 d and then declined over time. Surprisingly, there was minimal macrophage infiltration or proliferation in the neointimal region at either 7 or 14 d, although endothelial cell proliferation increased rapidly between 2 d and 7 d, and peaked at 14 d. CONCLUSIONS: Early and rapid macrophage infiltration and cellular proliferation within the adventitia could play an important role in the downstream pathways of both neointimal hyperplasia and inward or outward remodelling.


Adventitia/metabolism , Cell Proliferation , Endothelial Cells/metabolism , Macrophages/metabolism , Neointima/metabolism , Adventitia/pathology , Animals , Constriction, Pathologic/metabolism , Constriction, Pathologic/pathology , Disease Models, Animal , Endothelial Cells/pathology , Macrophages/pathology , Mice , Neointima/pathology
15.
Am J Physiol Heart Circ Physiol ; 320(6): H2438-H2447, 2021 06 01.
Article En | MEDLINE | ID: mdl-33961504

Adventitial abnormalities including enhanced vasa vasorum malformation are associated with development and vulnerability of atherosclerotic plaque. However, the mechanisms of vasa vasorum malformation and its role in vascular remodeling have not been fully clarified. We recently reported that ninjurin-1 (Ninj1) is a crucial adhesion molecule for pericytes to form matured neovessels. The purpose is to examine if Ninj1 regulates adventitial angiogenesis and affects the vascular remodeling of injured vessels using pericyte-specific Ninj1 deletion mouse model. Mouse femoral arteries were injured by insertion of coiled wire. Four weeks after vascular injury, fixed arteries were decolorized. Vascular remodeling, including intimal hyperplasia and adventitial microvessel formation were estimated in a three-dimensional view. Vascular fragility, including blood leakiness was estimated by extravasation of fluorescein isothiocyanate (FITC)-lectin or FITC-dextran from microvessels. Ninj1 expression was increased in pericytes in response to vascular injury. NG2-CreER/Ninj1loxp mice were treated with tamoxifen (Tam) to induce deletion of Ninj1 in pericyte (Ninj1 KO). Tam-treated NG2-CreER or Tam-nontreated NG2-CreER/Ninj1loxp mice were used as controls. Intimal hyperplasia was significantly enhanced in Ninj1 KO compared with controls. Vascular leakiness was significantly enhanced in Ninj1 KO. In Ninj1 KO, the number of infiltrated macrophages in adventitia was increased, along with the expression of inflammatory cytokines. In conclusion, deletion of Ninj1 in pericytes induces the immature vasa vasorum formation of injured vasculature and exacerbates adventitial inflammation and intimal hyperplasia. Thus, Ninj1 contributes to the vasa vasorum maturation in response to vascular injury and to reduction of vascular remodeling.NEW & NOTEWORTHY Although abnormalities of adventitial vasa vasorum are associated with vascular remodeling such as atherosclerosis, the mechanisms of vasa vasorum malformation and its role in vascular remodeling have not been fully clarified. The present study provides a line of novel evidence that ninjurin-1 contributes to adventitial microvascular maturation during vascular injury and regulates vascular remodeling.


Cell Adhesion Molecules, Neuronal/genetics , Femoral Artery/metabolism , Neointima/genetics , Nerve Growth Factors/genetics , Pericytes/metabolism , Vasa Vasorum/metabolism , Vascular Remodeling/genetics , Adventitia/metabolism , Adventitia/pathology , Animals , Femoral Artery/injuries , Femoral Artery/pathology , Gene Knockout Techniques , Hyperplasia/genetics , Inflammation/genetics , Inflammation/metabolism , Macrophages/pathology , Mice , Neointima/pathology , Neovascularization, Physiologic/genetics , Transcriptome , Tunica Intima/metabolism , Tunica Intima/pathology , Vasa Vasorum/pathology , Vascular System Injuries/genetics , Vascular System Injuries/metabolism , Vascular System Injuries/pathology
16.
Ann Diagn Pathol ; 52: 151728, 2021 Jun.
Article En | MEDLINE | ID: mdl-33798926

BACKGROUND: Giant cell arteritis (GCA) is a systemic vasculitis of large and medium vessels characterized by an inflammatory arterial infiltrate. GCA begins in the adventitia and leads to vascular remodeling by promoting proliferation of myofibroblasts in the intima. The morphology of the fibroblasts in the adventitia in GCA is unclear. Access to temporal artery biopsies allows morphological studies and evaluation of the microenvironment of the arterial wall. We evaluated the distribution of vascular fibroblasts and of markers of their activation in GCA. METHODS: Formalin-fixed paraffin-embedded tissue sections from 29 patients with GCA and 36 controls were examined. Immunohistochemistry was performed for CD90, vimentin, desmin, alpha-smooth muscle actin (ASMA), prolyl-4-hydroxylase (P4H), and myosin to evaluate the distribution of fibroblasts within the intima, media, and adventitia. RESULTS: Temporal arteries from patients with GCA showed increased levels of CD90, vimentin, and ASMA in the adventitia and intima compared to the controls. Desmin was expressed only in the media in both groups. P4H was expressed similarly in the adventitia and intima in the two groups. Adventitial and intimal CD90+ cells co-expressed P4H, ASMA, and myosin at a high level in GCA. CONCLUSION: The results suggest a role for adventitial fibroblasts in GCA. Inhibiting the differentiation of adventitial fibroblasts to myofibroblasts has therapeutic potential for GCA.


Fibroblasts/metabolism , Giant Cell Arteritis/pathology , Immunohistochemistry/methods , Temporal Arteries/pathology , Actins/metabolism , Adventitia/metabolism , Aged , Biomarkers/metabolism , Biopsy , Case-Control Studies , Cell Proliferation , Desmin/metabolism , Female , Giant Cell Arteritis/diagnosis , Giant Cell Arteritis/physiopathology , Humans , Male , Temporal Arteries/metabolism , Thy-1 Antigens/metabolism , Tumor Microenvironment , Tunica Intima/metabolism , Vascular Remodeling , Vimentin/metabolism
17.
Sci Rep ; 11(1): 8683, 2021 04 21.
Article En | MEDLINE | ID: mdl-33883668

The maladaptive remodeling of vessel walls with neointima formation is a common feature of proliferative vascular diseases. It has been proposed that neointima formation is caused by the dedifferentiation of mature smooth muscle cells (SMCs). Recent evidence suggests that adventitial cells also participate in neointima formation; however, their cellular dynamics are not fully understood. In this study, we utilized a lineage tracing model of platelet-derived growth factor receptor alpha (PDGFRa) cells and examined cellular behavior during homeostasis and injury response. PDGFRa marked adventitial cells that were largely positive for Sca1 and a portion of medial SMCs, and both cell types were maintained for 2 years. Upon carotid artery ligation, PDGFRa-positive (+) cells were slowly recruited to the neointima and exhibited an immature SMC phenotype. In contrast, in a more severe wire denudation injury, PDGFRa+ cells were recruited to the neointima within 14 days and fully differentiated into SMCs. Under pressure overload induced by transverse aortic constriction, PDGFRa+ cells developed marked adventitial fibrosis. Taken together, our observations suggest that PDGFRa+ cells serve as a reservoir of adventitial cells and a subset of medial SMCs and underscore their context-dependent response to vascular injuries.


Blood Vessels/injuries , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Adventitia/metabolism , Animals , Blood Vessels/metabolism , Blood Vessels/pathology , Blood Vessels/physiology , Cell Proliferation , Homeostasis , Male , Mice , Mice, Transgenic , Neointima/metabolism
18.
BMC Pulm Med ; 21(1): 80, 2021 Mar 05.
Article En | MEDLINE | ID: mdl-33673825

OBJECTIVES: Pulmonary hypertension (PH) is a life-threatening progressive disease with high mortality in the elderly. However, the pathogenesis of PH has not been fully understood and there is no effective therapy to reverse the disease process. This study aims to determine whether cellular senescence is involved in the development of PH. METHODS: The rat PH model was established by intraperitoneal injection of monocrotaline and evaluated by pulmonary arteriole wall thickness and right ventricular hypertrophy index. Human lung fibroblasts (HLFs) were treated with CoCl2 or hypoxia to induce cellular senescence in vitro. SA-ß-gal staining and the changes of senescent markers were used to examine cellular senescence. The molecular mechanism of cellular senescence was further explored by detecting reactive oxygen species (ROS) levels and culturing cells with a conditioned medium. RESULTS: We revealed the cellular senescence of pulmonary adventitial fibroblasts in vivo in the rat PH model. The expression of Bmi-1, an important regulator of senescence, was decreased in the lungs of PH rats and localized in adventitial fibroblasts. The in vitro experiments showed that p16 expression was increased while Bmi-1 expression was decreased after CoCl2 treatment in HLFs. Mechanistically, Bmi-1 could alleviate CoCl2-induced HLFs senescence by eliminating ROS which further promoted the proliferation of pulmonary artery smooth muscle cells by paracrine mode of action of HLFs. CONCLUSION: Bmi-1 alleviates the cellular senescence of pulmonary fibroblasts in PH, which expands the pathogenesis of PH and provides a theoretical basis for targeting senescent cells in the treatment of PH.


Adventitia/metabolism , Hypertension, Pulmonary/metabolism , Polycomb Repressive Complex 1/metabolism , Pulmonary Artery/metabolism , Reactive Oxygen Species/metabolism , Adventitia/pathology , Animals , Cell Line , Cell Proliferation , Cellular Senescence , Disease Models, Animal , Fibroblasts/metabolism , Fibroblasts/pathology , Humans , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/physiopathology , Hypertrophy, Right Ventricular/metabolism , Hypoxia/complications , Male , Monocrotaline/administration & dosage , Polycomb Repressive Complex 1/genetics , Pulmonary Artery/physiopathology , Rats , Rats, Sprague-Dawley , Signal Transduction
19.
Sci Rep ; 11(1): 3948, 2021 02 17.
Article En | MEDLINE | ID: mdl-33597582

The vascular adventitia contains numerous cell types including fibroblasts, adipocytes, inflammatory cells, and progenitors embedded within a complex extracellular matrix (ECM) network. In response to vascular injury, adventitial progenitors and fibroblasts become activated and exhibit increased proliferative capacity and differentiate into contractile cells that remodel the ECM. These processes can lead to vascular fibrosis and disease progression. Our previous work established that the ECM protein aortic carboxypeptidase-like protein (ACLP) promotes fibrotic remodeling in the lung and is activated by vascular injury. It is currently unknown what controls vascular adventitial cell differentiation and if ACLP has a role in this process. Using purified mouse aortic adventitia Sca1+ progenitors, ACLP repressed stem cell markers (CD34, KLF4) and upregulated smooth muscle actin (SMA) and collagen I expression. ACLP enhanced myocardin-related transcription factor A (MRTFA) activity in adventitial cells by promoting MRTFA nuclear translocation. Sca1 cells from MRTFA-null mice exhibited reduced SMA and collagen expression induced by ACLP, indicating Sca1 cell differentiation is regulated in part by the ACLP-MRTFA axis. We determined that ACLP induced vessel contraction and increased adventitial collagen in an explant model. Collectively these studies identified ACLP as a mediator of adventitial cellular differentiation, which may result in pathological vessel remodeling.


Carboxypeptidases/metabolism , Repressor Proteins/metabolism , Trans-Activators/metabolism , Adipocytes/metabolism , Adventitia/metabolism , Animals , Aorta/metabolism , Carboxypeptidases/physiology , Cell Differentiation , Collagen Type I/metabolism , Female , Fibroblasts/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscle, Smooth, Vascular/cytology , Nuclear Proteins/metabolism , Repressor Proteins/genetics , Repressor Proteins/physiology , Trans-Activators/physiology , Transcription Factors/metabolism , Transcriptional Activation
20.
Sci Rep ; 11(1): 4772, 2021 02 26.
Article En | MEDLINE | ID: mdl-33637886

Percutaneous transluminal angioplasty (PTA) of stenotic arteriovenous fistulas (AVFs) is performed to maintain optimal function and patency. The one-year patency rate is 60% because of venous neointimal hyperplasia (VNH) and venous stenosis (VS) formation. Immediate early response gene X-1 (Iex-1) also known as Ier3 increases in response to wall shear stress (WSS), and can cause VNH/VS formation in murine AVF. In human stenotic samples from AVFs, we demonstrated increased gene expression of Ier3. We hypothesized that 1α, 25-dihydroxyvitamin D3, an inhibitor of IER3 delivered as 1α, 25-dihydroxyvitamin D3 encapsulated in poly lactic-co-glycolic acid (PLGA) nanoparticles loaded in Pluronic F127 hydrogel (1,25 NP) to the adventitia of the stenotic outflow vein after PTA would decrease VNH/VS formation by reducing Ier3 and chemokine (C-C motif) ligand 2 (Ccl2) expression. In our murine model of AVF stenosis treated with PTA, increased expression of Ier3 and Ccl2 was observed. Using this model, PTA was performed and 10-µL of 1,25 NP or control vehicle (PLGA in hydrogel) was administered by adventitial delivery. Animals were sacrificed at day 3 for unbiased whole genome transcriptomic analysis and at day 21 for immunohistochemical analysis. Doppler US was performed weekly after AVF creation. At day 3, significantly lower gene expression of Ier3 and Ccl2 was noted in 1,25 NP treated vessels. Twenty-one days after PTA, 1,25 NP treated vessels had increased lumen vessel area, with decreased neointima area/media area ratio and cell density compared to vehicle controls. There was a significant increase in apoptosis, with a reduction in CD68, F4/80, CD45, pro-inflammatory macrophages, fibroblasts, Picrosirius red, Masson's trichrome, collagen IV, and proliferation accompanied with higher wall shear stress (WSS) and average peak velocity. IER3 staining was localized to CD68 and FSP-1 (+) cells. After 1,25 NP delivery, there was a decrease in the proliferation of α-SMA (+) and CD68 (+) cells with increase in the apoptosis of FSP-1 (+) and CD68 (+) cells compared to vehicle controls. RNA sequencing revealed a decrease in inflammatory and apoptosis pathways following 1,25 NP delivery. These data suggest that adventitial delivery of 1,25 NP reduces VNH and venous stenosis formation after PTA.


Angioplasty , Arteriovenous Fistula/therapy , Calcitriol/administration & dosage , Constriction, Pathologic/drug therapy , Vitamins/administration & dosage , Adult , Adventitia/metabolism , Aged , Angioplasty/adverse effects , Animals , Apoptosis Regulatory Proteins/antagonists & inhibitors , Apoptosis Regulatory Proteins/genetics , Arteriovenous Fistula/genetics , Calcitriol/therapeutic use , Constriction, Pathologic/genetics , Drug Carriers/chemistry , Drug Delivery Systems , Female , Humans , Male , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/genetics , Mice , Middle Aged , Nanoparticles/chemistry , Vitamins/therapeutic use
...