Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.353
Filter
1.
Commun Biol ; 7(1): 808, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961219

ABSTRACT

Insecticide resistance has been a problem in both the agricultural pests and vectors. Revealing the detoxification mechanisms may help to better manage insect pests. Here, we showed that arylalkylamine N-acetyltransferase 1 (AANAT1) regulates intestinal detoxification process through modulation of reactive oxygen species (ROS)-activated transcription factors cap"n"collar isoform-C (CncC): muscle aponeurosis fibromatosis (Maf) pathway in both the oriental fruit fly, Bactrocera dorsalis, and the arbovirus vector, Aedes aegypti. Knockout/knockdown of AANAT1 led to accumulation of biogenic amines, which induced a decreased in the gut ROS level. The reduced midgut ROS levels resulted in decreased expression of CncC and Maf, leading to lower expression level of detoxification genes. AANAT1 knockout/knockdown insects were more susceptible to insecticide treatments. Our study reveals that normal functionality of AANAT1 is important for the regulation of gut detoxification pathways, providing insights into the mechanism underlying the gut defense against xenobiotics in metazoans.


Subject(s)
Arylalkylamine N-Acetyltransferase , Inactivation, Metabolic , Reactive Oxygen Species , Animals , Reactive Oxygen Species/metabolism , Arylalkylamine N-Acetyltransferase/metabolism , Arylalkylamine N-Acetyltransferase/genetics , Insect Proteins/metabolism , Insect Proteins/genetics , Aedes/genetics , Aedes/metabolism , Insecticides/pharmacology , Gastrointestinal Tract/metabolism
2.
Parasit Vectors ; 17(1): 292, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978086

ABSTRACT

BACKGROUND: The Aedes albopictus mosquito is of medical concern due to its ability to transmit viral diseases, such as dengue and chikungunya. Aedes albopictus originated in Asia and is now present on all continents, with the exception of Antarctica. In Mozambique, Ae. albopictus was first reported in 2015 within the capital city of Maputo, and by 2019, it had become established in the surrounding area. It was suspected that the mosquito population originated in Madagascar or islands of the Western Indian Ocean (IWIO). The aim of this study was to determine its origin. Given the risk of spreading insecticide resistance, we also examined relevant mutations in the voltage-sensitive sodium channel (VSSC). METHODS: Eggs of Ae. albopictus were collected in Matola-Rio, a municipality adjacent to Maputo, and reared to adults in the laboratory. Cytochrome c oxidase subunit I (COI) sequences and microsatellite loci were analyzed to estimate origins. The presence of knockdown resistance (kdr) mutations within domain II and III of the VSSC were examined using Sanger sequencing. RESULTS: The COI network analysis denied the hypothesis that the Ae. albopictus population originated in Madagascar or IWIO; rather both the COI network and microsatellites analyses showed that the population was genetically similar to those in continental Southeast Asia and Hangzhou, China. Sanger sequencing determined the presence of the F1534C knockdown mutation, which is widely distributed among Asian populations, with a high allele frequency (46%). CONCLUSIONS: These results do not support the hypothesis that the Mozambique Ae. albopictus population originated in Madagascar or IWIO. Instead, they suggest that the origin is continental Southeast Asia or a coastal town in China.


Subject(s)
Aedes , Insecticide Resistance , Mosquito Vectors , Animals , Mozambique , Insecticide Resistance/genetics , Aedes/genetics , Aedes/drug effects , Mosquito Vectors/genetics , Mosquito Vectors/drug effects , Mutation , Electron Transport Complex IV/genetics , Insecticides/pharmacology , Madagascar , Microsatellite Repeats/genetics , Female , Voltage-Gated Sodium Channels/genetics
3.
BMC Genomics ; 25(1): 700, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39020310

ABSTRACT

Due to limitations in conventional disease vector control strategies including the rise of insecticide resistance in natural populations of mosquitoes, genetic control strategies using CRISPR gene drive systems have been under serious consideration. The identification of CRISPR target sites in mosquito populations is a key aspect for developing efficient genetic vector control strategies. While genome-wide Cas9 target sites have been explored in mosquitoes, a precise evaluation of target sites focused on coding sequence (CDS) is lacking. Additionally, target site polymorphisms have not been characterized for other nucleases such as Cas12a, which require a different DNA recognition site (PAM) and would expand the accessibility of mosquito genomes for genetic engineering. We undertook a comprehensive analysis of potential target sites for both Cas9 and Cas12a nucleases within the genomes of natural populations of Anopheles gambiae and Aedes aegypti from multiple continents. We demonstrate that using two nucleases increases the number of targets per gene. Also, we identified differences in nucleotide diversity between North American and African Aedes populations, impacting the abundance of good target sites with a minimal degree of polymorphisms that can affect the binding of gRNA. Lastly, we screened for gRNAs targeting sex-determination genes that could be widely applicable for developing field genetic control strategies. Overall, this work highlights the utility of employing both Cas9 and Cas12a nucleases and underscores the importance of designing universal genetic strategies adaptable to diverse mosquito populations.


Subject(s)
Aedes , Anopheles , CRISPR-Cas Systems , Animals , Anopheles/genetics , Aedes/genetics , Genetic Variation , RNA, Guide, CRISPR-Cas Systems/genetics , Endodeoxyribonucleases/genetics , Endodeoxyribonucleases/metabolism , CRISPR-Associated Proteins/genetics , CRISPR-Associated Proteins/metabolism , Genome, Insect , Mosquito Vectors/genetics , Gene Editing , Bacterial Proteins
4.
PLoS Negl Trop Dis ; 18(6): e0012256, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38870209

ABSTRACT

The Aedes aegypti cadherin-like protein (Aae-Cad) and the membrane-bound alkaline phosphatase (Aae-mALP) are membrane proteins identified as putative receptors for the larvicidal Cry toxins produced by Bacillus thuringiensis subsp. israelensis bacteria. Cry toxins are the most used toxins in the control of different agricultural pest and mosquitos. Despite the relevance of Aae-Cad and Aae-mALP as possible toxin-receptors in mosquitoes, previous efforts to establish a clear functional connection among them and Cry toxins activity have been relatively limited. In this study, we used CRISPR-Cas9 to generate knockout (KO) mutations of Aae-Cad and Aae-mALP. The Aae-mALP KO was successfully generated, in contrast to the Aae-Cad KO which was obtained only in females. The female-linked genotype was due to the proximity of aae-cad gene to the sex-determining loci (M:m). Both A. aegypti KO mutant populations were viable and their insect-development was not affected, although a tendency on lower egg hatching rate was observed. Bioassays were performed to assess the effects of these KO mutations on the susceptibility of A. aegypti to Cry toxins, showing that the Aae-Cad female KO or Aae-mALP KO mutations did not significantly alter the susceptibility of A. aegypti larvae to the mosquitocidal Cry toxins, including Cry11Aa, Cry11Ba, Cry4Ba, and Cry4Aa. These findings suggest that besides the potential participation of Aae-Cad and Aae-mALP as Cry toxin receptors in A. aegypti, additional midgut membrane proteins are involved in the mode of action of these insecticidal toxins.


Subject(s)
Aedes , Alkaline Phosphatase , Bacillus thuringiensis Toxins , Bacterial Proteins , CRISPR-Cas Systems , Cadherins , Endotoxins , Hemolysin Proteins , Animals , Aedes/genetics , Aedes/drug effects , Alkaline Phosphatase/metabolism , Alkaline Phosphatase/genetics , Hemolysin Proteins/genetics , Hemolysin Proteins/metabolism , Endotoxins/genetics , Endotoxins/metabolism , Female , Cadherins/genetics , Cadherins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Insect Proteins/genetics , Insect Proteins/metabolism , Insecticide Resistance/genetics , Gene Knockout Techniques , Larva/genetics , Larva/growth & development , Bacillus thuringiensis/genetics , Bacillus thuringiensis/metabolism , Male , Insecticides/pharmacology
5.
Sci Rep ; 14(1): 13447, 2024 06 11.
Article in English | MEDLINE | ID: mdl-38862628

ABSTRACT

Aedes aegypti is vector of many arboviruses including Zika, dengue, yellow fever, West Nile, and Chikungunya. Its control efforts are hampered by widespread insecticide resistance reported in the Americas and Asia, while data from Africa is more limited. Here we use publicly available 729 Ae. aegypti whole-genome sequencing samples from 15 countries, including nine in Africa, to investigate the genetic diversity in four insecticide resistance linked genes: ace-1, GSTe2, rdl and vgsc. Apart from vgsc, the other genes have been less investigated in Ae. aegypti, and almost no genetic diversity information is available. Among the four genes, we identified 1,829 genetic variants including 474 non-synonymous substitutions, some of which have been previously documented, as well as putative copy number variations in GSTe2 and vgsc. Global insecticide resistance phenotypic data demonstrated variable resistance in geographic areas with resistant genotypes. Overall, our work provides the first global catalogue and geographic distribution of known and new amino-acid mutations and duplications that can be used to guide the identification of resistance drivers in Ae. aegypti and thereby support monitoring efforts and strategies for vector control.


Subject(s)
Aedes , Genetic Variation , Insecticide Resistance , Insecticide Resistance/genetics , Animals , Aedes/genetics , Aedes/drug effects , Genomics/methods , Mosquito Vectors/genetics , Mosquito Vectors/drug effects , Insecticides/pharmacology , Insect Proteins/genetics , Whole Genome Sequencing/methods , DNA Copy Number Variations
6.
Biochem Biophys Res Commun ; 726: 150273, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-38914041

ABSTRACT

Insect olfactory receptors (ORs) are seven-transmembrane domain ion channels that function by forming heteromeric complexes with olfactory receptor co-receptors (Orcos). In this study, we investigated the potential for enhancing sensitivity of odor detection and responsivity through genetic modification of Orcos, considering its wider application in odor sensing. First, we measured the intensity of response to 1-octen-3-ol for the mosquito Aedes aegypti OR (AaOR8) when complexed individually with an Orco from the same mosquito (AaOrco), the honeybee Apis mellifera (AmOrco), the silkworm Bombyx mori (BmOrco), or the fruit fly Drosophila melanogaster (DmOrco). Relative to the other Orcos, AmOrco demonstrated higher sensitivity and responsivity, with a 1.8 to 21-fold decrease in the half-maximal effective concentration (EC50) and a 1.6-8.8-fold increase in the maximal effect (Emax), respectively. Furthermore, AmOrco co-expressed with AaOR10, BmOR56, or DmOR47a showed higher sensitivity and responsivity than AaOrco, BmOrco, or DmOrco co-expressed with their respective ORs. To further increase sensitivity and responsivity, we engineered chimeric Orcos by fusing AmOrco with DmOrco, considering the domain characteristics of Orcos. The response to 1-octen-3-ol was evaluated for AaOR8 when complexed individually with AmOrco, as well as for a mutant that combines DmOrco from the N-terminal (NT) to the C-terminal region of the fourth transmembrane domain (TM4) with the region of AmOrco following TM4 (Dm[NT-TM4]AmOrco). When compared to AmOrco, Dm(NT-TM4)AmOrco showed higher sensitivity and responsivity, with a 1.4-fold decrease in the EC50 and a 1.4-fold increase in the Emax, respectively. In addition, Dm(NT-TM4)AmOrco co-expressed with either DmOR47a or BmOR56 demonstrated higher sensitivity and responsivity than AmOrco co-expressed with their respective ORs. These results suggest that AmOrco could be a relatively more sensitive Orco, and further enhancement of sensitivity and responsivity could be achieved through recombination with heterologous Orcos near the TM4 of AmOrco.


Subject(s)
Odorants , Receptors, Odorant , Animals , Receptors, Odorant/genetics , Receptors, Odorant/metabolism , Receptors, Odorant/chemistry , Odorants/analysis , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Bombyx/genetics , Bombyx/metabolism , Aedes/genetics , Aedes/metabolism , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/chemistry , Insect Proteins/genetics , Insect Proteins/metabolism , Insect Proteins/chemistry , Bees/metabolism , Bees/genetics , HEK293 Cells , Octanols
7.
Parasit Vectors ; 17(1): 255, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38863029

ABSTRACT

BACKGROUND: RNA interference (RNAi) is a target-specific gene silencing method that can be used to determine gene functions and investigate host-pathogen interactions, as well as facilitating the development of ecofriendly pesticides. Commercially available transfection reagents (TRs) can improve the efficacy of RNAi. However, we currently lack a product and protocol for the transfection of insect cell lines with long double-stranded RNA (dsRNA). METHODS: We used agarose gel electrophoresis to determine the capacity of eight TRs to form complexes with long dsRNA. A CellTiter-Glo assay was then used to assess the cytotoxicity of the resulting lipoplexes. We also measured the cellular uptake of dsRNA by fluorescence microscopy using the fluorophore Cy3 as a label. Finally, we analyzed the TRs based on their transfection efficacy and compared the RNAi responses of Aedes albopictus C6/36 and U4.4 cells by knocking down an mCherry reporter Semliki Forest virus in both cell lines. RESULTS: The TRs from Biontex (K4, Metafectene Pro, and Metafectene SI+) showed the best complexing capacity and the lowest dsRNA:TR ratio needed for complete complex formation. Only HiPerFect was unable to complex the dsRNA completely, even at a ratio of 1:9. Most of the complexes containing mCherry-dsRNA were nontoxic at 2 ng/µL, but Lipofectamine 2000 was toxic at 1 ng/µL in U4.4 cells and at 2 ng/µL in C6/36 cells. The transfection of U4.4 cells with mCherry-dsRNA/TR complexes achieved significant knockdown of the virus reporter. Comparison of the RNAi response in C6/36 and U4.4 cells suggested that C6/36 cells lack the antiviral RNAi response because there was no significant knockdown of the virus reporter in any of the treatments. CONCLUSIONS: C6/36 cells have an impaired RNAi response as previously reported. This investigation provides valuable information for future RNAi experiments by showing how to mitigate the adverse effects attributed to TRs. This will facilitate the judicious selection of TRs and transfection conditions conducive to RNAi research in mosquitoes.


Subject(s)
Aedes , RNA Interference , RNA, Double-Stranded , Transfection , RNA, Double-Stranded/genetics , RNA, Double-Stranded/metabolism , Animals , Cell Line , Aedes/genetics , Gene Silencing , Semliki forest virus/genetics , Semliki forest virus/drug effects
8.
PLoS Negl Trop Dis ; 18(6): e0012243, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38865422

ABSTRACT

Aedes albopictus, also known as the Asian tiger mosquito, is indigenous to the tropical forests of Southeast Asia. Ae. albopictus is expanding across the globe at alarming rates, raising concern over the transmission of mosquito-borne diseases, such as dengue, West Nile fever, yellow fever, and chikungunya fever. Since Ae. albopictus was reported in Houston (Harris County, Texas) in 1985, this species has rapidly expanded to at least 32 states across the United States. Public health efforts aimed at controlling Ae. albopictus, including surveillance and adulticide spraying operations, occur regularly in Harris County. Despite rotation of insecticides to mitigate the development of resistance, multiple mosquito species including Culex quinquefasciatus and Aedes aegypti in Harris County show organophosphate and pyrethroid resistance. Aedes albopictus shows relatively low resistance levels as compared to Ae. aegypti, but kdr-mutation and the expression of detoxification genes have been reported in Ae. albopictus populations elsewhere. To identify potential candidate detoxification genes contributing to metabolic resistance, we used RNA sequencing of field-collected malathion-resistant and malathion-susceptible, and laboratory-maintained susceptible colonies of Ae. albopictus by comparing the relative expression of transcripts from three major detoxification superfamilies involved in malathion resistance due to metabolic detoxification. Between these groups, we identified 12 candidate malathion resistance genes and among these, most genes correlated with metabolic detoxification of malathion, including four P450 and one alpha esterase. Our results reveal the metabolic detoxification and potential cuticular-based resistance mechanisms associated with malathion resistance in Ae. albopictus in Harris County, Texas.


Subject(s)
Aedes , Gene Expression Profiling , Insecticide Resistance , Insecticides , Malathion , Animals , Malathion/pharmacology , Aedes/genetics , Aedes/drug effects , Aedes/metabolism , Insecticide Resistance/genetics , Insecticides/pharmacology , Mosquito Vectors/genetics , Mosquito Vectors/drug effects , Mosquito Vectors/metabolism , Sequence Analysis, RNA , Transcriptome , Texas , Female , Insect Proteins/genetics , Insect Proteins/metabolism
9.
Sci Data ; 11(1): 587, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38839790

ABSTRACT

Aedes aegypti is a primary vector for transmitting various arboviruses, including Yellow fever, dengue and Zika virus. The mosquito midgut is the principal organ for blood meal digestion, nutrient absorption and the initial site of arbovirus infection. Although a previous study delineated midgut's transcriptome of Ae. aegypti at the single-nucleus resolution, there still lacks an established protocol for isolating and RNA sequencing of single cells of Ae. aegypti midgut, which is required for investigating arbovirus-midgut interaction at the single-cell level. Here, we established an atlas of the midgut cells for Ae. aegypti by single-cell RNA sequencing. We annotated the cell clusters including intestinal stem cells/enteroblasts (ISC/EB), cardia cells (Cardia), enterocytes (EC, EC-like), enteroendocrine cells (EE), visceral muscle (VM), fat body cells (FBC) and hemocyte cells (HC). This study will provide a foundation for further studies of arbovirus infection in mosquito midgut at the single-cell level.


Subject(s)
Aedes , Single-Cell Analysis , Animals , Aedes/genetics , Aedes/cytology , Female , Sequence Analysis, RNA , Transcriptome , Gastrointestinal Tract/virology , Mosquito Vectors/genetics , Digestive System/cytology
10.
PLoS Negl Trop Dis ; 18(6): e0011903, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38829904

ABSTRACT

BACKGROUND: The first dengue outbreak in Sao Tome and Principe was reported in 2022. Entomological investigations were undertaken to establish the typology of Aedes larval habitats, the distribution of Ae. aegypti and Ae. albopictus, the related entomological risk and the susceptibility profile of Ae. aegypti to insecticides, to provide evidence to inform the outbreak response. METHODOLOGY/PRINCIPAL FINDINGS: Entomological surveys were performed in all seven health districts of Sao Tome and Principe during the dry and rainy seasons in 2022. WHO tube and synergist assays using piperonyl butoxide (PBO) and diethyl maleate (DEM) were carried out, together with genotyping of F1534C/V1016I/V410L mutations in Ae. aegypti. Aedes aegypti and Ae. albopictus were found in all seven health districts of the country with high abundance of Ae. aegypti in the most urbanised district, Agua Grande. Both Aedes species bred mainly in used tyres, discarded tanks and water storage containers. In both survey periods, the Breteau (BI > 50), house (HI > 35%) and container (CI > 20%) indices were higher than the thresholds established by WHO to indicate high potential risk of dengue transmission. The Ae. aegypti sampled were susceptible to all insecticides tested except dichlorodiphenyltrichloroethane (DDT) (9.2% mortality, resistant), bendiocarb (61.4% mortality, resistant) and alpha-cypermethrin (97% mortality, probable resistant). A full recovery was observed in Ae. aegypti resistant to bendiocarb after pre-exposure to synergist PBO. Only one Ae. aegypti specimen was found carrying F1534C mutation. CONCLUSIONS/SIGNIFICANCE: These findings revealed a high potential risk for dengue transmission throughout the year, with the bulk of larval breeding occurring in used tyres, water storage and discarded containers. Most of the insecticides tested remain effective to control Aedes vectors in Sao Tome, except DDT and bendiocarb. These data underline the importance of raising community awareness and implementing routine dengue vector control strategies to prevent further outbreaks in Sao Tome and Principe, and elsewhere in the subregion.


Subject(s)
Aedes , Dengue , Disease Outbreaks , Insecticide Resistance , Insecticides , Larva , Mosquito Vectors , Aedes/drug effects , Aedes/genetics , Aedes/virology , Animals , Dengue/transmission , Dengue/epidemiology , Insecticides/pharmacology , Mosquito Vectors/drug effects , Mosquito Vectors/genetics , Mosquito Vectors/virology , Insecticide Resistance/genetics , Larva/drug effects , Larva/virology , Humans , Piperonyl Butoxide/pharmacology , Female , Maleates/pharmacology , Ecosystem , Dengue Virus/drug effects , Dengue Virus/genetics
11.
Sci Rep ; 14(1): 12216, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38806622

ABSTRACT

The Ae. albopictus mosquito has gained global attention due to its ability to transmit viruses, including the dengue and zika. Mosquito control is the only effective way to manage dengue fever, as no effective treatments or vaccines are available. Insecticides are highly effective in controlling mosquito densities, which reduces the chances of virus transmission. However, Ae. albopictus has developed resistance to pyrethroids in several provinces in China. Pyrethroids target the voltage-gated sodium channel gene (VGSC), and mutations in this gene may result in knockdown resistance (kdr). Correlation studies between resistance and mutations can assist viruses in managing Ae. albopictus, which has not been studied in Guizhou province. Nine field populations of Ae. albopictus at the larval stage were collected from Guizhou Province in 2022 and reared to F1 to F2 generations. Resistance bioassays were conducted against permethrin, beta-cypermethrin, and deltamethrin for both larvae and adults of Ae. albopictus. Kdr mutations were characterized by PCR and sequencing. Additionally, the correlation between the kdr allele and pyrethroid resistance was analyzed. All nine populations of Ae. albopictus larvae and adults were found to be resistant to three pyrethroid insecticides. One kdr mutant allele at codon 1016, one at 1532 and three at 1534 were identified with frequencies of 13.86% (V1016G), 0.53% (I1532T), 58.02% (F1534S), 11.69% (F1534C), 0.06% (F1534L) and 0.99% (F1534P), respectively. Both V1016G and F1534S mutation mosquitoes were found in all populations. The kdr mutation F1534S was positively correlated with three pyrethroid resistance phenotypes (OR > 1, P < 0.05), V1016G with deltamethrin and beta-cypermethrin resistance (OR > 1, P < 0.05) and F1534C only with beta-cypermethrin resistance (OR > 1, P < 0.05). Current susceptibility status of wild populations of Ae. albopictus to insecticides and a higher frequency of kdr mutations from dengue-monitored areas in Guizhou Province are reported in this paper. Outcomes of this study can serve as data support for further research and development of effective insecticidal interventions against Ae. albopictus populations in Guizhou Province.


Subject(s)
Aedes , Dengue , Insecticide Resistance , Insecticides , Mutation , Pyrethrins , Animals , Pyrethrins/pharmacology , Aedes/genetics , Aedes/drug effects , Aedes/virology , Insecticide Resistance/genetics , China/epidemiology , Dengue/transmission , Dengue/genetics , Insecticides/pharmacology , Mosquito Vectors/genetics , Mosquito Vectors/drug effects , Mosquito Vectors/virology , Larva/drug effects , Larva/genetics , Larva/virology , Voltage-Gated Sodium Channels/genetics , Mosquito Control/methods , Nitriles/pharmacology
12.
Genome Biol Evol ; 16(5)2024 05 02.
Article in English | MEDLINE | ID: mdl-38695057

ABSTRACT

Transposable elements are mobile repeated sequences found in all genomes. Transposable elements are controlled by RNA interference pathways in most organisms, and this control involves the PIWI-interacting RNA pathway and the small interfering RNA pathway, which is also known to be the first line of antiviral defense in invertebrates. Using Drosophila, we recently showed that viral infections result in the modulation of transposable element transcript levels through modulation of the small RNA repertoire. The Aedes aegypti mosquito is of particular interest because almost half of its genome is made of transposable elements, and it is described as a major vector of viruses (such as the dengue [DENV], Zika [ZIKV], and chikungunya [CHIKV] arboviruses). Moreover, Aedes mosquitoes are unique among insects in that the PIWI-interacting RNA pathway is also involved in the somatic antiviral response, in addition to the transposable element control and PIWI-interacting RNA pathway genes expanded in the mosquito genome. For these reasons, we studied the impacts of viral infections on transposable element transcript levels in A. aegypti samples. We retrieved public datasets corresponding to RNA-seq data obtained from viral infections by DENV, ZIKV, and CHIKV in various tissues. We found that transposable element transcripts are moderately modulated following viral infection and that the direction of the modulation varies greatly across tissues and viruses. These results highlight the need for an in-depth investigation of the tightly intertwined interactions between transposable elements and viruses.


Subject(s)
Aedes , DNA Transposable Elements , Animals , Aedes/genetics , Aedes/virology , Arbovirus Infections , Mosquito Vectors/genetics , Mosquito Vectors/virology , RNA, Small Interfering/genetics
13.
J Med Entomol ; 61(4): 1064-1070, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38757780

ABSTRACT

Female mosquitoes undergo multiple rounds of reproduction known as gonotrophic cycles (GC). A gonotrophic cycle spans the period from blood meal intake to egg laying. Nutrients from vertebrate host blood are necessary for completing egg development. During oogenesis, a female prepackages mRNA into her oocytes, and these maternal transcripts drive the first 2 h of embryonic development prior to zygotic genome activation. In this study, we profiled transcriptional changes in 1-2 h of Aedes aegypti (Diptera: Culicidae) embryos across 2 GC. We found that homeotic genes which are regulators of embryogenesis are downregulated in embryos from the second gonotrophic cycle. Interestingly, embryos produced by Ae. aegypti females progressively reduced their ability to hatch as the number of GC increased. We show that this fertility decline is due to increased reproductive output and not the mosquitoes' age. Moreover, we found a similar decline in fertility and fecundity across 3 GC in Aedes albopictus. Our results are useful for predicting mosquito population dynamics to inform vector control efforts.


Subject(s)
Aedes , Fertility , Animals , Aedes/genetics , Aedes/physiology , Female , Age Factors , Reproduction
14.
Acta Trop ; 256: 107271, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38795874

ABSTRACT

The application of the Sterile Insect Technique (SIT) to mosquito control is based on the systematic release of large numbers of adult males that have been previously sterilized by irradiation. Ionizing radiation doses inducing full sterility also cause somatic damages that reduce the capacity of the treated males to compete with wild males. The optimal dose inducing high levels of male sterility and minimal impact on competitiveness can be assessed by establishing a dose-response curve. Sub-sterile males are, to a variable degree, still fertile and might be able to transmit to the progeny and following generation(s) sub-lethal random mutations resulting from irradiation. To investigate this, we treated Ae. albopictus male pupae with a sub-sterilizing (2-4 % of egg hatching) dose of gamma rays and explored expressed mutated genes in treated males and their progeny using RNA-seq. Single nucleotide polymorphisms (SNPs) were called using two independent pipelines. Only SNPs common to both pipelines (less than 5 % of the total SNPs predicted) were considered reliable and were annotated to genes. Over 600 genes with mutations likely induced by irradiation were found in the treated Ae. albopictus males. A part of the genes found mutated in irradiated males were also found in (and therefore probably passed on to) males of the F1 and F2 progeny, indicating that genetic variations induced by irradiation may be transmitted along generations. The mutated genes in irradiated males did not seem to significantly affect biological processes, except in one case (i.e., oxidative phosphorylation). Only in four cases (i.e., oxidative phosphorylation, UDP-glucose metabolic process, proton transmembrane transport and riboflavin metabolism) we found biological processes to be significantly affected by mutated genes that were likely transmitted to the male progeny. Our results suggest that random mutations induced by a sub-sterilizing dose of gamma ray in Ae. albopictus male pupae and transmitted to the male progeny of the irradiated mosquitoes do not affect biological processes potentially harmful, from a public-health point of view.


Subject(s)
Aedes , Gamma Rays , Mutation , Pupa , Animals , Male , Pupa/radiation effects , Pupa/genetics , Aedes/radiation effects , Aedes/genetics , Mutation/radiation effects , Mosquito Control/methods , Polymorphism, Single Nucleotide , Female
15.
PLoS One ; 19(5): e0304550, 2024.
Article in English | MEDLINE | ID: mdl-38809933

ABSTRACT

BACKGROUND: Ae. aegypti is the vector of important µ arboviruses, including dengue, Zika, chikungunya and yellow fever. Despite not being specifically targeted by insecticide-based control programs in West Africa, resistance to insecticides in Ae. aegypti has been reported in countries within this region. In this study, we investigated the status and mechanisms of Ae. aegypti resistance in Niamey, the capital of Niger. This research aims to provide baseline data necessary for arbovirus outbreak prevention and preparedness in the country. METHODS: Ovitraps were used to collect Ae. aegypti eggs, which were subsequently hatched in the insectary for bioassay tests. The hatched larvae were then reared to 3-5-day-old adults for WHO tube and CDC bottle bioassays, including synergist tests. The kdr mutations F1534C, V1016I, and V410L were genotyped using allele-specific PCR and TaqMan qPCR methods. RESULTS: Ae. aegypti from Niamey exhibited moderate resistance to pyrethroids but susceptibility to organophosphates and carbamates. The kdr mutations, F1534C, V1016I and V410L were detected with the resistant tri-locus haplotype 1534C+1016L+410L associated with both permethrin and deltamethrin resistance. Whereas the homozygote tri-locus resistant genotype 1534CC+1016LL+410LL was linked only to permethrin resistance. The involvement of oxidase and esterase enzymes in resistance mechanisms was suggested by partial restoration of mosquitoes' susceptibility to pyrethroids in synergist bioassays. CONCLUSION: This study is the first report of Ae. aegypti resistance to pyrethroid insecticides in Niamey. The resistance is underpinned by target site mutations and potentially involves metabolic enzymes. The observed resistance to pyrethroids coupled with susceptibility to other insecticides, provides data to support evidence-based decision-making for Ae. aegypti control in Niger.


Subject(s)
Aedes , Insecticide Resistance , Insecticides , Mutation , Pyrethrins , Animals , Aedes/genetics , Aedes/drug effects , Insecticide Resistance/genetics , Pyrethrins/pharmacology , Niger , Insecticides/pharmacology , Mosquito Vectors/genetics , Mosquito Vectors/drug effects , Genotype , Larva/drug effects , Larva/genetics , Insect Proteins/genetics , Insect Proteins/metabolism
16.
PLoS One ; 19(5): e0303027, 2024.
Article in English | MEDLINE | ID: mdl-38728353

ABSTRACT

Insecticide resistance in mosquitoes is spreading worldwide and represents a growing threat to vector control. Insecticide resistance is caused by different mechanisms including higher metabolic detoxication, target-site modification, reduced penetration and behavioral changes that are not easily detectable with simple diagnostic methods. Indeed, most molecular resistance diagnostic tools are costly and labor intensive and then difficult to use for routine monitoring of insecticide resistance. The present study aims to determine whether mosquito susceptibility status against the pyrethroid insecticides (mostly used for mosquito control) could be established by the protein signatures of legs and/or thoraxes submitted to MALDI-TOF Mass Spectrometry (MS). The quality of MS spectra for both body parts was controlled to avoid any bias due to unconformity protein profiling. The comparison of MS profiles from three inbreeds Ae. aegypti lines from French Guiana (IRF, IR03, IR13), with distinct deltamethrin resistance genotype / phenotype and the susceptible reference laboratory line BORA (French Polynesia), showed different protein signatures. On both body parts, the analysis of whole protein profiles revealed a singularity of BORA line compared to the three inbreeding lines from French Guiana origin, suggesting that the first criteria of differentiation is the geographical origin and/or the breeding history rather than the insecticide susceptibility profile. However, a deeper analysis of the protein profiles allowed to identify 10 and 11 discriminating peaks from leg and thorax spectra, respectively. Among them, a specific peak around 4870 Da was detected in legs and thoraxes of pyrethroid resistant lines compared to the susceptible counterparts hence suggesting that MS profiling may be promising to rapidly distinguish resistant and susceptible phenotypes. Further work is needed to confirm the nature of this peak as a deltamethrin resistant marker and to validate the routine use of MS profiling to track insecticide resistance in Ae. aegypti field populations.


Subject(s)
Aedes , Insecticide Resistance , Insecticides , Nitriles , Pyrethrins , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Animals , Pyrethrins/pharmacology , Aedes/drug effects , Aedes/genetics , Aedes/metabolism , Insecticide Resistance/genetics , Nitriles/pharmacology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Insecticides/pharmacology , Mosquito Vectors/drug effects , Mosquito Vectors/genetics , Dengue/virology , Insect Proteins/genetics , Insect Proteins/metabolism , Female
17.
Int J Mol Sci ; 25(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38791257

ABSTRACT

In this study, we report the complexities and challenges associated with achieving robust RNA interference (RNAi)-mediated gene knockdown in the mosquitoes Aedes aegypti and Aedes albopictus, a pivotal approach for genetic analysis and vector control. Despite RNAi's potential for species-specific gene targeting, our independent efforts to establish oral delivery of RNAi for identifying genes critical for mosquito development and fitness encountered significant challenges, failing to reproduce previously reported potent RNAi effects. We independently evaluated a range of RNAi-inducing molecules (siRNAs, shRNAs, and dsRNAs) and administration methods (oral delivery, immersion, and microinjection) in three different laboratories. We also tested various mosquito strains and utilized microorganisms for RNA delivery. Our results reveal a pronounced inconsistency in RNAi efficacy, characterized by minimal effects on larval survival and gene expression levels in most instances despite strong published effects for the tested targets. One or multiple factors, including RNase activity in the gut, the cellular internalization and processing of RNA molecules, and the systemic dissemination of the RNAi signal, could be involved in this variability, all of which are barely understood in mosquitoes. The challenges identified in this study highlight the necessity for additional research into the underlying mechanisms of mosquito RNAi to develop more robust RNAi-based methodologies. Our findings emphasize the intricacies of RNAi application in mosquitoes, which present a substantial barrier to its utilization in genetic control strategies.


Subject(s)
Aedes , RNA Interference , Animals , Aedes/genetics , RNA, Small Interfering/genetics , Mosquito Vectors/genetics , Larva/genetics , RNA, Double-Stranded/genetics , Gene Silencing , Gene Knockdown Techniques/methods
18.
PLoS One ; 19(5): e0298412, 2024.
Article in English | MEDLINE | ID: mdl-38781219

ABSTRACT

The equine South African pointy vector mosquito, Aedes caballus, poses a significant threat to human health due to its capacity for transmitting arboviruses. Despite favorable climate for its existence in southeast Iran, previous records of this species in the area have indicated very low abundance. This comprehensive field and laboratory study aimed to assess its current adult population status in this region, utilizing a combination of ecological, morphological and molecular techniques. Four distinct types of traps were strategically placed in three fixed and two variable mosquito sampling sites in the southern strip of Sistan and Baluchistan Province. Subsequently, DNA was extracted from trapped mosquitoes and subjected to PCR amplification using the molecular markers COI, ITS2, and ANT. In total, 1734 adult Ae. caballus specimens were collected from rural areas, with the majority being captured by CO2-baited bednet traps. A notable increase in the abundance of this species was observed following rainfall in February. The genetic analysis revealed multiple haplotypes based on COI and ITS2 sequences, with COI gene divergence at 0.89%, and ITS2 sequence divergence at 1.6%. This suggests that previous challenges in morphological identification may have led to misidentifications, with many adults previously classified as Ae. vexans potentially being Ae. caballus. The findings of this study hold significant implications for public health authorities, providing valuable insights for integrated and targeted vector control and disease management efforts.


Subject(s)
Aedes , Mosquito Vectors , Animals , Iran , Mosquito Vectors/genetics , Mosquito Vectors/anatomy & histology , Aedes/genetics , Aedes/classification , Aedes/anatomy & histology , Horses/genetics , Phylogeny , Haplotypes , Female , Electron Transport Complex IV/genetics
19.
Sci Rep ; 14(1): 10930, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38740928

ABSTRACT

The Scutellaris Group of Aedes comprises 47 mosquito species, including Aedes albopictus. While Ae. albopictus is widely distributed, the other species are mostly found in the Asia-Pacific region. Evolutionary history researches of Aedes species within the Scutellaris Group have mainly focused on Ae. albopictus, a species that raises significant public health concerns, neglecting the other species. In this study, we aimed to assess genetic diversity and estimate speciation times of several species within the Scutellaris Group. Mosquitoes were therefore collected from various Asia-Pacific countries. Their mitochondrial cytochrome c oxidase subunit 1 (cox1) and subunit 3 (cox3) sequences were analyzed alongside those of other Scutellaris Group species available in the GenBank database. To estimate the divergence time, we analyzed 1849 cox1 gene sequences from 21 species, using three species (Aedes aegypti, Aedes notoscriptus and Aedes vigilax) as outgroups. We found that most of the speciation dates occurred during the Paleogene and the Neogene periods. A separation between the Scutellaris Subgroup and the Albopictus Subgroup occurred approximately 64-61 million years ago (MYA). We also identified a split between species found in Asia/Micronesia and those collected in Melanesia/Polynesia approximately 36-35 MYA. Our findings suggest that the speciation of Aedes species within the Scutellaris Group may be driven by diversity in mammalian hosts, climate and environmental changes, and geological dynamics rather than human migration.


Subject(s)
Aedes , Electron Transport Complex IV , Genetic Speciation , Mitochondria , Phylogeny , Animals , Aedes/genetics , Aedes/classification , Electron Transport Complex IV/genetics , Mitochondria/genetics , Genetic Variation , DNA, Mitochondrial/genetics , Evolution, Molecular , Asia
20.
Parasit Vectors ; 17(1): 233, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38769579

ABSTRACT

BACKGROUND: The adaptive divergence of Aedes aegypti populations to heterogeneous environments can be a driving force behind the recent expansion of their habitat distribution and outbreaks of dengue disease in urbanized areas. In this study, we investigated the population genomics of Ae. aegypti at a regional scale in Metropolitan Manila, Philippines. METHODS: We used the Pool-Seq double digestion restriction-site association DNA sequencing (ddRAD-Seq) approach to generate a high number of single nucleotide polymorphisms (SNPs), with the aim to determine local adaptation and compare the population structure with 11 microsatellite markers. A total of 217 Ae. aegypti individuals from seven female and seven male populations collected from Metropolitan Manila were used in the assays. RESULTS: We detected 65,473 SNPs across the populations, of which 76 were non-neutral SNPs. Of these non-neutral SNPs, the multivariate regression test associated 50 with eight landscape variables (e.g. open space, forest, etc.) and 29 with five climate variables (e.g. air temperature, humidity, etc.) (P-value range 0.005-0.045) in female and male populations separately. Male and female populations exhibited contrasting spatial divergence, with males exhibiting greater divergence than females, most likely reflecting the different dispersal abilities of male and female mosquitoes. In the comparative analysis of the same Ae. aegypti individuals, the pairwise FST values of 11 microsatellite markers were lower than those of the neutral SNPs, indicating that the neutral SNPs generated via pool ddRAD-Seq were more sensitive in terms of detecting genetic differences between populations at fine-spatial scales. CONCLUSIONS: Overall, our study demonstrates the utility of pool ddRAD-Seq for examining genetic differences in Ae. aegypti populations in areas at fine-spatial scales that could inform vector control programs such as Wolbachia-infected mosquito mass-release programs. This in turn would provide information on mosquito population dispersal patterns and the potential barriers to mosquito movement within and around the release area. In addition, the potential of environmental adaptability observed in Ae. aegypti could help population control efforts.


Subject(s)
Aedes , Genetics, Population , Microsatellite Repeats , Mosquito Vectors , Polymorphism, Single Nucleotide , Animals , Aedes/genetics , Aedes/classification , Aedes/physiology , Philippines , Female , Male , Microsatellite Repeats/genetics , Mosquito Vectors/genetics , Mosquito Vectors/physiology , Ecosystem , Genetic Variation , Dengue/transmission , Adaptation, Physiological/genetics
SELECTION OF CITATIONS
SEARCH DETAIL