Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.353
Filter
1.
Environ Geochem Health ; 46(8): 272, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958785

ABSTRACT

Mycotoxin contamination poses a significant problem in developing countries, particularly in northern Pakistan's fluctuating climate. This study aimed to assess aflatoxin contamination in medicinal and condiment plants in Upper Dir (dry-temperate) and Upper Swat (moist-temperate) districts. Plant samples were collected and screened for mycotoxins (Aflatoxin-B1 and Aflatoxin-B-2). Results showed high levels of AFB-1 (11,505.42 ± 188.82) as compared to AFB-2 (846 ± 241.56). The maximum contamination of AFB-1 in Coriandrum sativum (1154.5 ± 13.43 ng to 3328 ± 9.9 ng) followed by F. vulgare (883 ± 9.89 ng to 2483 ± 8.4 ng), T. ammi (815 ± 11.31 ng to 2316 ± 7.1 ng), and C. longa (935.5 ± 2.12 ng to 2009 ± 4.2 ng) while the minimum was reported in C. cyminum (671 ± 9.91 ng to 1995 ± 5.7 ng). Antifungal tests indicated potential resistance in certain plant species (C. cyminum) while A. flavus as the most toxins contributing species due to high resistance below 80% (54.2 ± 0.55 to 79.5 ± 2.02). HPLC analysis revealed hydroxyl benzoic acid (5136 amu) as the dominant average phytochemical followed by phloroglucinol (4144.31 amu) with individual contribution of 8542.08 amu and 12,181.5 amu from C. cyaminum. The comparison of average phytochemicals revealed the maximum concentration in C. cyminum (2885.95) followed by C. longa (1892.73). The findings revealed a statistically significant and robust negative correlation (y = - 2.7239 × + 5141.9; r = - 0.8136; p < 0.05) between average mycotoxins and phytochemical concentrations. Temperature positively correlated with aflatoxin levels (p < 0.01), while humidity had a weaker correlation. Elevation showed a negative correlation (p < 0.05), while geographical factors (latitude and longitude) had mixed correlations (p < 0.05). Specific regions exhibited increasing aflatoxin trends due to climatic and geographic factors.


Subject(s)
Aflatoxins , Phytochemicals , Pakistan , Aflatoxins/analysis , Phytochemicals/pharmacology , Phytochemicals/analysis , Plants, Medicinal/chemistry , Plants, Medicinal/microbiology , Climate
2.
Sci Rep ; 14(1): 16258, 2024 07 15.
Article in English | MEDLINE | ID: mdl-39009623

ABSTRACT

Aflatoxins are mycotoxins that contaminate staple foods globally and pose a significant health risk. To the best of our knowledge, information on the occurrence of aflatoxins in Bhutanese diets is scarce. This study aimed to estimate the aflatoxin levels in selected foodstuffs in Bhutan and determine the health risk associated with aflatoxin exposure. Ten different types of food commodities were randomly collected from farmers' markets, shelves of supermarkets, and wholesale and retail shops from 20 districts of the country. The samples were subjected to analysis by an enzyme-linked immunosorbent assay for both total aflatoxins (B1, B2, G1 and G2) and aflatoxin B1. Among the 315 samples included, 48.81% and 79.35% were positive for total aflatoxins and aflatoxin B1, respectively. The overall mean total aflatoxin concentration was 11.49 ± 12.83 µg/kg, and that for B1 was 17.62 ± 23.99 µg/kg. The most prevalent food commodity with the highest aflatoxin contamination was chili products. In addition, the estimated daily intake and margin of exposure to aflatoxin B1 via the consumption of chili products ranged from 0.98 to 5.34 ng kg-1 bw day-1 and from 74.90 to 408.10, indicating a risk for public health. The liver cancer risk was estimated to be 0.01 and 0.007 cancers per year per 100,000 population resulting from the consumption of chili products. The present findings revealed the presence of total aflatoxins and aflatoxin B1 in the selected samples. The margin of exposure values was exorbitant, demanding a stringent public health measure. Notably, these results suggest the need for routine monitoring of aflatoxin contamination in the region and stress rigorous safety management strategies to reduce exposure.


Subject(s)
Aflatoxin B1 , Food Contamination , Bhutan/epidemiology , Humans , Aflatoxin B1/analysis , Food Contamination/analysis , Risk Assessment , Aflatoxins/analysis
3.
Toxins (Basel) ; 16(7)2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39057964

ABSTRACT

Non-genetic variation limits the identification of novel maize germplasm with genetic markers for reduced Aspergillus flavus infection and aflatoxin contamination. Aflatoxin measurements can vary substantially within fields containing the same germplasm following inoculation with A. flavus. While some variation is expected due to microenvironmental differences, components of field screening methodologies may also contribute to variability in collected data. Therefore, the objective of this study is to test the effects of three different shelling methods (whole ear (WE), ear end removal (EER), and inoculation site-surrounding (ISS)) to obtain bulk samples from maize on aflatoxin measurements. Five ears per row of three inbred lines and two hybrids were inoculated with A. flavus, then shelled using the three different methods, and aflatoxin was quantified. Overall, EER and ISS resulted in reduced coefficients of variance (CVs) in comparison to WE for both inbred and hybrid maize lines, with two exceptions. Susceptible B73 showed increased CVs with both EER and ISS compared to WE, and resistant Mp719's EER CVs marginally increased compared to WE. While WE is the standard practice for most breeding programs due to its technical simplicity, EER and ISS may allow for finely phenotyping parental lines for further breeding applications.


Subject(s)
Aflatoxins , Aspergillus flavus , Zea mays , Zea mays/microbiology , Aflatoxins/analysis , Aspergillus flavus/genetics , Aspergillus flavus/metabolism , Food Contamination/analysis , Plant Diseases/microbiology , Plant Diseases/prevention & control
4.
BMC Microbiol ; 24(1): 209, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877423

ABSTRACT

Fungi can spoil the majority of baked products. Spoilage of cake during storage is commonly associated with fungi. Therefore, this study aimed to assess the quality of different types of cakes sold in the market. The most predominant fungal genera in the tested cake samples (14 samples) were Aspergillus spp., and Penicillium spp. On Potato Dextrose Agar (PDA), the medium fungal total count was 43.3 colonies /g. Aspergillus was the most dominant genus and was isolated from six samples of cake. Aspergillus was represented by 3 species namely, A. flavus, A. niger, and A. nidulans, represented by 13.32, 19.99, and 3.33 colonies /g respectively. On Malt Extract Agar (MEA) Medium, the fungal total count was 123.24 colonies / g. Aspergillus was the most dominant isolated genus from 11 samples of cake and was represented by 5 species, namely, A. flavus, A. niger, A. ochraceous, A. terreus, and A. versicolor (26. 65, 63.29, 3.33, 6.66, and 3.33 colonies / g , respectively). Twenty-four isolates (88.88 %) of the total tested twenty-seven filamentous fungi showed positive results for amylase production. Ten isolates (37.03%) of the total tested filamentous fungi showed positive results for lipase production, and finally eleven isolates (40.74 %) of the total fungal isolates showed positive results for protease production. Aflatoxins B1, B2, G1, G2, and ochratoxin A were not detected in fourteen collected samples of cake. In this study, clove oil was the best choice overpeppermint oil and olive oil for preventing mold development when natural agents were compared. It might be due to the presence of a varietyof bioactive chemical compounds in clove oil, whose major bioactive component is eugenol, which acts as an antifungal reagent. Therefore, freshly baked cake should be consumed within afew days to avoid individuals experiencing foodborne illnesses.


Subject(s)
Food Microbiology , Fungi , Mycotoxins , Fungi/isolation & purification , Fungi/classification , Fungi/enzymology , Fungi/genetics , Mycotoxins/analysis , Aspergillus/isolation & purification , Aspergillus/enzymology , Penicillium/isolation & purification , Penicillium/enzymology , Food Contamination/analysis , Aflatoxins/analysis , Lipase/metabolism , Amylases/metabolism , Amylases/analysis
5.
Food Chem ; 456: 139294, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-38914034

ABSTRACT

The study aimed to develop a rapid and sensitive colorimetric platform based on the Emerson reaction to visualize and determine total aflatoxins (AFs) in peanut oil. This method offers the advantage of fast screening for AFs (AFB1, AFB2, AFG1, and AFG2), eliminating the need for specific antibodies. The proposed approach combined colorimetric detection with magnetic dummy imprinted solid-phase extraction and purification, enhancing sensitivity and selectivity. The oxidizer aided the colorless AFs in reacting with 4-aminoantipyrine, producing green condensates. Thus, a dual-mode approach was developed for AFs detection, employing both UV-vis colorimetric and smartphone-based colorimetry. Both methods showed a good linear relationship with the concentration of AFs. Notably, the smartphone-based method demonstrated a detection range of 0.5-57 µg/kg, with a detection limit as low as 0.21 µg/kg. The suggested colorimetric methods present a promising potential for onsite detection and fast screening of AFs in actual samples.


Subject(s)
Aflatoxins , Colorimetry , Food Contamination , Peanut Oil , Smartphone , Solid Phase Extraction , Colorimetry/methods , Solid Phase Extraction/methods , Solid Phase Extraction/instrumentation , Aflatoxins/analysis , Aflatoxins/isolation & purification , Peanut Oil/chemistry , Food Contamination/analysis , Limit of Detection , Molecular Imprinting
6.
Food Res Int ; 188: 114441, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823858

ABSTRACT

Rice (Oryza sativa L.) is one of the most consumed cereals that along with several important nutritional constituents typically provide more than 21% of the caloric requirements of human beings. Aflatoxins (AFs) are toxic secondary metabolites of several Aspergillus species that are prevalent in cereals, including rice. This review provides a comprehensive overview on production factors, prevalence, regulations, detection methods, and decontamination strategies for AFs in the rice production chain. The prevalence of AFs in rice is more prominent in African and Asian than in European countries. Developed nations have more stringent regulations for AFs in rice than in the developing world. The contamination level of AFs in the rice varied at different stages of rice production chain and is affected by production practices, environmental conditions comprising temperature, humidity, moisture, and water activity as well as milling operations such as de-husking, parboiling, and polishing. A range of methods including chromatographic techniques, immunochemical methods, and spectrophotometric methods have been developed, and used for monitoring AFs in rice. Chromatographic methods are the most used methods of AFs detection followed by immunochemical techniques. AFs decontamination strategies adopted worldwide involve various physical, chemical, and biological strategies, and even using plant materials. In conclusion, adopting good agricultural practices, implementing efficient AFs detection methods, and developing innovative aflatoxin decontamination strategies are imperative to ensure the safety and quality of rice for consumers.


Subject(s)
Aflatoxins , Decontamination , Food Contamination , Oryza , Oryza/chemistry , Oryza/microbiology , Aflatoxins/analysis , Food Contamination/analysis , Decontamination/methods , Humans , Aspergillus/metabolism , Food Handling/methods , Food Microbiology
7.
J AOAC Int ; 107(4): 641-648, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38741217

ABSTRACT

BACKGROUND: To protect public and animal health against risks provoked by aflatoxins contained therein, maximum limits for aflatoxins are defined. Limit values vary depending on the intended use and regulatory authority, therefore quantitative detection is essential. OBJECTIVE: Validation of a one-step competitive lateral flow immunochromatographic assay for quantitative screening of total aflatoxin (B1, B2, G1, and G2) in corn and peanut paste for the high-sensitivity range (0-50 µg/kg). METHODS: Corn or peanut paste test portions are water-based extracted and prepared for testing within 15 min. The AgraStrip® Pro Total Aflatoxin WATEX® test method quantifies the concentration of aflatoxins in the sample. Selectivity, robustness, product consistency, and stability testing were performed in addition to matrix testing. RESULTS: No cross-reactivity was detected against possible interferants. Corn resulted in a LOD and LOQ of 0.9 and 2.8 µg/kg and overall recoveries between 74 and 108%. Peanut paste resulted internally in a LOD and LOQ of 0.8 and 2.3 µg/kg and recoveries between 86 and 98%. Stability testing showed no influence of the age of the respective lot on the result. Robustness testing demonstrated that varying the amount of water used for extraction, extraction time, and delay between extract dilution and analysis did not significantly affect the result. Due to supply chain issues, a change to the outer cartridge required an increase in the test aliquot size, which had no effect on method performance. CONCLUSION: The test kit was validated for the determination of total aflatoxins in corn and peanut paste. Recovery and precision met the requirements laid down in Codex Alimentarius CXG 71-2009 and acceptable robustness, selectivity, and product consistency and stability were demonstrated. HIGHLIGHTS: The AgraStrip Pro Total Aflatoxin WATEX test kit in the high sensitivity range (0-50 µg/kg) was approved by the AOAC AOAC Research Institute (PTM number 032402).


Subject(s)
Aflatoxins , Arachis , Limit of Detection , Zea mays , Zea mays/chemistry , Aflatoxins/analysis , Arachis/chemistry , Food Contamination/analysis , Chromatography, Affinity/methods
8.
J Vis Exp ; (206)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38709040

ABSTRACT

Aflatoxins are highly carcinogenic secondary metabolites of some fungal species, particularly Aspergillus flavus. Aflatoxins often contaminate economically important agricultural commodities, including peanuts, posing a high risk to human and animal health. Due to the narrow genetic base, peanut cultivars demonstrate limited resistance to fungal pathogens. Therefore, numerous wild peanut species with tolerance to Aspergillus have received substantial consideration by scientists as sources of disease resistance. Exploring plant germplasm for resistance to aflatoxins is difficult since aflatoxin accumulation does not follow a normal distribution, which dictates the need for the analyses of thousands of single peanut seeds. Sufficiently hydrated peanut (Arachis spp.) seeds, when infected by Aspergillus species, are capable of producing biologically active stilbenes (stilbenoids) that are considered defensive phytoalexins. Peanut stilbenes inhibit fungal development and aflatoxin production. Therefore, it is crucial to analyze the same seeds for peanut stilbenoids to explain the nature of seed resistance/susceptibility to the Aspergillus invasion. None of the published methods offer single-seed analyses for aflatoxins and/or stilbene phytoalexins. We attempted to fulfill the demand for such a method that is environment-friendly, uses inexpensive consumables, and is sensitive and selective. In addition, the method is non-destructive since it uses only half of the seed and leaves the other half containing the embryonic axis intact. Such a technique allows germination and growth of the peanut plant to full maturity from the same seed used for the aflatoxin and stilbenoid analysis. The integrated part of this method, the manual challenging of the seeds with Aspergillus, is a limiting step that requires more time and labor compared to other steps in the method. The method has been used for the exploration of wild Arachis germplasm to identify species resistant to Aspergillus and to determine and characterize novel sources of genetic resistance to this fungal pathogen.


Subject(s)
Aflatoxins , Arachis , Phytoalexins , Seeds , Sesquiterpenes , Stilbenes , Arachis/microbiology , Arachis/chemistry , Seeds/chemistry , Aflatoxins/analysis , Aflatoxins/metabolism , Stilbenes/metabolism , Stilbenes/analysis , Stilbenes/chemistry , Sesquiterpenes/analysis , Sesquiterpenes/metabolism , Sesquiterpenes/chemistry , Chromatography, High Pressure Liquid/methods
9.
Sci Total Environ ; 929: 172323, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38608906

ABSTRACT

Mycotoxins are secondary metabolites produced by fungi and identified as contaminants in animal feed. They have potentially harmful effects, including carcinogenicity, mutagenicity, and repro-toxicity in animals and humans. As a result of climate change, there is the potential for a change in the prevalence and concentration of mycotoxins in animal feed components. This necessitates an assessment of the present and emerging threats to the food supply chain from mycotoxins. This systematic review and meta-analysis study synthesised studies on mycotoxin contamination and prevalence in cattle feed components. The studies were collected from scientific databases Web of Knowledge, Scopus, and Embase between 2011 and 2022. The meta-analysis synthesised 97 studies on the prevalence and the concentration of aflatoxins, ochratoxin A, deoxynivalenol, zearalenone, fumonisin and T-2/HT-2 toxins in feed components. Aflatoxin was highly prevalent (59 %), with a concentration of 2.58-3.92 µg kg-1 in feed components. Ochratoxin A had a global prevalence of 31 % with a concentration of 5.56-12.41 µg kg-1. Deoxynivalenol had a global concentration of 233.17-327.73 µg kg-1 and a prevalence of 74 %. Zearalenone had a prevalence of 70 % and a concentration of 42.47-66.19 µg kg-1. The concentration and prevalence of fumonisins was 232.19-393.07 µg kg-1 and 65 %, respectively. The prevalence and concentration of T-2/HT-2 toxins were 45 % and 23.54-35.12 µg kg-1, respectively. The synthesised concentration of the mycotoxins in the overall feed components was lower than the regulated and guidance values set by the European Union. However, in a few cases, the 95th percentile exceeded these concentration values due to high levels of uncertainty attributed to lower sample size, and thus, need to be considered while conducting risk assessments. The study highlights climates and regions likely to be conducive to the emergence of mycotoxin risk, especially considering the potential influences of climate change.


Subject(s)
Animal Feed , Food Contamination , Mycotoxins , Animal Feed/analysis , Mycotoxins/analysis , Animals , Food Contamination/analysis , Cattle , Aflatoxins/analysis
10.
Article in English | MEDLINE | ID: mdl-38598120

ABSTRACT

Aflatoxin (AF) poisoning of staple foods, such as rice, is caused by fungal contamination by Aspergillus species. These AFs are genotoxic, carcinogenic and suppress the immune system. Hence, the present study was conducted to elucidate the prevalence of AF contamination in rice samples collected from local markets of Hyderabad, Telangana, India. The rice samples collected were analysed for AF by using HPLC-fluorescence detection (HPLC-FLD). Based on AF contamination levels and dietary intake of rice, the health risk was assessed by the margin of exposure (MOE) and liver cancer risk in adults, adolescence and children. The percentage detected contamination with AFB1 and AFB2 of rice samples was 54% and 34%, with the concentration ranging between 0-20.35 µg/kg and 0-1.54 µg/kg, respectively. Three rice samples exceeded the Food Safety and Standards Authority of India (FSSAI) total AF acceptable limit of 15 µg/kg. The average MOE values were 53.73, 50.58 and 35.69 (all <10,000) for adults, adolescence and children, respectively. The average liver cancer risk associated with rice consumption in the population of Hyderabad was found to be 0.27, 0.28 and 0.40 hepatocellular carcinoma (HCC) cases/year/100,000 individuals in adults, adolescence and children, respectively. This study revealed an adverse health risk to population of Hyderabad due to consumption of AF contaminated rice.


Subject(s)
Aflatoxins , Food Contamination , Oryza , Oryza/chemistry , Aflatoxins/analysis , India , Food Contamination/analysis , Humans , Risk Assessment , Child , Adult , Adolescent , Dietary Exposure/analysis , Chromatography, High Pressure Liquid , Liver Neoplasms/chemically induced
11.
Article in English | MEDLINE | ID: mdl-38662874

ABSTRACT

Za'atar mix products are mainly composed of the dried and ground leaves and/or blossoms of wild and cultivated plant species (Origanum, Thymbra, Thymus, and Satureja) with the addition of condiments. The aim of this study was to evaluate the occurrence of aflatoxins, chemical composition (carbohydrates, fibre, fat, protein, moisture, ash, and acid contents), mineral content (Na, Ca, and K), and colour traits (L*a*b*) in relation to food label and food standards compliance. Measured and labelled fat content did not agree for approximately 91% of the samples. There was also no agreement between the measured and labelled fibre contents. The total content of aflatoxins in the tested samples ranged from 2 to 63.7 ng g-1. Eleven (69%) of the 16 analysed products had total aflatoxins higher than the maximum permitted limit of the European Commission. The KAS and LAZ products had significantly lighter colour (the highest L* values), while the ALAQ product had the darkest colour (lowest L* value). The range of sodium content in the tested products was 105.1-1425.3 mg/100 g. In conclusion, za'atar mix products that are available in local markets do not have accurate nutritional labelling information, and the occurrence of aflatoxins was very high. Further studies are needed to evaluate the reasons for these quality defects.


Subject(s)
Aflatoxins , Food Contamination , Food Labeling , Aflatoxins/analysis , Food Contamination/analysis , Food Analysis , Condiments/analysis
12.
J Econ Entomol ; 117(3): 993-1000, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38602338

ABSTRACT

On-farm losses of peanuts (Arachis hypogaea L., Fabales: Fabaceae) pose a persistent threat to the sustainable production and value of peanuts in the United States. This study presents empirical data on the spatial distribution of subterranean insect pests and various quality aspects of peanuts. Surveys were conducted in 20 randomly selected peanut fields in 10 counties in Northeast, Southeast, and Southwest Georgia. The primary insect pests found in Georgia's peanut production counties were Pangaeus bilineatus (Say), Elasmopalpus lignosellus (Zeller), and Diabrotica undecimpunctata Howardi. In the northeast counties, a high prevalence of P. bilineatus led to a significant increase in insect-damaged pods (%IDP), insect-damaged kernels (%IDK), discolored kernels (%DK), pod weight loss (%PWL), and kernel weight loss (%KWL). Similarly, southeast counties had a high %DK, cracked pods (%CP), and E. lignosellus infestation. In southwest counties, predominantly high D. undecimpunctata infestations resulted in the highest %IDP. Moisture content (%MC) was excessively high in all the counties (22.19%-23.17%). Preharvest aflatoxin contamination in peanuts was prevalent across all studied locations, particularly in counties with a high incidence of P. bilineatus and may cause increased risk in aflatoxin levels along the supply chain. Nevertheless, the diverse regional abundance of insect pests and the widespread presence of aflatoxins in Georgia's peanut fields offer valuable insights for developing integrated pest management strategies targeting subterranean insect pests. This is especially crucial in addressing the impact of P. bilineatus, E. lignosellus, and D. undecimpunctata on aflatoxins content of peanuts and determining the pathway for mitigation of aflatoxin contaminations in peanuts at harvest.


Subject(s)
Aflatoxins , Arachis , Animals , Georgia , Aflatoxins/analysis , Insecta
13.
Mycotoxin Res ; 40(3): 351-367, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38647834

ABSTRACT

Aspergillus section Flavi (Flavi) is a diverse group of fungal species whose common members include A. flavus and A. parasiticus. These are well-known for the production of aflatoxin (AF) B and G and other toxic metabolites, like cyclopiazonic acid (CPA). They are saprophytic soil dwellers and also become crop opportunistic epiphytes. The consequence is contamination of the crop with mycotoxins, such as carcinogenic AF. We investigated the Flavi community structure of maize and that of their surrounding soil, including their mycotoxigenicity. Furthermore, we investigated the link of the maize Flavi diversity with preharvest maize AF levels. The study was carried out in four selected districts of Zambia, in a low rainfall zone. The Flavi characterisation was triphasic, involving morphological (colony colour and sclerotia formation), metabolic (AF and CPA production) and genetic (calmodulin gene polymorphism) analyses. Flavi abundance was determined by dilution plate technique on modified rose Bengal agar. Results showed that Flavi communities on maize and in soil differed. Maize had a higher Flavi species diversity than soil. A. parasiticus dominated the soil community by frequency of field appearance (85%), while maize was dominated by A. minisclerotigenes (45%). CPA-producers with or without AF production dominated the maize (65%) while producers of only AF (B/G) dominated the soil (88%). The ratio between maize A. parasiticus and A. minisclerotigenes abundance seemed to have had a bearing on the levels of AF in maize, with a ratio close to 1:1 having higher levels than a pure community of either A. parasiticus or A. minisclerotigenes.


Subject(s)
Aflatoxins , Soil Microbiology , Zea mays , Zea mays/microbiology , Zea mays/chemistry , Aflatoxins/analysis , Zambia , Aspergillus flavus/genetics , Aspergillus flavus/isolation & purification , Aspergillus flavus/classification , Aspergillus flavus/metabolism , Biodiversity
14.
Food Chem ; 449: 139272, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38604030

ABSTRACT

This study presents a novel approach toward the one-pot green synthesis of ZIF-8/IgG composite, focusing on its precise orientation and protection of the anti-aflatoxins antibody. The antibody orientation is achieved through the specific binding of IgG to the Fc region of the antibody, while the antibody protection is accomplished by the structural change restriction of ZIF-8 framework to the antibody. Consequently, the antibody exhibits enhanced target capability and significantly improved tolerance to organic solvents. The ZIF-8/IgG/anti-AFT was employed for the purification and detection of AFTs by coupling with UPLC. Under optimized conditions, the recoveries of spiked AFTs in peanut oils are between 86.1% and 106.4%, with relative standard deviations (RSDs) ranging from 0.8% to 8.8%. The linearity range is 0.5-20.0 ng for AFB1 and AFG1, 0.125-5.0 ng for AFB2 and AFG2, the limit of detection is 0.1 ng for AFB1 and AFG1, 0.03 ng for AFB2 and AFG2.


Subject(s)
Aflatoxins , Food Contamination , Green Chemistry Technology , Immunoglobulin G , Peanut Oil , Aflatoxins/analysis , Aflatoxins/immunology , Aflatoxins/isolation & purification , Food Contamination/analysis , Peanut Oil/chemistry , Immunoglobulin G/immunology , Immunoglobulin G/chemistry , Antibodies/immunology , Antibodies/chemistry , Chromatography, High Pressure Liquid
15.
Food Addit Contam Part B Surveill ; 17(2): 171-179, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38515402

ABSTRACT

This study investigated the occurrence of aflatoxins (B1, B2, G1, and G2) in maize flour produced in Mozambique and to assess the associated carcinogenic risk. At different opportunities, 30 samples of maize flour were collected in five flour processing factories. These were determined by high-performance liquid chromatography (HPLC) with fluorescence detection. AFB1 concentrations ranged from 0.25 to 0.33 µg kg-1. The levels of total aflatoxins ranged from 0.55 to 1.05 µg kg-1, with a mean of 0.89 µg kg-1, for which maximum limits (MLs) are 10 and 4 µg kg-1 for Mozambique and the European Union, respectively. The calculated Margin of Exposure (MOE) for men and women was 243 and 231, respectively, so several folds below the risk cut-off level, indicating that consumption of such maize flour poses a potential risk of hepatocarcinoma related to aflatoxin exposure due to high intake of this food, a staple diet in most African countries.


Subject(s)
Aflatoxins , Flour , Food Contamination , Zea mays , Zea mays/chemistry , Mozambique , Aflatoxins/analysis , Flour/analysis , Humans , Food Contamination/analysis , Risk Assessment , Chromatography, High Pressure Liquid , Female , Male , Aflatoxin B1/analysis , Liver Neoplasms/chemically induced
16.
Mycotoxin Res ; 40(2): 309-318, 2024 May.
Article in English | MEDLINE | ID: mdl-38530632

ABSTRACT

Aflatoxins are one of the major factors that affect the quality and safety of feeds. They can be transferred into livestock through contaminated feed and then onto humans via animal sources of food such as milk, meat, and eggs. The objective of this study was to detect and quantify the level of aflatoxins (B1, B2, G1, G2, and total aflatoxin) in dairy feeds, poultry (layer and broiler) feeds, and feed ingredients produced in Addis Ababa. A total of 42 feeds and feed ingredients consisting of dairy feeds (n = 5), poultry broiler feeds (n = 6), layer feeds (n = 6), and feed ingredients (n = 25) were collected from feed factories in the city and analyzed in fresh weigh basis. The aflatoxins were analyzed using high-performance liquid chromatography after clean-up with immunoaffinity columns. Aflatoxin B1 levels in feeds ranged from 51.66 to 370.51 µg/kg in dairy cattle feed, from 1.45 to 139.51 µg/kg in poultry layer feed, and from 16.49 to 148.86 µg/kg in broiler feed. Aflatoxin B1 levels in maize ranged from 2.64 to 46.74 µg/kg and in Niger seed cake from 110.93 to 438.86 µg/kg. Aflatoxin B1 levels in wheat bran, wheat middling, and soybean were below 5 µg/kg. 100% of dairy feeds, 67% of poultry layer, 67% of broiler feeds, and 24% of ingredients contained aflatoxin in levels higher than the maximum tolerable limit set by the US Food and Drug Administration and Ethiopian Standard Agency. This shows the need for strong regulatory monitoring and better feed management practices to prevent consumers of animal-source foods from significant health impacts associated with aflatoxins.


Subject(s)
Aflatoxins , Animal Feed , Food Contamination , Poultry , Animal Feed/analysis , Animals , Ethiopia , Aflatoxins/analysis , Food Contamination/analysis , Cattle , Chickens , Chromatography, High Pressure Liquid/methods
17.
Article in English | MEDLINE | ID: mdl-38530071

ABSTRACT

This review analyzes the occurrence and co-exposure of aflatoxins and fumonisins in conventional and organic corn, and compares the vulnerability to contamination of both. The risks of fungal contamination in corn are real, mainly by the genera Aspergillus and Fusarium, producers of aflatoxins and fumonisins, respectively. Aflatoxins, especially AFB1, are related to a high incidence of liver cancer, and the International Agency Research of Cancer (IARC) classified them in group 1A 'carcinogenic to humans'. The occurrence in conventional corn is reported in many countries, including at higher levels than those established by legislation. IARC classified fumonisins in group 2B 'possibly carcinogenic to humans' due to their link with incidence of esophageal cancer. However, comparing corn and organic and conventional by-products from different regions, different results are observed. The co-occurrence of both mycotoxins is a worldwide problem; nevertheless, there is little data on the comparison of the co-exposure of these mycotoxins in corn and derivatives between both systems. It was found that the agricultural system is not a decisive factor in the final contamination, indicating the necessity of effective strategies to reduce contamination and co-exposure at levels that do not pose health risks.


Subject(s)
Aflatoxins , Food Contamination , Fumonisins , Zea mays , Zea mays/chemistry , Fumonisins/analysis , Aflatoxins/analysis , Food Contamination/analysis , Humans , Aspergillus , Fusarium
18.
J Hazard Mater ; 469: 133916, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38479137

ABSTRACT

Aflatoxins from the fungus Aspergillus flavus (A. flavus) that contaminate stored peanuts is a major hazard to human health worldwide. Reducing A. flavus in soil can decrease the risk of aflatoxins in stored peanuts. In this experiment, we determined whether peanuts grown on soil fumigated with dazomet (DZ), metham sodium (MS), allyl isothiocyanate (AITC), chloropicrin (PIC) or dimethyl disulfide (DMDS) would reduce of the quantity of A. flavus and its toxin's presence. The results of bioassays and field tests showed that PIC was the most effective fumigant for preventing and controlling A. flavus, followed by MS. PIC and MS applied to the soil for 14 d resulted in LD50 values against A. flavus of 3.558 and 4.893 mg kg-1, respectively, leading to almost 100% and 98.82% effectiveness of A. flavus, respectively. Peanuts harvested from fumigated soil and then stored for 60 d resulted in undetectable levels of aflatoxin B1 (AFB1) compared to unfumigated soil that contained 0.64 ug kg-1 of AFB1, which suggested that soil fumigation can reduce the probability of aflatoxin contamination during peanut storage and showed the potential to increase the safety of peanuts consumed by humans. Further research is planned to determine the practical value of our research in commercial practice.


Subject(s)
Aflatoxin B1 , Aflatoxins , Humans , Aflatoxin B1/toxicity , Aflatoxin B1/analysis , Arachis , Soil , Disinfection , Aspergillus flavus , Aflatoxins/toxicity , Aflatoxins/analysis
19.
Sci Rep ; 14(1): 6864, 2024 03 22.
Article in English | MEDLINE | ID: mdl-38514765

ABSTRACT

Aflatoxin B1 (AFB1) is widespread and seriously threatens public health worldwide. This study aimed to investigate AFB1 in imported hazelnut samples in northwest of Iran (Eastern Azerbaijan Province) using High-Performance Liquid Chromatography with a Fluorescent Detector (HPLC-FLD). In all tested samples AFB1 was detected. The mean concentration of AFB1 was 4.20 µg/kg and ranged from 3.145 to 8.13 µg/kg. All samples contained AFB1 levels within the maximum acceptable limit except for one sample. Furthermore, the human health risk assessment of AFB1 from consuming imported hazelnuts by Iranian children and adults was evaluated based on the margin of exposure (MoE) and quantitative liver cancer risk approaches. The MoE mean for children was 2529.76, while for adults, it was 8854.16, indicating a public health concern. The present study found that the risk of developing liver cancer among Iranian children was 0.11100736 per 100,000 people, and in the Iranian adult population was 0.0314496 cancers per 100,000 people. Since environmental conditions potentially affect aflatoxin levels in nuts, countries are advised to monitor aflatoxin contents in imported nuts, especially from countries with a conducive climate for mold growth.


Subject(s)
Aflatoxins , Corylus , Liver Neoplasms , Adult , Child , Humans , Aflatoxin B1/analysis , Iran/epidemiology , Azerbaijan , Food Contamination/analysis , Aflatoxins/analysis , Risk Assessment , Chromatography, High Pressure Liquid/methods
20.
Phytomedicine ; 128: 155367, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38493720

ABSTRACT

BACKGROUND: Mycotoxins have been reported to be present in medicinal plants. With the growing usage of medicinal plants, contamination of mycotoxins has emerged as one of the biggest threats to global food hygiene and ecological environment, posing a severe threat to human health. PURPOSE: This study aimed to determine the mycotoxin prevalence and levels in medicinal plants and conduct a risk assessment by conducting a systematic review and meta-analysis. METHODS: A thorough search on Web of Science and PubMed was conducted for the last decade, resulting in 54 studies (meeting the inclusion criteria) with 2829 data items that were included in the meta-analysis. RESULTS: The combined prevalence of mycotoxins in medicinal plants was 1.7% (95% confidence interval, CI = 1.1% - 2.4%), with a mean mycotoxin concentration in medicinal plants of 3.551 µg/kg (95% CI = 3.461 - 3.641 µg/kg). Risk assessment results indicated that aflatoxins and ochratoxin A found in several medicinal plants posed a health risk to humans; additionally, emerging enniatins exhibited possible health risks. CONCLUSION: Therefore, the study underlines the need for establishing stringent control measures to reduce the severity of mycotoxin contamination in medicinal plants.


Subject(s)
Mycotoxins , Plants, Medicinal , Plants, Medicinal/chemistry , Mycotoxins/analysis , Risk Assessment , Humans , Ochratoxins/analysis , Food Contamination/analysis , Aflatoxins/analysis
SELECTION OF CITATIONS
SEARCH DETAIL