Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.341
Filter
1.
Biol Psychiatry ; 95(8): 785-799, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38952926

ABSTRACT

Background: Responding to social signals by expressing the correct behavior is not only challenged in autism, but also in diseases with high prevalence of autism, like Prader-Willi Syndrome (PWS). Clinical evidence suggests aberrant pro-social behavior in patients can be regulated by intranasal oxytocin (OXT) or vasopressin (AVP). However, what neuronal mechanisms underlie impaired behavioral responses in a socially-aversive context, and how can they be corrected, remains largely unknown. Methods: Using the Magel2 knocked-out (KO) mouse model of PWS (crossed with CRE-dependent transgenic lines), we devised optogenetic, physiological and pharmacological strategies in a social-fear-conditioning paradigm. Pathway specific roles of OXT and AVP signaling were investigated converging on the lateral septum (LS), a region which receives dense hypothalamic inputs. Results: OXT and AVP signaling promoted inhibitory synaptic transmission in the LS, which failure in Magel2KO mice disinhibited somatostatin (SST) neurons and disrupted social-fear extinction. The source of OXT and AVP deficits mapped specifically in the supraoptic nucleus→LS pathway of Magel2KO mice disrupting social-fear extinction, which could be corrected by optogenetic or pharmacological inhibition of SST-neurons in the LS. Interestingly, LS SST-neurons also gated the expression of aggressive behavior, possibly as part of functional units operating beyond local septal circuits. Conclusions: SST cells in the LS play a crucial role in integration and expression of disrupted neuropeptide signals in autism, thereby altering the balance in expression of safety versus fear. Our results uncover novel mechanisms underlying dysfunction in a socially-aversive context, and provides a new framework for future treatments in autism-spectrum disorders.


Subject(s)
Disease Models, Animal , Extinction, Psychological , Fear , Mice, Knockout , Neurons , Oxytocin , Prader-Willi Syndrome , Somatostatin , Vasopressins , Animals , Oxytocin/pharmacology , Somatostatin/pharmacology , Somatostatin/metabolism , Fear/drug effects , Fear/physiology , Extinction, Psychological/drug effects , Extinction, Psychological/physiology , Neurons/drug effects , Neurons/metabolism , Mice , Prader-Willi Syndrome/physiopathology , Prader-Willi Syndrome/drug therapy , Vasopressins/metabolism , Aggression/drug effects , Aggression/physiology , Male , Social Behavior , Septal Nuclei/drug effects , Septal Nuclei/metabolism , Optogenetics , Mice, Inbred C57BL , Intracellular Signaling Peptides and Proteins , Intrinsically Disordered Proteins
2.
Soc Cogn Affect Neurosci ; 19(1)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38874947

ABSTRACT

Aggression and impulsivity are linked to suicidal behaviors, but their relationship to the suicidal crisis remains unclear. This magnetoencephalography (MEG) study investigated the link between aggression, impulsivity, and resting-state MEG power and connectivity. Four risk groups were enrolled: high-risk (HR; n = 14), who had a recent suicidal crisis; lower-risk (LR; n = 41), who had a history of suicide attempts but no suicide attempt or ideation in the past year; clinical control (CC; n = 38), who had anxiety/mood disorders but no suicidal history; and minimal risk (MR; n = 28), who had no psychiatric/suicidal history. No difference in resting-state MEG power was observed between the groups. Individuals in the HR group with high self-reported aggression and impulsivity scores had reduced MEG power in regions responsible for sensory/emotion regulation vs. those in the HR group with low scores. The HR group also showed downregulated bidirectional glutamatergic feedback between the precuneus (PRE) and insula (INS) compared to the LR, CC, and MR groups. High self-reported impulsivity was linked to reduced PRE to INS feedback, whereas high risk-taking impulsivity was linked to upregulated INS to postcentral gyrus (PCG) and PCG to INS feedback. These preliminary findings suggest that glutamatergic-mediated sensory and emotion-regulation processes may function as potential suicide risk markers.


Subject(s)
Aggression , Impulsive Behavior , Magnetoencephalography , Humans , Impulsive Behavior/physiology , Male , Magnetoencephalography/methods , Female , Aggression/physiology , Aggression/psychology , Adult , Young Adult , Suicide/psychology , Suicidal Ideation , Suicide, Attempted/psychology , Somatosensory Cortex/physiology , Adolescent
3.
J Neural Eng ; 21(3)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38861996

ABSTRACT

Objective.Distributed hypothalamic-midbrain neural circuits help orchestrate complex behavioral responses during social interactions. Given rapid advances in optical imaging, it is a fundamental question how population-averaged neural activity measured by multi-fiber photometry (MFP) for calcium fluorescence signals correlates with social behaviors is a fundamental question. This paper aims to investigate the correspondence between MFP data and social behaviors.Approach:We propose a state-space analysis framework to characterize mouse MFP data based on dynamic latent variable models, which include a continuous-state linear dynamical system and a discrete-state hidden semi-Markov model. We validate these models on extensive MFP recordings during aggressive and mating behaviors in male-male and male-female interactions, respectively.Main results:Our results show that these models are capable of capturing both temporal behavioral structure and associated neural states, and produce interpretable latent states. Our approach is also validated in computer simulations in the presence of known ground truth.Significance:Overall, these analysis approaches provide a state-space framework to examine neural dynamics underlying social behaviors and reveals mechanistic insights into the relevant networks.


Subject(s)
Photometry , Social Behavior , Animals , Mice , Photometry/methods , Male , Female , Mice, Inbred C57BL , Nerve Net/physiology , Computer Simulation , Sexual Behavior, Animal/physiology , Aggression/physiology , Models, Neurological
4.
eNeuro ; 11(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38839305

ABSTRACT

Social behavior is important for our well-being, and its dysfunctions impact several pathological conditions. Although the involvement of glutamate is undeniable, the relevance of vesicular glutamate transporter type 3 (VGluT3), a specific vesicular transporter, in the control of social behavior is not sufficiently explored. Since midbrain median raphe region (MRR) is implicated in social behavior and the nucleus contains high amount of VGluT3+ neurons, we compared the behavior of male VGluT3 knock-out (KO) and VGluT3-Cre mice, the latter after chemogenetic MRR-VGluT3 manipulation. Appropriate control groups were included. Behavioral test battery was used for social behavior (sociability, social discrimination, social interaction, resident intruder test) and possible confounding factors (open field, elevated plus maze, Y-maze tests). Neuronal activation was studied by c-Fos immunohistochemistry. Human relevance was confirmed by VGluT3 gene expression in relevant human brainstem areas. VGluT3 KO mice exhibited increased anxiety, social interest, but also aggressive behavior in anxiogenic environment and impaired social memory. For KO animals, social interaction induced lower cell activation in the anterior cingulate, infralimbic cortex, and medial septum. In turn, excitation of MRR-VGluT3+ neurons was anxiolytic. Inhibition increased social interest 24 h later but decreased mobility and social behavior in aggressive context. Chemogenetic activation increased the number of c-Fos+ neurons only in the MRR. We confirmed the increased anxiety-like behavior and impaired memory of VGluT3 KO strain and revealed increased, but inadequate, social behavior. MRR-VGluT3 neurons regulated mobility and social and anxiety-like behavior in a context-dependent manner. The presence of VGluT3 mRNA on corresponding human brain areas suggests clinical relevance.


Subject(s)
Anxiety , Mice, Knockout , Social Behavior , Animals , Male , Humans , Anxiety/metabolism , Raphe Nuclei/metabolism , Mice , Neurons/metabolism , Mice, Inbred C57BL , Behavior, Animal/physiology , Mice, Transgenic , Amino Acid Transport Systems, Acidic/metabolism , Amino Acid Transport Systems, Acidic/genetics , Proto-Oncogene Proteins c-fos/metabolism , Aggression/physiology
5.
Neuropharmacology ; 256: 110021, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38825308

ABSTRACT

There is an important relationship between the immune system and aggressive behavior. Aggressive encounters acutely increase the levels of proinflammatory cytokines, and there are positive correlations between aggressive traits and peripheral proinflammatory cytokines. Endotoxin lipopolysaccharide (LPS) treatment, which results in peripheral immune activation, decreases aggressive behavior as one of the sickness behavioral symptoms. In contrast, certain brain infections and chronic interferon treatment are associated with increased aggression. Indeed, the effects of proinflammatory cytokines on the brain in aggressive behavior are bidirectional, depending on the type and dose of cytokine, target brain region, and type of aggression. Some studies have suggested that microglial activation and neuroinflammation influence intermale aggression in rodent models. In addition, pathological conditions as well as physiological levels of cytokines produced by microglia play an important role in social and aggressive behavior in adult animals. Furthermore, microglial function in early development is necessary for the establishment of the social brain and the expression of juvenile social behaviors, including play fighting. Overall, this review discusses the important link between the immune system and aggressive traits and the role of microglia as mediators of this link.


Subject(s)
Aggression , Microglia , Aggression/physiology , Aggression/drug effects , Microglia/immunology , Microglia/metabolism , Animals , Humans , Immune System/drug effects , Cytokines/metabolism , Social Behavior , Brain/immunology , Brain/metabolism , Brain/drug effects
6.
Aggress Behav ; 50(3): e22149, 2024 05.
Article in English | MEDLINE | ID: mdl-38757986

ABSTRACT

Aggression is a costly public health problem with severe and multi-faceted negative consequences and thus, identifying factors that contribute to aggression, particularly in understudied populations, is necessary to develop more effective interventions to reduce the public health cost of aggression. The goal this study was to test whether difficulties regulating emotions moderated the association between posttraumatic stress disorder (PTSD) symptoms and aggression in a community sample of predominantly Black females with high levels of trauma exposure. Furthermore, we explored unique relations between PTSD symptom clusters and distinct subscales of difficulties regulating emotions and aggression. The sample included 601 community participants recruited from an urban public hospital. Symptoms were assessed using self-report measures including the Difficulties in Emotion Regulation Scale (DERS) and Behavioral Questionnaire-Short. Regression analyses were conducted using PTSD symptoms and total DERS to test their interaction as predictors for aggression (using BQ-Short). We found that higher levels of PTSD arousal symptoms and difficulty controlling impulses when upset were positively related to aggression. We also conducted an exploratory analysis to examine the association between PTSD symptom clusters using the Alternative Symptom Clusters hybrid model. The results suggest that some PTSD symptoms (externalizing behavior) and some emotion dysregulation processes (difficulties controlling impulses when upset), relate to aggression in independent, rather than multiplicative ways. These results offer insights for new directions of research that focuses on the independent association between specific emotion dysregulation processes and PTSD symptoms on aggression.


Subject(s)
Aggression , Black or African American , Emotional Regulation , Stress Disorders, Post-Traumatic , Humans , Female , Stress Disorders, Post-Traumatic/psychology , Aggression/psychology , Aggression/physiology , Adult , Emotional Regulation/physiology , Male , Middle Aged , Black or African American/psychology , Black or African American/ethnology , Young Adult , Minority Groups/psychology , Adolescent , Aged
7.
Horm Behav ; 163: 105564, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38772157

ABSTRACT

A key challenge in animal behavior is disentangling the social stimuli that drive conspecific behaviors. For some species, like teleost fish, putative sexual signaling cues are inextricably linked to others, making it difficult to parse the precise roles distinct signals play in driving conspecific behaviors. In the African cichlid Astatotilapia burtoni, males are either dominant or subordinate, wherein bright coloration, territoriality, and courtship behavior inextricably correlate positively with rank. Here, we leveraged androgen receptor (AR) mutant male A. burtoni that lack dominance-typical coloration but not behavior to isolate the role of male coloration in driving female mating behaviors in this species. We found in independent behavioral assays that females behave aggressively towards AR mutant but not WT males, yet still mated with both types of males. Females showed enhanced activation of esr2b + cells in the hypothalamus when housed with either mutant or WT males and this activation scaled with spawning activities. Therefore, there is not a simple relationship between male coloration and female mating behaviors in A. burtoni, suggesting independent sensory mechanisms converge on hypothalamic esr2b cells to coordinate behavioral output.


Subject(s)
Cichlids , Receptors, Androgen , Sexual Behavior, Animal , Animals , Cichlids/physiology , Cichlids/genetics , Female , Male , Receptors, Androgen/genetics , Sexual Behavior, Animal/physiology , Mutation , Hypothalamus/physiology , Hypothalamus/metabolism , Pigmentation/genetics , Pigmentation/physiology , Aggression/physiology
8.
Curr Opin Neurobiol ; 86: 102879, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692167

ABSTRACT

Although aggression is associated with several psychiatric disorders, there is no effective treatment nor a rigorous definition for "pathological aggression". Mice make a valuable model for studying aggression. They have a dynamic social structure that depends on the habitat and includes reciprocal interactions between the mice's aggression levels, social dominance hierarchy (SDH), and resource allocation. Nevertheless, the classical behavioral tests for territorial aggression and SDH in mice are reductive and have limited ethological and translational relevance. Recent work has explored the use of semi-natural environments to simultaneously study dominance-related behaviors, resource allocation, and aggressive behavior. Semi-natural setups allow experimental control of the environment combined with manipulations of neural activity. We argue that these setups can help bridge the translational gap in aggression research toward discovering neuronal mechanisms underlying maladaptive aggression.


Subject(s)
Aggression , Social Dominance , Animals , Aggression/physiology , Mice , Behavior, Animal/physiology , Humans , Ethology/methods
9.
Horm Behav ; 163: 105561, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38759417

ABSTRACT

Offspring from females breeding in competitive social environments are often exposed to more testosterone (T) during embryonic development, which can affect traits from growth to behavior in potentially adaptive ways. Despite the important role of maternally derived steroids in shaping offspring development, the molecular mechanisms driving these processes are currently unclear. Here, we use tree swallows (Tachycineta bicolor) to explore the effects of the maternal social environment on yolk T concentrations and genome-wide patterns of neural gene expression in embryos. We measured aggressive interactions among females breeding at variable densities and collected their eggs at two timepoints, including the day laid to measure yolk T concentrations and on embryonic day 11 to measure gene expression in whole brain samples. We found that females breeding in high-density sites experienced elevated rates of physical aggression and their eggs had higher yolk T concentrations. A differential gene expression and weighted gene co-expression network analysis indicated that embryos from high-density sites experienced an upregulation of genes involved in hormone, circulatory, and immune processes, and these gene expression patterns were correlated with yolk T levels and aggression. Genes implicated in neural development were additionally downregulated in embryos from high-density sites. These data highlight how early neurogenomic processes may be affected by the maternal social environment, giving rise to phenotypic plasticity in offspring.


Subject(s)
Egg Yolk , Social Environment , Swallows , Testosterone , Animals , Testosterone/metabolism , Female , Egg Yolk/metabolism , Egg Yolk/chemistry , Swallows/genetics , Swallows/metabolism , Aggression/physiology , Gene Expression Regulation, Developmental , Embryo, Nonmammalian/metabolism , Brain/metabolism
10.
Proc Natl Acad Sci U S A ; 121(22): e2316459121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38781215

ABSTRACT

Adult male animals typically court and attempt to mate with females, while attacking other males. Emerging evidence from mice indicates that neurons expressing the estrogen receptor ESR1 in behaviorally relevant brain regions play a central role in mediating these mutually exclusive behavioral responses to conspecifics. However, the findings in mice are unlikely to apply to vertebrates in general because, in many species other than rodents and some birds, androgens-rather than estrogens-have been implicated in male behaviors. Here, we report that male medaka (Oryzias latipes) lacking one of the two androgen receptor subtypes (Ara) are less aggressive toward other males and instead actively court them, while those lacking the other subtype (Arb) are less motivated to mate with females and conversely attack them. These findings indicate that, in male medaka, the Ara- and Arb-mediated androgen signaling pathways facilitate appropriate behavioral responses, while simultaneously suppressing inappropriate responses, to males and females, respectively. Notably, males lacking either receptor retain the ability to discriminate the sex of conspecifics, suggesting a defect in the subsequent decision-making process to mate or fight. We further show that Ara and Arb are expressed in intermingled but largely distinct populations of neurons, and stimulate the expression of different behaviorally relevant genes including galanin and vasotocin, respectively. Collectively, our results demonstrate that male teleosts make adaptive decisions to mate or fight as a result of the activation of one of two complementary androgen signaling pathways, depending on the sex of the conspecific that they encounter.


Subject(s)
Androgens , Oryzias , Receptors, Androgen , Sexual Behavior, Animal , Signal Transduction , Animals , Male , Oryzias/metabolism , Oryzias/physiology , Sexual Behavior, Animal/physiology , Female , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , Androgens/metabolism , Aggression/physiology
11.
Neurobiol Learn Mem ; 212: 107939, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38762038

ABSTRACT

Recognizing and remembering another individual in a social context could be beneficial for individual fitness. Especially in agonistic encounters, remembering an opponent and the previous fight could allow for avoiding new conflicts. Considering this, we hypothesized that this type of social interaction forms a long-term recognition memory lasting several days. It has been shown that a second encounter 24 h later between the same pair of zebrafish males is resolved with lower levels of aggression. Here, we evaluated if this behavioral change could last for longer intervals and a putative mechanism associated with memory storage: the recruitment of NMDA receptors. We found that if a pair of zebrafish males fight and fight again 48 or 72 h later, they resolve the second encounter with lower levels of aggression. However, if opponents were exposed to MK-801 (NMDA receptor antagonist) immediately after the first encounter, they solved the second one with the same levels of aggression: that is, no reduction in aggressive behaviors was observed. These amnesic effect suggest the formation of a long-term social memory related to recognizing a particular opponent and/or the outcome and features of a previous fight.


Subject(s)
Aggression , Dizocilpine Maleate , Memory Consolidation , Memory, Long-Term , Zebrafish , Animals , Zebrafish/physiology , Male , Aggression/physiology , Aggression/drug effects , Memory Consolidation/physiology , Memory Consolidation/drug effects , Dizocilpine Maleate/pharmacology , Memory, Long-Term/physiology , Memory, Long-Term/drug effects , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Recognition, Psychology/physiology , Recognition, Psychology/drug effects , Social Behavior , Excitatory Amino Acid Antagonists/pharmacology , Behavior, Animal/drug effects , Behavior, Animal/physiology
12.
BMC Psychiatry ; 24(1): 335, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702695

ABSTRACT

OBJECTIVE: Alcohol withdrawal syndrome (AWS) is a complex condition associated with alcohol use disorder (AUD), characterized by significant variations in symptom severity among patients. The psychological and emotional symptoms accompanying AWS significantly contribute to withdrawal distress and relapse risk. Despite the importance of neural adaptation processes in AWS, limited genetic investigations have been conducted. This study primarily focuses on exploring the single and interaction effects of single-nucleotide polymorphisms in the ANK3 and ZNF804A genes on anxiety and aggression severity manifested in AWS. By examining genetic associations with withdrawal-related psychopathology, we ultimately aim to advance understanding the genetic underpinnings that modulate AWS severity. METHODS: The study involved 449 male patients diagnosed with alcohol use disorder. The Self-Rating Anxiety Scale (SAS) and Buss-Perry Aggression Questionnaire (BPAQ) were used to assess emotional and behavioral symptoms related to AWS. Genomic DNA was extracted from peripheral blood, and genotyping was performed using PCR. RESULTS: Single-gene analysis revealed that naturally occurring allelic variants in ANK3 rs10994336 (CC homozygous vs. T allele carriers) were associated with mood and behavioral symptoms related to AWS. Furthermore, the interaction between ANK3 and ZNF804A was significantly associated with the severity of psychiatric symptoms related to AWS, as indicated by MANOVA. Two-way ANOVA further demonstrated a significant interaction effect between ANK3 rs10994336 and ZNF804A rs7597593 on anxiety, physical aggression, verbal aggression, anger, and hostility. Hierarchical regression analyses confirmed these findings. Additionally, simple effects analysis and multiple comparisons revealed that carriers of the ANK3 rs10994336 T allele experienced more severe AWS, while the ZNF804A rs7597593 T allele appeared to provide protection against the risk associated with the ANK3 rs10994336 mutation. CONCLUSION: This study highlights the gene-gene interaction between ANK3 and ZNF804A, which plays a crucial role in modulating emotional and behavioral symptoms related to AWS. The ANK3 rs10994336 T allele is identified as a risk allele, while the ZNF804A rs7597593 T allele offers protection against the risk associated with the ANK3 rs10994336 mutation. These findings provide initial support for gene-gene interactions as an explanation for psychiatric risk, offering valuable insights into the pathophysiological mechanisms involved in AWS.


Subject(s)
Ankyrins , Kruppel-Like Transcription Factors , Polymorphism, Single Nucleotide , Humans , Male , Polymorphism, Single Nucleotide/genetics , Ankyrins/genetics , Adult , Kruppel-Like Transcription Factors/genetics , Middle Aged , Substance Withdrawal Syndrome/genetics , Substance Withdrawal Syndrome/psychology , Alcoholism/genetics , Alcoholism/psychology , Aggression/psychology , Aggression/physiology , Anxiety/genetics , Anxiety/psychology , Epistasis, Genetic , Behavioral Symptoms/genetics , Genetic Predisposition to Disease/genetics , Alleles
13.
Front Endocrinol (Lausanne) ; 15: 1363468, 2024.
Article in English | MEDLINE | ID: mdl-38808110

ABSTRACT

Social support is vital for mental and physical health and is linked to lower rates of disease and early mortality. Conversely, anti-social behavior can increase mortality risks, both for the initiator and target of the behavior. Chronic stress, which also can increase mortality, may serve as an important link between social behavior and healthy lifespan. There is a growing body of literature in both humans, and model organisms, that chronic social stress can result in more rapid telomere shortening, a measure of biological aging. Here we examine the role of anti-social behavior and social support on physiological markers of stress and aging in the social Japanese quail, Coturnix Japonica. Birds were maintained in groups for their entire lifespan, and longitudinal measures of antisocial behavior (aggressive agonistic behavior), social support (affiliative behavior), baseline corticosterone, change in telomere length, and lifespan were measured. We found quail in affiliative relationships both committed less and were the targets of less aggression compared to birds who were not in these relationships. In addition, birds displaying affiliative behavior had longer telomeres, and longer lifespans. Our work suggests a novel pathway by which social support may buffer against damage at the cellular level resulting in telomere protection and subsequent longer lifespans.


Subject(s)
Aging , Coturnix , Longevity , Social Behavior , Telomere , Animals , Coturnix/physiology , Female , Aging/physiology , Behavior, Animal , Feathers , Telomere Shortening , Aggression/physiology , Corticosterone/blood
14.
Neuroimage ; 294: 120645, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38734156

ABSTRACT

Aggressive adolescents tend to exhibit abnormal fear acquisition and extinction, and reactive aggressive adolescents are often more anxious. However, the relationship between fear generalization and reactive aggression (RA) remains unknown. According to Reactive-Proactive Aggression Questionnaire (RPQ) scores, 61 adolescents were divided into two groups, namely, a high RA group (N = 30) and a low aggression (LA) group (N = 31). All participants underwent three consecutive phases of the Pavlovian conditioning paradigm (i.e., habituation, acquisition, and generalization), and neural activation of the medial prefrontal cortex (mPFC) was assessed by functional near-infrared spectroscopy (fNIRS). The stimuli were ten circles with varying sizes, including two conditioned stimuli (CSs) and eight generalization stimuli (GSs). A scream at 85 dB served as the auditory unconditioned stimulus (US). The US expectancy ratings of both CSs and GSs were higher in the RA group than in the LA group. The fNIRS results showed that CSs and GSs evoked lower mPFC activation in the RA group compared to the LA group during fear generalization. These findings suggest that abnormalities in fear acquisition and generalization are prototypical dysregulations in adolescents with RA. They provide neurocognitive evidence for dysregulated fear learning in the mechanisms underlying adolescents with RA, highlighting the need to develop emotional regulation interventions for these individuals.


Subject(s)
Aggression , Conditioning, Classical , Fear , Generalization, Psychological , Prefrontal Cortex , Spectroscopy, Near-Infrared , Humans , Adolescent , Prefrontal Cortex/physiology , Prefrontal Cortex/diagnostic imaging , Fear/physiology , Male , Female , Conditioning, Classical/physiology , Generalization, Psychological/physiology , Aggression/physiology
15.
Int J Mol Sci ; 25(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731836

ABSTRACT

The process of domestication, despite its short duration as it compared with the time scale of the natural evolutionary process, has caused rapid and substantial changes in the phenotype of domestic animal species. Nonetheless, the genetic mechanisms underlying these changes remain poorly understood. The present study deals with an analysis of the transcriptomes from four brain regions of gray rats (Rattus norvegicus), serving as an experimental model object of domestication. We compared gene expression profiles in the hypothalamus, hippocampus, periaqueductal gray matter, and the midbrain tegmental region between tame domesticated and aggressive gray rats and revealed subdivisions of differentially expressed genes by principal components analysis that explain the main part of differentially gene expression variance. Functional analysis (in the DAVID (Database for Annotation, Visualization and Integrated Discovery) Bioinformatics Resources database) of the differentially expressed genes allowed us to identify and describe the key biological processes that can participate in the formation of the different behavioral patterns seen in the two groups of gray rats. Using the STRING- DB (search tool for recurring instances of neighboring genes) web service, we built a gene association network. The genes engaged in broad network interactions have been identified. Our study offers data on the genes whose expression levels change in response to artificial selection for behavior during animal domestication.


Subject(s)
Aggression , Brain , Animals , Rats , Brain/metabolism , Aggression/physiology , Transcriptome/genetics , Principal Component Analysis , Gene Expression Profiling/methods , Behavior, Animal , Domestication , Molecular Sequence Annotation , Male , Gene Regulatory Networks , Gene Expression Regulation
16.
Genesis ; 62(3): e23603, 2024 06.
Article in English | MEDLINE | ID: mdl-38738564

ABSTRACT

The vomeronasal organ (VNO) is a specialized chemoreceptive structure in many vertebrates that detects chemical stimuli, mostly pheromones, which often elicit innate behaviors such as mating and aggression. Previous studies in rodents have demonstrated that chemical stimuli are actively transported to the VNO via a blood vessel-based pumping mechanism, and this pumping mechanism is necessary for vomeronasal stimulation in behaving animals. However, the molecular mechanisms that regulate the vomeronasal pump remain mostly unknown. In this study, we observed a high level of expression of phosphodiesterase 5A (PDE5A) in the vomeronasal blood vessel of mice. We provided evidence to support the potential role of PDE5A in vomeronasal pump regulation. Local application of PDE5A inhibitors-sildenafil or tadalafil-to the vomeronasal organ (VNO) reduced stimulus delivery into the VNO, decreased the pheromone-induced activity of vomeronasal sensory neurons, and attenuated male-male aggressive behaviors. PDE5A is well known to play a role in regulating blood vessel tone in several organs. Our study advances our understanding of the molecular regulation of the vomeronasal pump.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 5 , Vomeronasal Organ , Animals , Vomeronasal Organ/metabolism , Mice , Cyclic Nucleotide Phosphodiesterases, Type 5/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 5/genetics , Male , Phosphodiesterase 5 Inhibitors/pharmacology , Tadalafil/pharmacology , Sildenafil Citrate/pharmacology , Pheromones/metabolism , Aggression/physiology , Female , Mice, Inbred C57BL
17.
Soc Cogn Affect Neurosci ; 19(1)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38727544

ABSTRACT

Research examining the purported association between violent gaming and aggression remains controversial due to concerns related to methodology, unclear neurocognitive mechanisms, and the failure to adequately consider the role of individual differences in susceptibility. To help address these concerns, we used fMRI and an emotional empathy task to examine whether acute and cumulative violent gaming exposure were associated with abnormalities in emotional empathy as a function of trait-empathy. Emotional empathy was targeted given its involvement in regulating not only aggression, but also other important social functions such as compassion and prosocial behaviour. We hypothesized that violent gaming exposure increases the risk of aberrant social behaviour by altering the aversive value of distress cues. Contrary to expectations, neither behavioural ratings nor empathy-related brain activity varied as a function of violent gaming exposure. Notably, however, activation patterns in somatosensory and motor cortices reflected an interaction between violent gaming exposure and trait empathy. Thus, our results are inconsistent with a straightforward relationship between violent gaming exposure and reduced empathy. Furthermore, they highlight the importance of considering both individual differences in susceptibility and other aspects of cognition related to social functioning to best inform public concern regarding safe gaming practices.


Subject(s)
Empathy , Magnetic Resonance Imaging , Video Games , Humans , Empathy/physiology , Video Games/psychology , Male , Magnetic Resonance Imaging/methods , Young Adult , Adult , Brain/physiology , Brain/diagnostic imaging , Female , Adolescent , Violence/psychology , Brain Mapping/methods , Aggression/physiology , Aggression/psychology , Emotions/physiology , Exposure to Violence/psychology , Cognition/physiology
18.
Peptides ; 177: 171223, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38626843

ABSTRACT

Oxytocin (OXT), a neuropeptide consisting of only nine amino acids, is synthesized in the paraventricular and supraoptic nuclei of the hypothalamus. Although OXT is best known for its role in lactation and parturition, recent research has shown that it also has a significant impact on social behaviors in mammals. However, a comprehensive review of this topic is still lacking. In this paper, we systematically reviewed the effects of OXT on social behavior in mammals. These effects of OXT from the perspective of five key behavioral dimensions were summarized: parental behavior, anxiety, aggression, attachment, and empathy. To date, researchers have agreed that OXT plays a positive regulatory role in a wide range of social behaviors, but there have been controversially reported results. In this review, we have provided a detailed panorama of the role of OXT in social behavior and, for the first time, delved into the underlying regulatory mechanisms, which may help better understand the multifaceted role of OXT. Levels of OXT in previous human studies were also summarized to provide insights for diagnosis of mental disorders.


Subject(s)
Oxytocin , Social Behavior , Oxytocin/metabolism , Oxytocin/physiology , Animals , Humans , Neuropeptides/metabolism , Mammals/metabolism , Anxiety/metabolism , Anxiety/psychology , Aggression/physiology , Empathy/physiology , Female , Maternal Behavior/physiology
19.
Horm Behav ; 162: 105537, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38582062

ABSTRACT

Despite how widespread female aggression is across the animal kingdom, there remains much unknown about its neuroendocrine mechanisms, especially in females that engage in aggression outside the peripartum period. Although the impact of aggressive experience on steroid hormone responses have been described, little is known about the impact of these experiences on female behavior or the subsequent neuropeptide responses to performing aggression. In this study, we compared behavioral responses in both male and female adult California mice based on if they had 0, 1, or 3 aggressive encounters using a resident intruder paradigm. We measured how arginine vasopressin and oxytocin cells in the paraventricular nucleus responded to aggression using c-fos immunohistochemistry. We saw that both sexes disengaged from intruders with repeated aggressive encounters, but that on the final day of testing females were more likely to freeze when they encountered intruders compared to no aggression controls - which was not significant in males. Finally, we saw that percent of arginine vasopressin and c-fos co-localizations in the posterior region of the paraventricular nucleus increased in males who fought compared to no aggression controls. No difference was observed in females. Overall, there is evidence that engaging in aggression induces stress responses in both sexes, and that females may be more sensitive to the effects of fighting.


Subject(s)
Aggression , Arginine Vasopressin , Oxytocin , Paraventricular Hypothalamic Nucleus , Proto-Oncogene Proteins c-fos , Sex Characteristics , Animals , Female , Male , Aggression/physiology , Arginine Vasopressin/metabolism , Mice , Proto-Oncogene Proteins c-fos/metabolism , Oxytocin/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Behavior, Animal/physiology
20.
Horm Behav ; 162: 105539, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38608380

ABSTRACT

Individualized social niches arise in social groups, resulting in divergent social behavior profiles among group members. During sensitive life phases, the individualized social niche can profoundly impact the development of social behavior and associated phenotypes such as hormone (e.g. cortisol) concentrations. Focusing on adolescence, we investigated the relationship between the individualized social niche, social behavior, and cortisol concentrations (baseline and responsiveness) in female guinea pigs. Females were pair-housed in early adolescence (initial social pair formation), and a social niche transition was induced after six weeks by replacing the partner with either a larger or smaller female. Regarding social behavior, dominance status was associated with aggression in both the initial social pairs and after the social niche transition, and the results suggest that aggression was rapidly and completely reshaped after the social niche transition. Meanwhile, submissive behavior was rapidly reshaped after the social niche transition, but this was incomplete. The dominance status attained in the initial social pair affected the extent of submissive behavior after the social niche transition, and this effect was still detected three weeks after the social niche transition. Regarding cortisol concentrations, higher baseline cortisol concentrations were measured in dominant females in the initial social pairs. After the social niche transition, cortisol responsiveness significantly increased for the females paired with a larger, older female relative to those paired with a smaller, younger female. These findings demonstrate that the social niche during adolescence plays a significant role in shaping behavior and hormone concentrations in females.


Subject(s)
Hydrocortisone , Social Behavior , Social Dominance , Animals , Female , Hydrocortisone/metabolism , Guinea Pigs , Aggression/physiology , Behavior, Animal/physiology , Social Environment
SELECTION OF CITATIONS
SEARCH DETAIL
...