Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.687
Filter
1.
Parasitol Res ; 123(9): 315, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39227462

ABSTRACT

Mosquito-borne diseases, such as malaria, dengue fever, and the Zika virus, pose significant global health challenges, affecting millions annually. Due to increasing insecticide resistance, there is a growing interest in natural alternatives for mosquito control. Lemongrass essential oil, derived from Cymbopogon citratus, has shown promising repellent and larvicidal properties against various mosquito species. In this study, we investigated the larvicidal effect of lemongrass oil and its major compounds on Anopheles sinensis, the primary malaria vector in China. GC-MS analysis identified the major compounds of lemongrass oil as ( +)-citronellal (35.60%), geraniol (21.84%), and citronellol (13.88%). Lemongrass oil showed larvicidal activity against An. sinensis larvae, with an LC50 value of 119.20 ± 3.81 mg/L. Among the major components, citronellol had the lowest LC50 value of 42.76 ± 3.18 mg/L. Moreover, citronellol demonstrated inhibitory effects on acetylcholinesterase (AChE) activity in An. sinensis larvae, assessed by homogenizing larvae at different time points following treatment. Molecular docking studies further elucidated the interaction between citronellol and AChE, revealing the formation of hydrogen bonds and Pi-Sigma bonds. Aromatic amino acid residues such as Tyr71, Trp83, Tyr370, and Tyr374 played a pivotal role in these interactions. These findings may contribute to understanding lemongrass oil's larvicidal activity against An. sinensis and the mechanisms underlying these effects.


Subject(s)
Acyclic Monoterpenes , Anopheles , Cholinesterase Inhibitors , Insecticides , Larva , Oils, Volatile , Plant Oils , Animals , Anopheles/drug effects , Anopheles/enzymology , Larva/drug effects , Insecticides/pharmacology , Insecticides/chemistry , Acyclic Monoterpenes/pharmacology , Plant Oils/pharmacology , Plant Oils/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Cymbopogon/chemistry , Molecular Docking Simulation , Terpenes/pharmacology , Terpenes/chemistry , Gas Chromatography-Mass Spectrometry , China , Acetylcholinesterase/metabolism , Mosquito Vectors/drug effects , Monoterpenes/pharmacology , Monoterpenes/chemistry , Aldehydes/pharmacology , Aldehydes/chemistry
2.
Carbohydr Polym ; 344: 122524, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39218547

ABSTRACT

The paper reports new multifunctional plant biostimulant formulations obtained via in situ hydrogelation of chitosan with salicylaldehyde in the presence of a mimetic naphthalimide-based strigolactone, in specific conditions. Various analytical techniques (FTIR, 1H NMR, SEM, POM, TGA, WRXD) were employed to understand the particularities of the hydrogelation mechanism and its consequences on the formulations' properties. Further, in order to evaluate their potential for the targeted application, the swelling in media of pH characteristic for different soils, water holding capacity, soil biodegradability, in vitro release of the strigolactone mimic and impact on tomatoes plant growth in laboratory conditions were investigated and discussed. It was found that the strigolactone mimic has the ability to bond to the chitosan matrix via physical forces, favoring a prolonged release. Moreover, the combination of chitosan with the strigolactone mimic in an optimal mass ratio triggered a synergistic effect on the plant growth, up to 4 times higher compared to the neat control soil.


Subject(s)
Chitosan , Lactones , Solanum lycopersicum , Chitosan/chemistry , Lactones/chemistry , Solanum lycopersicum/drug effects , Solanum lycopersicum/growth & development , Aldehydes/chemistry , Plant Growth Regulators/pharmacology , Plant Growth Regulators/chemistry , Hydrogels/chemistry , Heterocyclic Compounds, 3-Ring/chemistry , Hydrogen-Ion Concentration , Soil/chemistry
3.
Food Res Int ; 194: 114927, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39232539

ABSTRACT

In this study, the potential mechanism of aroma loss in non-smoked bacon due to excessive hot air drying (beyond 24 h) was investigated, focusing on protein conformational changes and the inhibition of heme protein-mediated lipid oxidation by oleic acid. The results showed that prolonged hot-air drying caused a stretching of the myofibrillar protein (MP) conformation in bacon before 36 h, leading to an increase in reactive sulfhydryl groups, surface hydrophobicity, and the exposure of additional hydrophobic sites. Consequently, the binding ability of MP to the eight key aroma compounds (hexanal, 1-octen-3-ol, (E)-2-nonenal, 3-methyl-butanoic acid, 2-undecenal, (E, E)-2,4-decadienal, 2,3-octanedione, and dihydro-5-pentyl-2(3H)-furanone) was enhanced, resulting in their retention. On the other hand, a sustained increase in oleic acid levels has been demonstrated to effectively inhibit heme protein-mediated lipid oxidation and the formation of these key aroma compounds. Using lipidomic techniques, 30 lipid molecules were identified as potential precursors of oleic acid during the bacon drying process. Among these precursors, triglycerides (16:0/18:0/18:1) may be the most significant.


Subject(s)
Hot Temperature , Odorants , Odorants/analysis , Desiccation/methods , Meat Products/analysis , Oleic Acid/chemistry , Food Handling/methods , Hydrophobic and Hydrophilic Interactions , Protein Conformation , Volatile Organic Compounds/analysis , Volatile Organic Compounds/chemistry , Oxidation-Reduction , Aldehydes/analysis , Aldehydes/chemistry
4.
Molecules ; 29(15)2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39125078

ABSTRACT

It has been reported that the modification of immobilized glyoxyl-ficin with aldehyde dextran can promote steric hindrances that greatly reduce the activity of the immobilized protease against hemoglobin, while the protease still maintained a reasonable level of activity against casein. In this paper, we studied if this effect may be different depending on the amount of ficin loaded on the support. For this purpose, both the moderately loaded and the overloaded glyoxyl-ficin biocatalysts were prepared and modified with aldehyde dextran. While the moderately loaded biocatalyst had a significantly reduced activity, mainly against hemoglobin, the activity of the overloaded biocatalyst was almost maintained. This suggests that aldehyde dextran was able to modify areas of the moderately loaded enzyme that were not available when the enzyme was overloaded. This modification promoted a significant increase in biocatalyst stability for both biocatalysts, but the stability was higher for the overloaded biocatalyst (perhaps due to a combination of inter- and intramolecular crosslinking).


Subject(s)
Aldehydes , Dextrans , Enzymes, Immobilized , Ficain , Dextrans/chemistry , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Ficain/chemistry , Ficain/metabolism , Aldehydes/chemistry , Hemoglobins/chemistry , Hemoglobins/metabolism , Biocatalysis , Substrate Specificity , Caseins/chemistry , Caseins/metabolism , Enzyme Stability
5.
Int J Mol Sci ; 25(15)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39125898

ABSTRACT

The first example of applying salicylaldehyde derivatives, as well as coumarin with the formyl group at the C8 position in its structure, as carbonyl partners in a three-component Passerini reaction, is presented. As a result of research on the conditions of the Passerini reaction, the important role of the hydroxyl group in the salicylaldehyde used in the course of the multicomponent reaction was revealed. When an aldehyde with an unprotected hydroxyl group is used, only two-component α-hydroxy amide products are obtained. In contrast, the use of acylated aldehyde results in three-component α-acyloxy amide products with high efficiency. The developed protocol gives access to structurally diversified peptidomimetics with good yield. The compounds were also evaluated as antimicrobial agents against selected strains of nosocomial pathogenic bacteria. The structure-activity relationship revealed that inhibitory activity is strongly related to the presence of the trifluoromethyl group (CF3) or the methyl group at the C4 position in an unsaturated lactone ring of the coumarin scaffold. MIC and MBC studies were carried out on eight selected pathogenic bacteria strains (Gram-positive pathogenic Staphylococcus aureus strain (ATCC 23235), as well as on Gram-negative E. coli (K12 (ATCC 25404), R2 (ATCC 39544), R3 (ATCC 11775), and R4 (ATCC 39543)), Acinetobacter baumannii (ATCC 17978), Pseudomonas aeruginosa (ATCC 15442), and Enterobacter cloacae (ATCC 49141) have shown that the tested compounds show a strong bactericidal effect at low concentrations. Among all agents investigated, five exhibit higher antimicrobial activity than those observed for commonly used antibiotics. It should be noted that all the compounds tested showed very high activity against S. aureus, which is the main source of nosocomial infections that cause numerous fatalities. Additionally, the cytotoxicity of sixteen derivatives was measured with the use of the MTT test on BALB/c3T3 mouse fibroblast cell lines. The cytotoxicity studies revealed that the tested substances exert a similar or lower effect on cell proliferation than that observed for commonly used antibiotics within the range of therapeutic doses. A parallel MTT assay using ciprofloxacin, bleomycin, and cloxacillin showed that these antibiotics are more cytotoxic when tested in mammalian cells, and cell viability is in the range of 85.0-89.9%. Furthermore, we have shown that the studied coumarin-based peptidomimetics, depending on their structural characteristics, are nonselective and act efficiently against various Gram-positive and Gram-negative pathogens, which is of great importance for hospitalised patients.


Subject(s)
Anti-Bacterial Agents , Microbial Sensitivity Tests , Peptidomimetics , Peptidomimetics/pharmacology , Peptidomimetics/chemistry , Peptidomimetics/chemical synthesis , Animals , Mice , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Structure-Activity Relationship , Coumarins/pharmacology , Coumarins/chemistry , Coumarins/chemical synthesis , Staphylococcus aureus/drug effects , Aldehydes/chemistry , Aldehydes/pharmacology , Cross Infection/microbiology , Cross Infection/drug therapy
6.
Chem Commun (Camb) ; 60(69): 9238-9241, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39114958

ABSTRACT

A one-step, on-tissue chemical derivatisation method for MALDI mass spectrometry imaging was found to improve the detectability of aldehydes and ketones by charge-tagging. The developed reactive matrices, containing a UV-chromophore, ionisable moiety and hydrazide group, showed an equal or higher detection efficiency than Girard's reagent P, enabling improved imaging of brain metabolites without the need for additional co-matrices.


Subject(s)
Aldehydes , Hydrazines , Ketones , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Aldehydes/chemistry , Aldehydes/analysis , Ketones/chemistry , Ketones/analysis , Hydrazines/chemistry , Hydrazines/analysis , Animals , Brain/diagnostic imaging , Brain/metabolism , Mice
7.
Carbohydr Polym ; 343: 122455, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39174092

ABSTRACT

Polysaccharides like hyaluronan (HA) and chondroitin sulfate (CS) are native of the brain's extracellular matrix crucial for myelination and brain maturation. Despite extensive research on HA and CS as drug delivery systems (DDS), their high water solubility limits their application as drug carriers. This study introduces an injectable DDS using aldehyde-modified hyaluronic acid (HAOX) hydrogel containing polyelectrolyte complexes (PEC) formed with calcium, gelatin, and either CS or aldehyde-modified CS (CSOX) to deliver minocycline for Multiple Sclerosis therapy. PECs with CSOX enable covalent crosslinking to HAOX, creating immobilized PECs (HAOX_PECOX), while those with CS remain unbound (HAOX_PECS). The in situ forming DDS can be administered via a 20 G needle, with rapid gelation preventing premature leakage. The system integrates into an implanted device for minocycline release through either Fickian or anomalous diffusion, depending on PEC immobilization. HAOX_PECOX reduced burst release by 88 %, with a duration of 127 h for 50 % release. The DDS exhibited an elastic modulus of 3800 Pa and a low swelling ratio (0-1 %), enabling precise control of minocycline release kinetics. Released minocycline reduced IL-6 secretion in the Whole Blood Monocytes Activation Test, suggesting that DDS formation may not alter the biological activity of the loaded drug.


Subject(s)
Chondroitin Sulfates , Drug Carriers , Gelatin , Hyaluronic Acid , Hydrogels , Minocycline , Polyelectrolytes , Hyaluronic Acid/chemistry , Gelatin/chemistry , Chondroitin Sulfates/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Minocycline/chemistry , Minocycline/pharmacology , Minocycline/administration & dosage , Polyelectrolytes/chemistry , Humans , Drug Carriers/chemistry , Drug Liberation , Aldehydes/chemistry , Animals , Drug Delivery Systems/methods , Interleukin-6/metabolism
8.
Dalton Trans ; 53(33): 13871-13889, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39091221

ABSTRACT

Piperazine is an important functional unit of many clinically approved drugs, including chemotherapeutic agents. In the current study, methyl piperazine was incorporated and eight salicylaldehyde-derived piperazine-functionalized hydrazone ONN-donor ligands (L) and their Pt(II) complexes (L-PtCl) were prepared. The structures of all these ligands (L1-L8) and Pt(II) complexes (C1-C8) were determined using 1H and 13C NMR, UV-vis, FT-IR and HR-ESI MS analyses, whereas the structures of C1, C5, C6, C7 and C8 were determined in the solid state using single crystal X-ray diffraction analysis. Solution state stabilities of C3, C4, C5 and C6 were determined via time-dependent UV-vis spectroscopy. All these complexes (C1-C8) were studied for their anticancer effect in pancreatic ductal adenocarcinoma cells, including BxPC3, MIAPaCa-2 and PANC1 cells. C1-C8 displayed a potential cytotoxic effect in all these cancer cells, among which C5, C6 and C8 showed the strongest inhibitory effect in comparison with standard chemotherapeutic agents, including 5-fluorouracil (5-FU), cisplatin (CP), oxaliplatin and doxorubicin (DOX). C5, C6 and C8 suppressed the growth of pancreatic cancer cells in a dose-dependent manner. Moreover, C5, C6 and C8 inhibited clonogenic potential and invasion ability and induced apoptosis in PANC1 cells. Importantly, C5, C6 and C8 synergized the anticancer effect with PARP inhibitors, including olaparib, veliparib and niraparib, in pancreatic cancer cells, thus suggesting an important role of C5, C6 and C8 in induction of apoptosis in combination with PARP inhibitors. C5 combined with PARP inhibitors induced caspase3/7 activity and suppressed ATP production. Mechanistically, C5, C6 and C8 inhibited EZH2 protein expression to suppress EZH2-dependent tumorigenesis. Overall, these results highlighted the importance of these piperazine-functionalized Pt(II) complexes as potential anticancer agents to suppress pancreatic ductal adenocarcinoma tumorigenesis by targeting the EZH2-dependent pathway.


Subject(s)
Aldehydes , Antineoplastic Agents , Apoptosis , Enhancer of Zeste Homolog 2 Protein , Hydrazones , Pancreatic Neoplasms , Piperazine , Poly(ADP-ribose) Polymerase Inhibitors , Apoptosis/drug effects , Humans , Hydrazones/chemistry , Hydrazones/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Ligands , Aldehydes/chemistry , Aldehydes/pharmacology , Piperazine/chemistry , Piperazine/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/chemistry , Poly(ADP-ribose) Polymerase Inhibitors/chemical synthesis , Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors , Enhancer of Zeste Homolog 2 Protein/metabolism , Cell Line, Tumor , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/metabolism , Cell Proliferation/drug effects , Piperazines/pharmacology , Piperazines/chemistry , Drug Screening Assays, Antitumor , Drug Synergism , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Organoplatinum Compounds/pharmacology , Organoplatinum Compounds/chemistry , Organoplatinum Compounds/chemical synthesis
9.
J Am Chem Soc ; 146(35): 24233-24237, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39177126

ABSTRACT

The development of electrophilic ligands that rapidly modify specific lysine residues remains a major challenge. Salicylaldehyde-based inhibitors have been reported to form stable imine adducts with the catalytic lysine of protein kinases. However, the targeted lysine in these examples is buried in a hydrophobic environment. A key unanswered question is whether this strategy can be applied to a lysine on the surface of a protein, where rapid hydrolysis of the resulting salicylaldimine is more likely. Here, we describe a series of aminomethyl-substituted salicylaldehydes that target a fully solvated lysine on the surface of the ATPase domain of Hsp90. By systematically varying the orientation of the salicylaldehyde, we discovered ligands with long residence times, the best of which engages Hsp90 in a quasi-irreversible manner. Crystallographic analysis revealed a daisy-chain network of intramolecular hydrogen bonds in which the salicylaldimine is locked into position by the adjacent piperidine linker. This study highlights the potential of aminomethyl salicylaldehydes to generate conformationally stabilized, hydrolysis-resistant imines, even when the targeted lysine is far from the ligand binding site and is exposed to bulk solvent.


Subject(s)
Aldehydes , Hydrogen Bonding , Lysine , Aldehydes/chemistry , Lysine/chemistry , Models, Molecular , Molecular Structure , Ligands
10.
Amino Acids ; 56(1): 52, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39207552

ABSTRACT

Aldehyde dehydrogenases (ALDHs) represent a superfamily of enzymes, which oxidize aldehydes to the corresponding acids. Certain families, namely ALDH9 and ALDH10, are best active with ω-aminoaldehydes arising from the metabolism of polyamines such as 3-aminopropionaldehyde and 4-aminobutyraldehyde. Plant ALDH10s show broad specificity and accept many different aldehydes (aliphatic, aromatic and heterocyclic) as substrates. This work involved the above-mentioned aminoaldehydes acylated with dicarboxylic acids, phenylalanine, and tyrosine. The resulting products were then examined with native ALDH10 from pea and recombinant ALDH7s from pea and maize. This investigation aimed to find a common efficient substrate for the two plant ALDH families. One of the best natural substrates of ALDH7s is aminoadipic semialdehyde carrying a carboxylic group opposite the aldehyde group. The substrate properties of the new compounds were demonstrated by mass spectrometry of the reaction mixtures, spectrophotometric assays and molecular docking. The N-carboxyacyl derivatives were good substrates of pea ALDH10 but were only weakly oxidized by the two plant ALDH7s. The N-phenylalanyl and N-tyrosyl derivatives of 3-aminopropionaldehyde were good substrates of pea and maize ALDH7. Particularly the former compound was converted very efficiently (based on the kcat/Km ratio), but it was only weakly oxidized by pea ALDH10. Although no compound exhibited the same level of substrate properties for both ALDH families, we show that these enzymes may possess more common substrates than expected.


Subject(s)
Aldehyde Dehydrogenase , Aldehydes , Molecular Docking Simulation , Pisum sativum , Zea mays , Substrate Specificity , Zea mays/enzymology , Aldehydes/metabolism , Aldehydes/chemistry , Aldehyde Dehydrogenase/metabolism , Aldehyde Dehydrogenase/chemistry , Aldehyde Dehydrogenase/genetics , Pisum sativum/enzymology , Plant Proteins/metabolism , Plant Proteins/chemistry , Plant Proteins/genetics , Oxidation-Reduction , Kinetics
11.
J Am Chem Soc ; 146(35): 24330-24347, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39163519

ABSTRACT

Dynamic hydrogels are attractive platforms for tissue engineering and regenerative medicine due to their ability to mimic key extracellular matrix (ECM) mechanical properties like strain-stiffening and stress relaxation while enabling enhanced processing characteristics like injectability, 3D printing, and self-healing. Systems based on imine-type dynamic covalent chemistry (DCvC) have become increasingly popular. However, most reported polymers comprising aldehyde groups are based on either end-group-modified synthetic or side-chain-modified natural polymers; synthetic versions of side-chain-modified polymers are noticeably absent. To facilitate access to new classes of dynamic hydrogels, we report the straightforward synthesis of a water-soluble copolymer with a tunable fraction of pendant aldehyde groups (12-64%) using controlled radical polymerization and their formation into hydrogel biomaterials with dynamic cross-links. We found the polymer synthesis to be well-controlled with the determined reactivity ratios consistent with a blocky gradient microarchitecture. Subsequently, we observed fast gelation kinetics with imine-type cross-linking. We were able to vary hydrogel stiffness from ≈2 to 20 kPa, tune the onset of strain-stiffening toward a biologically relevant regime (σc ≈ 10 Pa), and demonstrate cytocompatibility using human dermal fibroblasts. Moreover, to begin to mimic the dynamic biochemical nature of the native ECM, we highlight the potential for temporal modulation of ligands in our system to demonstrate ligand displacement along the copolymer backbone via competitive binding. The combination of highly tunable composition, stiffness, and strain-stiffening, in conjunction with spatiotemporal control of functionality, positions these cytocompatible copolymers as a powerful platform for the rational design of next-generation synthetic biomaterials.


Subject(s)
Aldehydes , Biocompatible Materials , Hydrogels , Polymers , Hydrogels/chemistry , Hydrogels/chemical synthesis , Biocompatible Materials/chemistry , Biocompatible Materials/chemical synthesis , Ligands , Aldehydes/chemistry , Polymers/chemistry , Polymers/chemical synthesis , Humans
12.
Food Chem ; 460(Pt 2): 140564, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39089015

ABSTRACT

Eucommia ulmoides, a plant native to China, is valued for its medicinal properties and has applications in food, health products, and traditional Chinese medicine. Processed Eucommiae Cortex (EC) has historically been a highly valued medicine. Ancient doctors had ample experience processing EC, especially with ginger juice, as documented in traditional Chinese medical texts. The combination of EC and ginger juice helps release and transform the active ingredients, strengthening the medicine's effectiveness and improving its taste and shelf life. However, the lack of quality control standards for Ginger-Eucommiae Cortex (G-EC), processed from EC and ginger, presents challenges for its industrial and clinical use. This study optimized G-EC processing using the CRITIC and Box-Behnken methods. Metabolomics showed 517 chemical changes between raw and processed G-EC, particularly an increase in coniferyl aldehyde (CFA). Explainable artificial intelligence techniques revealed the feasibility of using color to CFA content, providing insights into quality indicators.


Subject(s)
Artificial Intelligence , Eucommiaceae , Metabolomics , Eucommiaceae/chemistry , Eucommiaceae/metabolism , Color , Aldehydes/analysis , Aldehydes/metabolism , Aldehydes/chemistry , Food Handling , Plant Extracts/chemistry , Plant Extracts/metabolism , Zingiber officinale/chemistry , Zingiber officinale/metabolism
13.
Int J Biol Macromol ; 277(Pt 3): 134487, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39102910

ABSTRACT

Ficin has been immobilized at full loading on glyoxyl agarose beads. Then, ficin was blocked with 2,2'-dipyridyldisulfide. To be effective, the modification must be performed in the presence of 0.5 M urea, as the enzyme was not inhibited under standard conditions, very likely because the catalytic Cys was not fully exposed to the medium. Activity could be fully recovered by incubation with 1 M mercaptoethanol. This biocatalyst could hydrolyze hemoglobin and casein. The objective of this paper was to increase the enzyme specificity versus small proteins by generating steric hindrances to the access of large proteins. The step by step blocking via ionic exchange of the biocatalyst with aminated bovine serum albumin (BSA), aldehyde dextran and a second layer of aminated BSA produced a biocatalyst that maintained its activity versus small synthetic substrates, increased the biocatalyst stability, while reduced its activity to over 50 % versus casein. Interestingly, this treatment almost fully annulled the activity versus hemoglobin, more effectively at 37 °C than at 55 °C. The biocatalyst could be reused 5 times without changes in activity. The changes could be caused by steric hindrances, but it cannot be discarded some changes in enzyme sequence specificity caused by the modifications.


Subject(s)
Caseins , Dextrans , Enzymes, Immobilized , Ficain , Hemoglobins , Hemoglobins/chemistry , Hemoglobins/metabolism , Caseins/chemistry , Caseins/metabolism , Dextrans/chemistry , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Ficain/chemistry , Ficain/metabolism , Substrate Specificity , Cattle , Animals , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/metabolism , Sepharose/chemistry , Aldehydes/chemistry , Aldehydes/metabolism , Enzyme Stability , Glyoxylates
14.
Food Chem ; 460(Pt 2): 140637, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39111139

ABSTRACT

This study aimed to explore the potential of a fermentation technology to reduce off-flavour perception and its underlying mechanisms. Results revealed that yeast fermentation (YF) significantly ameliorated the off-flavour of pig liver (p < 0.05). Specifically, YF pre-treatment decreased the relative abundance of α-helix and fluorescence intensity while increasing the surface hydrophobicity and SS level and loosening the microstructure of myofibrillar proteins (MPs) in pig liver. Additionally, the appropriate fermentation treatments enhanced the MP-aldehyde binding capacity by 0.25-1.30 times, demonstrating that YF-induced conformational modifications in pig liver proteins made them more prone to interacting with characteristic aldehydes. Moreover, molecular docking results confirmed that hydrophobic interactions are the primary drivers of MP-aldehyde binding. These findings suggest that YF technology holds immense promise for modulating off-flavour perception in liver products by altering protein conformation.


Subject(s)
Aldehydes , Fermentation , Liver , Saccharomyces cerevisiae , Animals , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/chemistry , Swine , Liver/metabolism , Liver/chemistry , Aldehydes/metabolism , Aldehydes/chemistry , Molecular Docking Simulation , Protein Conformation , Hydrophobic and Hydrophilic Interactions
15.
Nat Commun ; 15(1): 5737, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982157

ABSTRACT

Exploring the promiscuity of native enzymes presents a promising strategy for expanding their synthetic applications, particularly for catalyzing challenging reactions in non-native contexts. In this study, we explore the promiscuous potential of old yellow enzymes (OYEs) to facilitate the Morita-Baylis-Hillman reaction (MBH reaction), leveraging substrate similarities between MBH reaction and reduction reaction. Using mass spectrometry and spectroscopic techniques, we confirm promiscuity of GkOYE in both MBH and reduction reactions. By blocking H- and H+ transfer pathways, we engineer GkOYE.8, which loses its reduction ability but enhances its MBH activity. The structural basis of MBH reaction catalyzed by GkOYE.8 is obtained through mutation studies and kinetic simulations. Furthermore, enantiocomplementary mutants GkOYE.11 and GkOYE.13 are obtained by directed evolution, exhibiting the ability to accept various aromatic aldehydes and alkenes as substrates. This study demonstrates the potential of leveraging substrate similarities to unlock enzyme functionalities, enabling the catalysis of new-to-nature reactions.


Subject(s)
Biocatalysis , Substrate Specificity , Kinetics , Aldehydes/metabolism , Aldehydes/chemistry , Catalysis , Mutation , Alkenes/metabolism , Alkenes/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Protein Engineering
16.
Anal Chim Acta ; 1318: 342932, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39067919

ABSTRACT

Recently, various biosensors based on odorant-binding proteins (OBPs) were developed for the detection of odorants and pheromones. However, important data gaps exist regarding the sensitive and selective detection of aldehydes with various carbon numbers. In this work, an OBP2a-based electrochemical impedance spectroscopy (EIS) biosensor was developed by immobilizing OBP2a on a gold interdigital electrode, and was characterized by EIS and atomic force microscopy. EIS responses showed the OBP2a-based biosensor was highly sensitive to citronellal, lily aldehyde, octanal, and decanal (detection limit of 10-11 mol/L), and was selective towards aldehydes compared with interfering odorants such as small-molecule alcohols and fatty acids (selectivity coefficients lower than 0.15). Moreover, the OBP2a-based biosensor exhibited high repeatability (relative standard deviation: 1.6%-9.1 %, n = 3 for each odorant), stability (NIC declined by 3.6 % on 6th day), and recovery (91.2%-96.6 % on three real samples). More specifically, the sensitivity of the biosensor to aldehydes was positively correlated to the molecular weight and the heterocyclic molecule structure of the odorants. These results proved the availability and the potential usage of the OBP2a-based EIS biosensor for the rapid and sensitive detection of aldehydes in aspects such as medical diagnostics, food and favor analysis, and environmental monitoring.


Subject(s)
Aldehydes , Biosensing Techniques , Receptors, Odorant , Biosensing Techniques/methods , Aldehydes/chemistry , Aldehydes/analysis , Receptors, Odorant/chemistry , Receptors, Odorant/metabolism , Electrochemical Techniques , Electrodes , Limit of Detection , Odorants/analysis , Gold/chemistry , Dielectric Spectroscopy
17.
Dalton Trans ; 53(32): 13503-13514, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39072444

ABSTRACT

Tris(pyrazolyl)methane (tpm), 2,2,2-tris(pyrazolyl)ethanol (tpmOH) and its esterification derivatives with ibuprofen and flurbiprofen (tpmIBU and tpmFLU) were used as ligands to obtain complexes of the type [Fe(tpmX)2]Cl2 (1-4). The tpmIBU and tpmFLU ligands and corresponding complexes 3 and 4 were characterized by IR and multinuclear NMR spectroscopy, and the structure of tpmIBU was elucidated by single crystal X-ray diffraction. Complexes 1-4 were also assessed for their behaviour in aqueous media (solubility in D2O, octanol/water partition coefficient, stability in physiological-like conditions). The antiproliferative activity of ligands and complexes was determined on A2780, A2780cis and A549 cancer cell lines and the non-cancerous HEK 293T and BJ cell lines. The ligands and complexes were investigated for their ability to inhibit COX-2 (cyclooxygenase) and HNE (4-hydroxynonenal) enzymes. Complexes 3 and 4 exhibited cytotoxicity that may be attributed predominantly to their bioactive fragments, while DNA binding and enhancement of ROS production do not appear to play any significant role.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal , Antineoplastic Agents , Coordination Complexes , Pyrazoles , Humans , Ligands , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrazoles/chemical synthesis , Cell Proliferation/drug effects , Cell Line, Tumor , Ferrous Compounds/chemistry , Ferrous Compounds/pharmacology , Methane/chemistry , Methane/analogs & derivatives , Methane/pharmacology , Drug Screening Assays, Antitumor , Cyclooxygenase 2/metabolism , Aldehydes/chemistry , Aldehydes/pharmacology , Reactive Oxygen Species/metabolism , Molecular Structure , Ibuprofen/chemistry , Ibuprofen/pharmacology , Models, Molecular
18.
Chem Res Toxicol ; 37(8): 1306-1314, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39066735

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the dysfunction and death of motor neurons through multifactorial mechanisms that remain unclear. ALS has been recognized as a multisystemic disease, and the potential role of skeletal muscle in disease progression has been investigated. Reactive aldehydes formed as secondary lipid peroxidation products in the redox processes react with biomolecules, such as DNA, proteins, and amino acids, resulting in cytotoxic effects. 4-Hydroxy-2-nonenal (HNE) levels are elevated in the spinal cord motor neurons of ALS patients, and HNE-modified proteins have been identified in the spinal cord tissue of an ALS transgenic mice model, suggesting that reactive aldehydes can contribute to motor neuron degeneration in ALS. One biological pathway of aldehyde detoxification involves conjugation with glutathione (GSH) or carnosine (Car). Here, the detection and quantification of Car, GSH, GSSG (glutathione disulfide), and the corresponding adducts with HNE, Car-HNE, and GS-HNE, were performed in muscle and liver tissues of a hSOD1G93A ALS rat model by reverse-phase high-performance liquid chromatography coupled to electrospray ion trap tandem mass spectrometry in the selected reaction monitoring mode. A significant increase in the levels of GS-HNE and Car-HNE was observed in the muscle tissue of the end-stage ALS animals. Therefore, analyzing variations in the levels of these adducts in ALS animal tissue is crucial from a toxicological perspective and can contribute to the development of new therapeutic strategies.


Subject(s)
Aldehydes , Amyotrophic Lateral Sclerosis , Carnosine , Disease Models, Animal , Glutathione , Animals , Amyotrophic Lateral Sclerosis/metabolism , Aldehydes/metabolism , Aldehydes/chemistry , Carnosine/metabolism , Glutathione/metabolism , Rats , Muscle, Skeletal/metabolism , Humans , Superoxide Dismutase/metabolism , Male , Chromatography, High Pressure Liquid , Rats, Transgenic , Superoxide Dismutase-1/metabolism , Rats, Sprague-Dawley
19.
J Med Chem ; 67(14): 12439-12458, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38996004

ABSTRACT

The discovery of effective and safe antiobesity agents remains a challenging yet promising field. Our previous studies identified Bouchardatine derivatives as potential antiobesity agents. However, the 8a-aldehyde moiety rendered them unsuitable for drug development. In this study, we designed two series of novel derivatives to modify this structural feature. Through a structure-activity relationship study, we elucidated the role of the 8a-aldehyde group in toxicity induction. We identified compound 14d, featuring an 8a-N-acylhydrazone moiety, which exhibited significant lipid-lowering activity and reduced toxicity. Compound 14d shares a similar lipid-lowering mechanism with our lead compound 3, but demonstrates improved pharmacokinetic properties and safety profile. Both oral and injectable administration of 14d significantly reduced body weight gain and ameliorated metabolic syndrome in diet-induced obese mice. Our findings identify 14d as a promising antiobesity agent and highlight the potential of substituting the aldehyde group with an N-acylhydrazone to enhance drug-like properties.


Subject(s)
Aldehydes , Anti-Obesity Agents , Hydrazones , Obesity , Animals , Anti-Obesity Agents/pharmacology , Anti-Obesity Agents/chemical synthesis , Anti-Obesity Agents/pharmacokinetics , Anti-Obesity Agents/therapeutic use , Anti-Obesity Agents/chemistry , Hydrazones/pharmacology , Hydrazones/chemistry , Hydrazones/chemical synthesis , Hydrazones/pharmacokinetics , Hydrazones/therapeutic use , Mice , Structure-Activity Relationship , Aldehydes/chemistry , Male , Obesity/drug therapy , Mice, Inbred C57BL , Diet, High-Fat/adverse effects , Humans , Mice, Obese , Molecular Structure
20.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124824, 2024 Dec 05.
Article in English | MEDLINE | ID: mdl-39029203

ABSTRACT

In this study, we have reported a novel 4-bromo-salicylaldehyde-diphenyl-azine (B-1), a new member of salicylaldehyde-diphenyl-azine (SDPA) family known for its excellent sensing properties. In contrast to the previously reported AIEgens, we found that the bromo-substitution at the 4th position of the salicylaldehyde moiety blue-shifted the emission by 10 and 15 nm as compared to the unsubstituted (Tong et.al 2017) and Bromo at the 5th position (Jain et.al 2023) respectively. Moreover, B-1 crystallizes instantly as the cooling process starts, which was not observed in the previously reported scaffolds. The sensing investigation again demonstrated the precise and ultrasensitive behavior of B-1 for copper ions. B-1 has a very low LOD value i.e. 29.2 x 10-8 M with a high association constant and binds with copper ion in 2:1 mode. This time we also analyzed the practical applicability in the solid phase using cotton swabs and performed the real-time estimation of copper ions in water and biological samples like urine and blood serum. The excellent percentage recovery and the RSD value suggest the precision of the experiments. Further, we also perform the sensing in living cancer HeLa cells. Altogether, we found that the SDPA skeleton is precise and ultrasensitive for copper ions and versatile which can be used variously to detect copper ions in the real world. This research will surely help in developing new specific skeleton-based AIEgens with desirable emission properties and precise applications in the future.


Subject(s)
Aldehydes , Copper , Copper/chemistry , Aldehydes/chemistry , Humans , Spectrometry, Fluorescence , HeLa Cells , Limit of Detection , Ions
SELECTION OF CITATIONS
SEARCH DETAIL