Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 20.671
1.
Mol Biol Rep ; 51(1): 572, 2024 May 09.
Article En | MEDLINE | ID: mdl-38722394

BACKGROUND: Alzheimer's disease is a leading neurological disorder that gradually impairs memory and cognitive abilities, ultimately leading to the inability to perform even basic daily tasks. Teriflunomide is known to preserve neuronal activity and protect mitochondria in the brain slices exposed to oxidative stress. The current research was undertaken to investigate the teriflunomide's cognitive rescuing abilities against scopolamine-induced comorbid cognitive impairment and its influence on phosphatidylinositol-3-kinase (PI3K) inhibition-mediated behavior alteration in mice. METHODS: Swiss albino mice were divided into 7 groups; vehicle control, scopolamine, donepezil + scopolamine, teriflunomide (10 mg/kg) + scopolamine; teriflunomide (20 mg/kg) + scopolamine, LY294002 and LY294002 + teriflunomide (20 mg/kg). Mice underwent a nine-day protocol, receiving scopolamine injections (2 mg/kg) for the final three days to induce cognitive impairment. Donepezil, teriflunomide, and LY294002 treatments were given continuously for 9 days. MWM, Y-maze, OFT and rota-rod tests were conducted on days 7 and 9. On the last day, blood samples were collected for serum TNF-α analysis, after which the mice were sacrificed, and brain samples were harvested for oxidative stress analysis. RESULTS: Scopolamine administration for three consecutive days increased the time required to reach the platform in the MWM test, whereas, reduced the percentage of spontaneous alternations in the Y-maze, number of square crossing in OFT and retention time in the rota-rod test. In biochemical analysis, scopolamine downregulated the brain GSH level, whereas it upregulated the brain TBARS and serum TNF-α levels. Teriflunomide treatment effectively mitigated all the behavioral and biochemical alterations induced by scopolamine. Furthermore, LY294002 administration reduced the memory function and GSH level, whereas, uplifted the serum TNF-α levels. Teriflunomide abrogated the memory-impairing, GSH-lowering, and TNF-α-increasing effects of LY294002. CONCLUSION: Our results delineate that the improvement in memory, locomotion, and motor coordination might be attributed to the oxidative and inflammatory stress inhibitory potential of teriflunomide. Moreover, PI3K inhibition-induced memory impairment might be attributed to reduced GSH levels and increased TNF-α levels.


Cognitive Dysfunction , Crotonates , Hydroxybutyrates , Nitriles , Oxidative Stress , Toluidines , Animals , Nitriles/pharmacology , Mice , Hydroxybutyrates/pharmacology , Crotonates/pharmacology , Toluidines/pharmacology , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Oxidative Stress/drug effects , Male , Disease Models, Animal , Maze Learning/drug effects , Behavior, Animal/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Scopolamine/pharmacology , Chromones/pharmacology , Memory/drug effects , Cognition/drug effects , Brain/metabolism , Brain/drug effects , Morpholines/pharmacology , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Donepezil/pharmacology
4.
J Alzheimers Dis ; 99(1): 333-343, 2024.
Article En | MEDLINE | ID: mdl-38701154

Background: Neurodegeneration is a term describing an irreversible process of neuronal damage. In recent decades, research efforts have been directed towards deepening our knowledge of numerous neurodegenerative disorders, with a particular focus on conditions such as Alzheimer's disease (AD). Human transferrin (htf) is a key player in maintaining iron homeostasis within brain cells. Any disturbance in this equilibrium gives rise to the emergence of neurodegenerative diseases and associated pathologies, particularly AD. Limonene, a natural compound found in citrus fruits and various plants, has shown potential neuroprotective properties. Objective: In this study, our goal was to unravel the binding of limonene with htf, with the intention of comprehending the interaction mechanism of limonene with htf. Methods: Binding was scrutinized using fluorescence quenching and UV-Vis spectroscopic analyses. The binding mechanism of limonene was further investigated at the atomic level through molecular docking and extensive 200 ns molecular dynamic simulation (MD) studies. Results: Molecular docking uncovered that limonene interacted extensively with the deep cavity located within the htf binding pocket. MD results indicated that binding of limonene to htf did not induce substantial structural alterations, ultimately forming stable complex. The findings from fluorescence binding indicated a pronounced interaction between limonene and htf, limonene binds to htf with a binding constant (K) of 0.1×105 M-1. UV spectroscopy also advocated stable htf-limonene complex formation. Conclusions: The study deciphered the binding mechanism of limonene with htf, providing a platform to use limonene in AD therapeutics in context of iron homeostasis.


Alzheimer Disease , Limonene , Molecular Docking Simulation , Transferrin , Limonene/pharmacology , Limonene/metabolism , Limonene/chemistry , Humans , Alzheimer Disease/metabolism , Alzheimer Disease/drug therapy , Transferrin/metabolism , Molecular Dynamics Simulation , Terpenes/pharmacology , Terpenes/chemistry , Terpenes/metabolism , Protein Binding
5.
Biomolecules ; 14(5)2024 May 15.
Article En | MEDLINE | ID: mdl-38785993

Despite the extensive research conducted on Alzheimer's disease (AD) over the years, no effective drug for AD treatment has been found. Therefore, the development of new drugs for the treatment of AD is of the utmost importance. We recently reported the proteolytic activities of JAL-TA9 (YKGSGFRMI) and ANA-TA9 (SKGQAYRMA), synthetic peptides of nine amino acids each, derived from the Box A region of Tob1 and ANA/BTG3 proteins, respectively. Furthermore, two components of ANA-TA9, ANA-YA4 (YRMI) at the C-terminus end and ANA-SA5 (SKGQA) at the N-terminus end of ANA-TA9, exhibited proteolytic activity against amyloid-ß (Aß) fragment peptides. In this study, we identified the active center of ANA-SA5 using AEBSF, a serine protease inhibitor, and a peptide in which the Ser residue of ANA-SA5 was replaced with Leu. In addition, we demonstrate the proteolytic activity of ANA-SA5 against the soluble form Aß42 (a-Aß42) and solid insoluble form s-Aß42. Furthermore, ANA-SA5 was not cytotoxic to A549 cells. These results indicate that ANA-SA5 is a promising Catalytide and a potential candidate for the development of new peptide drugs targeting Aß42 for AD treatment.


Amyloid beta-Peptides , Proteolysis , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/chemistry , Humans , Proteolysis/drug effects , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Peptide Fragments/chemistry , Peptide Fragments/pharmacology , Peptide Fragments/metabolism , Peptides/chemistry , Peptides/pharmacology , Cell Line, Tumor
6.
Biomolecules ; 14(5)2024 May 18.
Article En | MEDLINE | ID: mdl-38786006

Age is the primary risk factor for neurodegenerative diseases such as Alzheimer's and Huntington's disease. Alzheimer's disease is the most common form of dementia and a leading cause of death in the elderly population of the United States. No effective treatments for these diseases currently exist. Identifying effective treatments for Alzheimer's, Huntington's, and other neurodegenerative diseases is a major current focus of national scientific resources, and there is a critical need for novel therapeutic strategies. Here, we investigate the potential for targeting the kynurenine pathway metabolite 3-hydroxyanthranilic acid (3HAA) using Caenorhabditis elegans expressing amyloid-beta or a polyglutamine peptide in body wall muscle, modeling the proteotoxicity in Alzheimer's and Huntington's disease, respectively. We show that knocking down the enzyme that degrades 3HAA, 3HAA dioxygenase (HAAO), delays the age-associated paralysis in both models. This effect on paralysis was independent of the protein aggregation in the polyglutamine model. We also show that the mechanism of protection against proteotoxicity from HAAO knockdown is mimicked by 3HAA supplementation, supporting elevated 3HAA as the mediating event linking HAAO knockdown to delayed paralysis. This work demonstrates the potential for 3HAA as a targeted therapeutic in neurodegenerative disease, though the mechanism is yet to be explored.


3-Hydroxyanthranilic Acid , Amyloid beta-Peptides , Caenorhabditis elegans , Paralysis , Peptides , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/genetics , Animals , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/genetics , Peptides/pharmacology , 3-Hydroxyanthranilic Acid/metabolism , Paralysis/chemically induced , Paralysis/metabolism , Paralysis/genetics , Disease Models, Animal , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/drug therapy , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Huntington Disease/metabolism , Huntington Disease/genetics , Dioxygenases/metabolism , Dioxygenases/genetics
7.
Biomolecules ; 14(5)2024 May 20.
Article En | MEDLINE | ID: mdl-38786010

Cholesterol, a crucial component of cell membranes, influences various biological processes, including membrane trafficking, signal transduction, and host-pathogen interactions. Disruptions in cholesterol homeostasis have been linked to congenital and acquired conditions, including neurodegenerative disorders such as Alzheimer's disease (AD). Previous research from our group has demonstrated that herpes simplex virus type I (HSV-1) induces an AD-like phenotype in several cell models of infection. This study explores the interplay between cholesterol and HSV-1-induced neurodegeneration. The impact of cholesterol was determined by modulating its levels with methyl-beta-cyclodextrin (MßCD) using the neuroblastoma cell lines SK-N-MC and N2a. We have found that HSV-1 infection triggers the intracellular accumulation of cholesterol in structures resembling endolysosomal/autophagic compartments, a process reversible upon MßCD treatment. Moreover, MßCD exhibits inhibitory effects at various stages of HSV-1 infection, underscoring the importance of cellular cholesterol levels, not only in the viral entry process but also in subsequent post-entry stages. MßCD also alleviated several features of AD-like neurodegeneration induced by viral infection, including lysosomal impairment and intracellular accumulation of amyloid-beta peptide (Aß) and phosphorylated tau. In conclusion, these findings highlight the connection between cholesterol, neurodegeneration, and HSV-1 infection, providing valuable insights into the underlying mechanisms of AD.


Alzheimer Disease , Amyloid beta-Peptides , Cholesterol , Herpes Simplex , Herpesvirus 1, Human , Herpesvirus 1, Human/drug effects , Herpesvirus 1, Human/physiology , Cholesterol/metabolism , Humans , Amyloid beta-Peptides/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/virology , Alzheimer Disease/pathology , Alzheimer Disease/drug therapy , Herpes Simplex/virology , Herpes Simplex/metabolism , Herpes Simplex/drug therapy , Herpes Simplex/pathology , Cell Line, Tumor , Animals , beta-Cyclodextrins/pharmacology , Lysosomes/metabolism , Lysosomes/drug effects , tau Proteins/metabolism , Phenotype , Mice
8.
Zhen Ci Yan Jiu ; 49(5): 506-511, 2024 May 25.
Article En, Zh | MEDLINE | ID: mdl-38764122

OBJECTIVES: To observe the effect of scalp-abdominal acupuncture combined with donepezil hydrochloride on cognition and life ability of patients with Alzheimer's disease (AD), so as to evaluate its clinical efficacy. METHODS: Sixty AD patients were collected and randomly divided into control group (30 cases) and observation group (30 cases). Patients in the control group were treated with oral donepezil hydrochloride (5 mg, once daily). Patients in the observation group were treated with scalp-abdominal acupuncture at Baihui (GV20), Yintang (GV24+), Sishencong (EX-HN1), "emotional area", Shenting (GV24), "abdominal area 1""abdominal area 8", and bilateral Fengchi (GB20), Taixi (KI3), Xuanzhong (GB39), Zusanli (ST36) on the basis of control group, and electroacupuncture (10 Hz/50 Hz, 0.5 to 5.0 mA) was applied to EX-HN1, "emotional area""abdominal area 1" and "abdominal area 8", once daily, 30 min each time. Four weeks as a course of treatment, both the two groups were treated for two consecutive courses. Before and after treatment, the mini-mental state examination (MMSE), AD assessmennt scale-cognitive subscale (ADAS-Cog) and activity of daily living scale (ADL) were evaluated. The clinical efficacy index was calculated and safety was evaluated. RESULTS: After treatment, the MMSE and ADL scores were higher (P<0.05) and the ADAS-Cog score was lower (P<0.05) than those before treatment in both groups. Compared with the control group, the MMSE and ADL scores were increased (P<0.05) and ADAS-Cog score was decreased (P<0.05) in the observation group. The total effective rate of the observation group (26/30, 86.67%) was higher (P<0.05) than that of the control group (23/30, 76.67%). No adverse reactions occurred in both groups during the treatment. CONCLUSIONS: Scalp-abdominal acupuncture combined with donepezil hydrochloride can effectively improve the cognitive ability and daily living ability of AD patients, and the efficacy is better than that of oral donepezil hydrochloride alone.


Acupuncture Points , Acupuncture Therapy , Alzheimer Disease , Donepezil , Scalp , Humans , Donepezil/therapeutic use , Alzheimer Disease/therapy , Alzheimer Disease/drug therapy , Alzheimer Disease/psychology , Female , Male , Aged , Abdomen , Middle Aged , Cognition/drug effects , Treatment Outcome , Piperidines/therapeutic use , Combined Modality Therapy , Aged, 80 and over , Indans/therapeutic use
10.
Expert Rev Neurother ; 24(6): 607-614, 2024 Jun.
Article En | MEDLINE | ID: mdl-38785454

INTRODUCTION: Cholinesterase inhibitors, along with memantine, are the mainstay of symptomatic treatment for AD (Alzheimer's disease); however, these medications are typically administered orally, which can be difficult for people with AD and their caregivers. AREAS COVERED: In this drug profile and narrative review, the authors trace the development of the new FDA-approved transdermal donepezil. The authors discuss the studies showing its bioequivalence with the oral formulation, including two double-blinded placebo controlled non-inferiority trials. The authors also compare the patch to the only other transdermal cholinesterase inhibitor on the market, rivastigmine, and highlight the potential advantages and disadvantages between these two treatments. EXPERT OPINION: While the patch is bio-equivalent, it is rather large and may not be affordable for some patients. In addition, there is no high dose (e.g. 23 mg) equivalent. Nevertheless, transdermal donepezil will be useful for people with AD and their caregivers, given its effectiveness and potential convenience.


Administration, Cutaneous , Alzheimer Disease , Cholinesterase Inhibitors , Donepezil , Humans , Donepezil/administration & dosage , Donepezil/therapeutic use , Alzheimer Disease/drug therapy , Cholinesterase Inhibitors/administration & dosage , Cholinesterase Inhibitors/therapeutic use , Transdermal Patch , Rivastigmine/administration & dosage , Rivastigmine/therapeutic use , Severity of Illness Index
11.
Transl Neurodegener ; 13(1): 25, 2024 May 21.
Article En | MEDLINE | ID: mdl-38773569

The use of biomarker-led clinical trial designs has been transformative for investigating amyloid-targeting therapies for Alzheimer's disease (AD). The designs have ensured the correct selection of patients on these trials, supported target engagement and have been used to support claims of disease modification and clinical efficacy. Ultimately, this has recently led to approval of disease-modifying, amyloid-targeting therapies for AD; something that should be noted for clinical trials investigating tau-targeting therapies for AD. There is a clear overlap of the purpose of biomarker use at each stage of clinical development between amyloid-targeting and tau-targeting clinical trials. However, there are differences within the potential context of use and interpretation for some biomarkers in particular measurements of amyloid and utility of soluble, phosphorylated tau biomarkers. Given the complexities of tau in health and disease, it is paramount that therapies target disease-relevant tau and, in parallel, appropriate assays of target engagement are developed. Tau positron emission tomography, fluid biomarkers reflecting tau pathology and downstream measures of neurodegeneration will be important both for participant recruitment and for monitoring disease-modification in tau-targeting clinical trials. Bespoke design of biomarker strategies and interpretations for different modalities and tau-based targets should also be considered.


Alzheimer Disease , Biomarkers , Clinical Trials as Topic , tau Proteins , Alzheimer Disease/metabolism , Alzheimer Disease/drug therapy , Humans , tau Proteins/metabolism , Biomarkers/analysis , Clinical Trials as Topic/methods
12.
J Neuroimmune Pharmacol ; 19(1): 24, 2024 May 23.
Article En | MEDLINE | ID: mdl-38780885

Cornuside has been discovered to improve learning and memory in AD mice, however, its underlying mechanism was not fully understood. In the present study, we established an AD mice model by intracerebroventricular injection of Aß1-42, which were treated with cornuside (3, 10, 30 mg/kg) for 2 weeks. Cornuside significantly ameliorated cognitive function of AD mice in series of behavioral tests, including Morris water maze test, nest building test, novel object recognition test and step-down test. Additionally, cornuside could attenuate neuronal injury, and promote cholinergic synaptic transmission by restoring the level of acetylcholine (ACh) via inhibiting acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), as well as facilitating choline acetyltransferase (ChAT). Furthermore, cornuside inhibited oxidative stress levels amplified as decreased malondialdehyde (MDA), by inhibiting TXNIP expression, improving total anti-oxidative capacity (TAOC), raising activities of superoxide dismutase (SOD) and catalase (CAT). Cornuside also reduced the activation of microglia and astrocytes, decreased the level of proinflammatory factors TNF-α, IL-6, IL-1ß, iNOS and COX2 via interfering RAGE-mediated IKK-IκB-NF-κB phosphorylation. Similar anti-oxidative and anti-inflammatory effects were also found in LPS-stimulated BV2 cells via hampering RAGE-mediated TXNIP activation and NF-κB nuclear translocation. Virtual docking revealed that cornuside could interact with the active pocket of RAGE V domain directly. In conclusion, cornuside could bind to the RAGE directly impeding the interaction of Aß and RAGE, and cut down the expression of TXNIP inhibiting ROS production and oxidative stress, as well as hamper NF-κB p65 mediated the inflammation.


Alzheimer Disease , Amyloid beta-Peptides , Cognitive Dysfunction , NF-kappa B , Peptide Fragments , Receptor for Advanced Glycation End Products , Signal Transduction , Animals , Mice , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/chemically induced , Amyloid beta-Peptides/toxicity , Amyloid beta-Peptides/metabolism , Peptide Fragments/toxicity , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/chemically induced , Signal Transduction/drug effects , Receptor for Advanced Glycation End Products/metabolism , NF-kappa B/metabolism , Male , Oxidative Stress/drug effects
13.
Nihon Yakurigaku Zasshi ; 159(3): 173-181, 2024.
Article Ja | MEDLINE | ID: mdl-38692883

Lecanemab is a humanized monoclonal antibody directed against human soluble amyloid-ß aggregates. It was developed for the treatment of early Alzheimer's disease (mild cognitive impairment or mild dementia stage of Alzheimer's disease). Among the amyloid-ß (Aß) involved in Alzheimer's disease, Lecanemab selectively binds to the highly neurotoxic Aß protofibrils, and is thought to reduce Aß protofibrils and amyloid plaques (Aß plaques) in the brain. The efficacy and safety of Lecanemab in early Alzheimer's disease were investigated in an international Phase II placebo-controlled study (Study 201) and an international Phase III placebo-controlled study (Study 301). Both studies included Japanese subjects. Lecanemab was given accelerated approval in the United States in January 2023, followed by traditional approval in July 2023. In Japan, it was approved for "control of the progression of mild cognitive impairment or mild dementia stage of Alzheimer's disease" in September 2023, and was added to the NHI drug price list in December 2023.


Alzheimer Disease , Alzheimer Disease/drug therapy , Humans , Infusions, Intravenous , Clinical Trials as Topic , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/therapeutic use , Amyloid beta-Peptides/metabolism
14.
Sci Adv ; 10(18): eadl2991, 2024 May 03.
Article En | MEDLINE | ID: mdl-38691615

Amyloid fibrils of tau are increasingly accepted as a cause of neuronal death and brain atrophy in Alzheimer's disease (AD). Diminishing tau aggregation is a promising strategy in the search for efficacious AD therapeutics. Previously, our laboratory designed a six-residue, nonnatural amino acid inhibitor D-TLKIVW peptide (6-DP), which can prevent tau aggregation in vitro. However, it cannot block cell-to-cell transmission of tau aggregation. Here, we find D-TLKIVWC (7-DP), a d-cysteine extension of 6-DP, not only prevents tau aggregation but also fragments tau fibrils extracted from AD brains to neutralize their seeding ability and protect neuronal cells from tau-induced toxicity. To facilitate the transport of 7-DP across the blood-brain barrier, we conjugated it to magnetic nanoparticles (MNPs). The MNPs-DP complex retains the inhibition and fragmentation properties of 7-DP alone. Ten weeks of MNPs-DP treatment appear to reverse neurological deficits in the PS19 mouse model of AD. This work offers a direction for development of therapies to target tau fibrils.


Alzheimer Disease , Disease Models, Animal , Magnetite Nanoparticles , tau Proteins , Animals , Alzheimer Disease/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , tau Proteins/metabolism , tau Proteins/chemistry , Mice , Humans , Magnetite Nanoparticles/chemistry , Amyloid/metabolism , Amyloid/chemistry , Mice, Transgenic , Behavior, Animal/drug effects , Peptides/chemistry , Peptides/pharmacology , Protein Aggregation, Pathological/metabolism , Brain/metabolism , Brain/pathology , Brain/drug effects
15.
J Mol Neurosci ; 74(2): 51, 2024 May 03.
Article En | MEDLINE | ID: mdl-38700745

Alzheimer's disease (AD) is a neurodegenerative disorder and the most common cause of dementia. Programmed cell death (PCD) is mainly characterized by unique morphological features and energy-dependent biochemical processes. The predominant pathway leading to cell death in AD has not been thoroughly analyzed, although there is evidence of neuron loss in AD and numerous pathways of PCD have been associated with this process. A better understanding of the systems biology underlying the relationship between AD and PCD could lead to the development of new therapeutic approaches. To this end, publicly available transcriptome data were examined using bioinformatic methods such as differential gene expression and weighted gene coexpression network analysis (WGCNA) to find PCD-related AD biomarkers. The diagnostic significance of these biomarkers was evaluated using a logistic regression-based predictive model. Using these biomarkers, a multifactorial regulatory network was developed. Last, a drug repositioning study was conducted to propose new drugs for the treatment of AD targeting PCD. The development of 3PM (predictive, preventive, and personalized) drugs for the treatment of AD would be enabled by additional research on the effects of these drugs on this disease.


Alzheimer Disease , Apoptosis , Biomarkers , Drug Repositioning , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/drug therapy , Humans , Biomarkers/metabolism , Gene Regulatory Networks , Transcriptome
16.
J Nanobiotechnology ; 22(1): 248, 2024 May 13.
Article En | MEDLINE | ID: mdl-38741193

The use of nanomaterials in medicine offers multiple opportunities to address neurodegenerative disorders such as Alzheimer's and Parkinson's disease. These diseases are a significant burden for society and the health system, affecting millions of people worldwide without sensitive and selective diagnostic methodologies or effective treatments to stop their progression. In this sense, the use of gold nanoparticles is a promising tool due to their unique properties at the nanometric level. They can be functionalized with specific molecules to selectively target pathological proteins such as Tau and α-synuclein for Alzheimer's and Parkinson's disease, respectively. Additionally, these proteins are used as diagnostic biomarkers, wherein gold nanoparticles play a key role in enhancing their signal, even at the low concentrations present in biological samples such as blood or cerebrospinal fluid, thus enabling an early and accurate diagnosis. On the other hand, gold nanoparticles act as drug delivery platforms, bringing therapeutic agents directly into the brain, improving treatment efficiency and precision, and reducing side effects in healthy tissues. However, despite the exciting potential of gold nanoparticles, it is crucial to address the challenges and issues associated with their use in the medical field before they can be widely applied in clinical settings. It is critical to ensure the safety and biocompatibility of these nanomaterials in the context of the central nervous system. Therefore, rigorous preclinical and clinical studies are needed to assess the efficacy and feasibility of these strategies in patients. Since there is scarce and sometimes contradictory literature about their use in this context, the main aim of this review is to discuss and analyze the current state-of-the-art of gold nanoparticles in relation to delivery, diagnosis, and therapy for Alzheimer's and Parkinson's disease, as well as recent research about their use in preclinical, clinical, and emerging research areas.


Gold , Metal Nanoparticles , Neurodegenerative Diseases , alpha-Synuclein , tau Proteins , Humans , Gold/chemistry , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , tau Proteins/metabolism , Animals , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/diagnosis , Parkinson Disease/diagnosis , Parkinson Disease/drug therapy , Alzheimer Disease/drug therapy , Alzheimer Disease/diagnosis , Drug Delivery Systems/methods , Biomarkers
17.
J Org Chem ; 89(10): 7255-7262, 2024 May 17.
Article En | MEDLINE | ID: mdl-38718382

Juglanaloids A and B are recently isolated natural products characterized by an unprecedented spiro bicyclic isobenzofuranone-tetrahydrobenzazepinone framework and a promising antiamyloid activity. Here reported is a straightforward convergent total synthesis of these natural products, which were obtained in high enantiomeric purity (94% and >99% ee for juglanaloids A and B, respectively) through an eight-step longest linear sequence, based on an efficient and reliable enantioselective phase-transfer-catalyzed alkylation step. Considering the interesting biological activity of juglanaloids, this convenient, highly enantioselective, flexible, and predictable synthetic strategy promises to be a powerful tool for accessing potentially bioactive spiro bicyclic phthalide-tetrahydrobenzazepinone derivatives.


Alkaloids , Alzheimer Disease , Spiro Compounds , Stereoisomerism , Alzheimer Disease/drug therapy , Spiro Compounds/chemistry , Spiro Compounds/chemical synthesis , Spiro Compounds/pharmacology , Alkaloids/chemistry , Alkaloids/chemical synthesis , Alkaloids/pharmacology , Molecular Structure , Benzofurans/chemistry , Benzofurans/chemical synthesis , Benzofurans/pharmacology
18.
J Alzheimers Dis ; 99(2): 639-656, 2024.
Article En | MEDLINE | ID: mdl-38728184

Background: Familial Alzheimer's disease (FAD) presenilin 1 E280A (PSEN 1 E280A) is characterized by functional impairment and the death of cholinergic neurons as a consequence of amyloid-ß (Aß) accumulation and abnormal phosphorylation of the tau protein. Currently, there are no available therapies that can cure FAD. Therefore, new therapies are urgently needed for treating this disease. Objective: To assess the effect of sildenafil (SIL) on cholinergic-like neurons (ChLNs) harboring the PSEN 1 E280A mutation. Methods: Wild-type (WT) and PSEN 1 E280A ChLNs were cultured in the presence of SIL (25µM) for 24 h. Afterward, proteinopathy, cell signaling, and apoptosis markers were evaluated via flow cytometry and fluorescence microscopy. Results: We found that SIL was innocuous toward WT PSEN 1 ChLNs but reduced the accumulation of intracellular Aß fragments by 87%, decreased the non-physiological phosphorylation of the protein tau at residue Ser202/Thr205 by 35%, reduced the phosphorylation of the proapoptotic transcription factor c-JUN at residue Ser63/Ser73 by 63%, decreased oxidized DJ-1 at Cys106-SO3 by 32%, and downregulated transcription factor TP53 (tumor protein p53), BH-3-only protein PUMA (p53 upregulated modulator of apoptosis), and cleaved caspase 3 (CC3) expression by 20%, 32%, and 22%, respectively, compared with untreated mutant ChLNs. Interestingly, SIL also ameliorated the dysregulation of acetylcholine-induced calcium ion (Ca2+) influx in PSEN 1 E280A ChLNs. Conclusions: Although SIL showed no antioxidant capacity in the oxygen radical absorbance capacity and ferric ion reducing antioxidant power assays, it might function as an anti-amyloid and antiapoptotic agent and functional neuronal enhancer in PSEN 1 E280A ChLNs. Therefore, the SIL has therapeutic potential for treating FAD.


Alzheimer Disease , Cholinergic Neurons , Mutation , Presenilin-1 , Sildenafil Citrate , Presenilin-1/genetics , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Alzheimer Disease/metabolism , Cholinergic Neurons/drug effects , Cholinergic Neurons/metabolism , Cholinergic Neurons/pathology , Mutation/genetics , Animals , Sildenafil Citrate/pharmacology , Amyloid beta-Peptides/metabolism , Humans , Cells, Cultured , Mice , tau Proteins/metabolism , tau Proteins/genetics , Phosphorylation/drug effects , Phenotype
19.
Med Sci Monit ; 30: e945091, 2024 May 13.
Article En | MEDLINE | ID: mdl-38736218

Alzheimer's disease is the most common form of dementia and includes cognitive, personality, and behavioral changes. The 2024 report from the Alzheimer's Association estimated that 6.9 million adults >65 years in the US are currently living with Alzheimer's disease. Modeling studies predict that this number will double by 2050, and associated healthcare costs will reach $1 trillion. In June 2021, regulatory approval of aducanumab, a humanized recombinant monoclonal antibody to amyloid ß, initially raised expectations for improved disease-modifying therapy. However, in February 2024, production of aducanumab and a post-marketing clinical trial ceased in the US due to the costs and limitations of aducanumab therapy. In March 2024, biobank data identified significant modifiable risk factors for Alzheimer's disease, including diabetes mellitus, exposure to nitrogen dioxide (a proxy for air pollution), and the frequency of alcohol intake. Therefore, modification of identifiable risk factors, combined with testing for disease-susceptibility genes, could be the most effective approach to reduce the incidence. This article aims to review the current status of disease-modifying therapies and prevention of Alzheimer's disease.


Alzheimer Disease , Alzheimer Disease/prevention & control , Alzheimer Disease/drug therapy , Humans , Risk Factors , Antibodies, Monoclonal, Humanized/therapeutic use , Amyloid beta-Peptides/metabolism
20.
Alzheimers Res Ther ; 16(1): 109, 2024 May 15.
Article En | MEDLINE | ID: mdl-38750512

BACKGROUND: As one major symptom of Alzheimer's disease (AD), anterograde amnesia describes patients with an inability in new memory formation. The crucial role of the entorhinal cortex in forming new memories has been well established, and the neuropeptide cholecystokinin (CCK) is reported to be released from the entorhinal cortex to enable neocortical associated memory and long-term potentiation. Though several studies reveal that the entorhinal cortex and CCK are related to AD, it is less well studied. It is unclear whether CCK is a good biomarker or further a great drug candidate for AD. METHODS: mRNA expressions of CCK and CCK-B receptor (CCKBR) were examined in two mouse models, 3xTg AD and CCK knock-out (CCK-/-) mice. Animals' cognition was investigated with Morris water maze, novel object recognition test and neuroplasticity with in-vitro electrophysiological recording. Drugs were given intraperitoneally to animals to investigate the rescue effects on cognitive deficits, or applied to brain slices directly to explore the influence in inducement of long-term potentiation. RESULTS: Aged 3xTg AD mice exhibited reduced CCK mRNA expression in the entorhinal cortex but reduced CCKBR expression in the neocortex and hippocampus, and impaired cognition and neuroplasticity comparable with CCK-/- mice. Importantly, the animals displayed improved performance and enhanced long-term potentiation after the treatment of CCKBR agonists. CONCLUSIONS: Here we provide more evidence to support the role of CCK in learning and memory and its potential to treat AD. We elaborated on the rescue effect of a promising novel drug, HT-267, on aged 3xTg AD mice. Although the physiological etiology of CCK in AD still needs to be further investigated, this study sheds light on a potential pharmaceutical candidate for AD and dementia.


Alzheimer Disease , Amnesia, Anterograde , Cholecystokinin , Disease Models, Animal , Mice, Transgenic , Receptor, Cholecystokinin B , Animals , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Mice , Receptor, Cholecystokinin B/genetics , Receptor, Cholecystokinin B/agonists , Receptor, Cholecystokinin B/deficiency , Amnesia, Anterograde/drug therapy , Cholecystokinin/metabolism , Entorhinal Cortex/drug effects , Entorhinal Cortex/metabolism , Male , Mice, Knockout , Mice, Inbred C57BL , Long-Term Potentiation/drug effects , Hippocampus/metabolism , Hippocampus/drug effects , Aging/drug effects
...