Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 427
Filter
1.
J Parasitol ; 110(5): 423-427, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39245448

ABSTRACT

Chlorocresol has antibacterial and antifungal properties, yet its effectiveness in eradicating Acanthamoeba spp. remains unexplored. Acanthamoeba species trophozoites are usually sensitive to biocides, whereas cysts tend to be more resistant. This study aimed to evaluate the cysticidal activity of chlorocresol against Acanthamoeba polyphaga. Chlorocresol concentrations of 0.02, 0.04, and 0.08% were prepared and A. polyphaga cysts were incubated at room temperature (28-37 C) for 1, 24, 48, and 72 hr at each concentration. Cyst viability was evaluated using trypan blue staining and the percentage of nonviable cysts was calculated. For qualification assays, treated cysts were cultured on nonnutrient agar medium coated with Escherichia coli, incubated at 30 C, observed under a stereomicroscope for 30 days, and inoculated into peptone-yeast extract-glucose medium at 30 C for 72 hr. The results revealed that the A. polyphaga cysts were susceptible to 0.02, 0.04, and 0.08% chlorocresol. Chlorocresol made a significant difference in viability (P < 0.001) compared with the nontreated control for the same incubation time. This is the first study to examine the efficacy of chlorocresol against A. polyphaga cysts and it was highly effective. Chlorocresol could thus serve as an alternative chemical disinfectant for the eradication of A. polyphaga cysts as well as a prophylactic against transmission of other pathogenic microorganisms for which Acanthamoeba species can act as a carrier.


Subject(s)
Acanthamoeba , Acanthamoeba/drug effects , Disinfectants/pharmacology , Amebicides/pharmacology , Animals
2.
J Appl Microbiol ; 135(9)2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39237458

ABSTRACT

AIMS: Evaluate the in vitro efficacy of the essential oils derived from Aloysia citrodora (Verbenaceae), Cymbopogon winterianus (Poaceae), and Ocimum gratissimum (Lamiaceae) against Acanthamoeba polyphaga trophozoites. Additionally, microemulsions formulated with these essential oils, along with their major components, were analyzed. METHODS AND RESULTS: The prepared microemulsions were characterized using polarized light microscopy and rheological techniques. The amoebicidal activity was determined by measuring the inhibitory concentration (IC50). Flow cytometry was employed to detect membrane damage and alterations in trophozoites size. The results revealed transparent and thermodynamically stable microemulsions. The essential oil from O. gratissimum exhibited a lower IC50, with values of 280.66 and 47.28 µg ml-1 after 24 and 48 h, respectively. When microemulsions containing essential oils were tested, the IC50 values exhibited a reduction of over 80% after 24 h. Particularly, eugenol, a constituent of the O. gratissimum essential oil, displayed higher amoebicidal activity. The essential oils also caused damage to the cell membrane, resulting in the subsequent death of the trophozoites. CONCLUSIONS: The EOs of A. citrodora, C. winterianus, and O. gratissimum and their microemulsions showed antiparasitic effect against A. polyphaga trophozoites, representing promising alternatives for the treatment of diseases caused by this protozoan.


Subject(s)
Acanthamoeba , Cymbopogon , Emulsions , Ocimum , Oils, Volatile , Trophozoites , Verbenaceae , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Cymbopogon/chemistry , Ocimum/chemistry , Emulsions/pharmacology , Trophozoites/drug effects , Acanthamoeba/drug effects , Verbenaceae/chemistry , Amebicides/pharmacology , Plant Oils/pharmacology , Plant Extracts/pharmacology
3.
Acta Parasitol ; 69(3): 1717-1723, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39153011

ABSTRACT

PURPOSE: The treatment of amoebic infections is often problematic, largely due to delayed diagnosis, amoebae transformation into resistant cyst form, and lack of availability of effective chemotherapeutic agents. Herein, we determined anti-Acanthamoeba castellanii properties of three metal oxide nanoparticles (TiO2, ZrO2, and Al2O3). METHODS: Amoebicidal assays were performed to determine whether metal oxide nanoparticles inhibit amoebae viability. Encystation assays were performed to test whether metal oxide nanoparticles inhibit cyst formation. By measuring lactate dehydrogenase release, cytotoxicity assays were performed to determine human cell damage. Hoechst 33342/PI staining was performed to determine programmed cell death (apoptosis) and necrosis in A. castellanii. RESULTS: TiO2-NPs significantly inhibited amoebae viability as observed through amoebicidal assays, as well as inhibited their phenotypic transformation as evident using encystation assays, and showed limited human cell damage as observed by measuring lactate dehydrogenase assays. Furthermore, TiO2-NPs altered parasite membranes and resulted in necrotic cell death as determined using double staining cell death assays with Hoechst33342/Propidium iodide (PI) observed through chromatin condensation. These findings suggest that TiO2-NPs offers a potential viable avenue in the rationale development of therapeutic interventions against Acanthamoeba infections.


Subject(s)
Acanthamoeba castellanii , Metal Nanoparticles , Necrosis , Acanthamoeba castellanii/drug effects , Metal Nanoparticles/chemistry , Humans , Cell Death/drug effects , Titanium/pharmacology , Titanium/chemistry , Zirconium/pharmacology , Zirconium/chemistry , Apoptosis/drug effects , Amebicides/pharmacology , Oxides/pharmacology
4.
Exp Parasitol ; 265: 108827, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39147119

ABSTRACT

Tetrazoles are five-membered ring aromatic heterocyclic molecules that consist of one carbon and four nitrogen atoms. Several tetrazole-based drugs have shown promising activities against bacteria, fungi, asthma, cancer, hypertension etc. The overall aim of this study was to determine anti-Acanthamoebic properties of tetrazoles and tetrazole-conjugated silver nanoparticles. Tetrazole-conjugated silver nanoparticles were synthesized and confirmed using ultraviolet-visible spectrometry, Dynamic light scattering, and Fourier-transform infrared spectroscopy. Using amoebicidal, encystment, and excystment assays, the findings revealed that tetrazoles exhibited antiamoebic properties and these effects were enhanced when conjugated with silver nanoparticles. Importantly, conjugation with silver nanoparticles inhibited parasite-mediated human cell death in vitro, as measured by lactate dehydrogenase release, but it reduced toxic effects of drugs alone on human cells. Overall, these results showed clearly that tetrazoles exhibit potent antiamoebic properties which can be enhanced by conjugation with silver nanoparticles and these potential in the rational development of therapeutic interventions against parasitic infections such as keratitis and granulomatous amoebic encephalitis due to pathogenic Acanthamoeba.


Subject(s)
Metal Nanoparticles , Silver , Tetrazoles , Silver/pharmacology , Silver/chemistry , Humans , Metal Nanoparticles/chemistry , Tetrazoles/pharmacology , Tetrazoles/chemistry , Spectroscopy, Fourier Transform Infrared , Spectrophotometry, Ultraviolet , Amebicides/pharmacology , Amebicides/chemistry , Dynamic Light Scattering , Acanthamoeba castellanii/drug effects , L-Lactate Dehydrogenase/metabolism
5.
Ann Parasitol ; 70(1): 15-22, 2024.
Article in English | MEDLINE | ID: mdl-38935775

ABSTRACT

Representatives of the genus Acanthamoeba are among the most widespread protists in the environment. They have a ubiquitous distribution and can sometimes cause quite serious pathologies in humans. The treatment ofp rotozoal infections caused by free-living amoebae is currently limited and often unsuccessful. In the presented investigation, amebicidal activity was determined against both the trophozoites and cysts of Acanthamoeba spp., which were isolated during the microbiological examination of environmental objects. The inhibitory activity of drugs in vitro was determined using the authors' proposed method, which is based on the plaque formation phenomenon: this is initiated by free-living amoebae when cultured in agar containing the bacteria Cellulosimicrobium sp. strain bent-1. Based on a series of experimental studies, the paper proposes a reliable and inexpensive method for determining the anti-protozoal activity of medicinal agents, which will significantly complement the current screening method system when studying existing drugs, or new drugs during their development stage.


Subject(s)
Acanthamoeba , Acanthamoeba/drug effects , Antiprotozoal Agents/pharmacology , Trophozoites/drug effects , Amebicides/pharmacology
6.
Int J Parasitol Drugs Drug Resist ; 25: 100545, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38718717

ABSTRACT

Naegleria fowleri, known as the brain-eating amoeba, is the pathogen that causes the primary amoebic meningoencephalitis (PAM), a severe neurodegenerative disease with a fatality rate exceeding 95%. Moreover, PAM cases commonly involved previous activities in warm freshwater bodies that allow amoebae-containing water through the nasal passages. Hence, awareness among healthcare professionals and the general public are the key to contribute to a higher and faster number of diagnoses worldwide. Current treatment options for PAM, such as amphotericin B and miltefosine, are limited by potential cytotoxic effects. In this context, the repurposing of existing compounds has emerged as a promising strategy. In this study, the evaluation of the COVID Box which contains 160 compounds demonstrated significant in vitro amoebicidal activity against two type strains of N. fowleri. From these compounds, terconazole, clemastine, ABT-239 and PD-144418 showed a higher selectivity against the parasite compared to the remaining products. In addition, programmed cell death assays were conducted with these four compounds, unveiling compatible metabolic events in treated amoebae. These compounds exhibited chromatin condensation and alterations in cell membrane permeability, indicating their potential to induce programmed cell death. Assessment of mitochondrial membrane potential disruption and a significant reduction in ATP production emphasized the impact of these compounds on the mitochondria, with the identification of increased ROS production underscoring their potential as effective treatment options. This study emphasizes the potential of the mentioned COVID Box compounds against N. fowleri, providing a path for enhanced PAM therapies.


Subject(s)
Central Nervous System Protozoal Infections , Drug Repositioning , Naegleria fowleri , Naegleria fowleri/drug effects , Central Nervous System Protozoal Infections/drug therapy , Central Nervous System Protozoal Infections/parasitology , Humans , Amebicides/pharmacology , Amebicides/therapeutic use , COVID-19
7.
Parasitol Res ; 123(4): 192, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652173

ABSTRACT

The pathogenic free-living amoebae, Naegleria fowleri and Acanthamoeba polyphaga, are found in freshwater, soil, and unchlorinated or minimally chlorinated swimming pools. N. fowleri and A. polyphaga are becoming problematic as water leisure activities and drinking water are sources of infection. Chlorine dioxide (ClO2) gas is a potent disinfectant that is relatively harmless to humans at the concentration used for disinfection. In this study, we examined the amoebicidal effects of ClO2 gas on N. fowleri and A. polyphaga. These amoebae were exposed to ClO2 gas from a ready-to-use product (0.36 ppmv/h) for 12, 24, 36, and 48 h. Microscopic examination showed that the viability of N. fowleri and A. polyphaga was effectively inhibited by treatment with ClO2 gas in a time-dependent manner. The growth of N. fowleri and A. polyphaga exposed to ClO2 gas for 36 h was completely inhibited. In both cases, the mRNA levels of their respective actin genes were significantly reduced following treatment with ClO2 gas. ClO2 gas has an amoebicidal effect on N. fowleri and A. polyphaga. Therefore, ClO2 gas has been proposed as an effective agent for the prevention and control of pathogenic free-living amoeba contamination.


Subject(s)
Acanthamoeba , Chlorine Compounds , Disinfectants , Naegleria fowleri , Oxides , Chlorine Compounds/pharmacology , Naegleria fowleri/drug effects , Acanthamoeba/drug effects , Oxides/pharmacology , Disinfectants/pharmacology , Time Factors , Survival Analysis , Amebicides/pharmacology
8.
Antimicrob Agents Chemother ; 68(4): e0165123, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38412000

ABSTRACT

Organic and synthetic chemistry plays a crucial role in drug discovery fields. Moreover, chemical modifications of available molecules to enhance their efficacy, selectivity and safety have been considered as an attractive approach for the development of new bioactive agents. Indoles, a versatile group of natural heterocyclic compounds, have been widely used in pharmaceutical industry due to their broad spectrum of activities including antimicrobial, antitumoral and anti-inflammatory among others. Herein, we report the amoebicidal activity of different indole analogs on Acanthamoeba castellanii Neff. Among the 40 tested derivatives, eight molecules were able to inhibit this protistan parasite. The structure-activity relationship (SAR) analysis of their anti-Acanthamoeba activity would suggest that a carboxylation of C-3 position and the incorporation of halogen as chlorine/fluorine would enhance their biological profile, presumably by increasing their lipophilicity and therefore their ability to cross the cell membrane. Fluorescence image base system was used to investigate the effect of indole 6o c-6 on the cytoskeleton network and various programmed cell death features. We were able to highlight that the methyl 6-chloro-1H-indole-3-carboxylate could induce program cell death by the mitochondrial dysfunction.


Subject(s)
Acanthamoeba castellanii , Amebicides , Amebicides/pharmacology , Cell Death , Apoptosis , Indoles/pharmacology
9.
Phytomedicine ; 125: 155389, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38306720

ABSTRACT

BACKGROUND: Acanthamoeba is an opportunistic pathogen that can cause human infections such as granulomatous amebic encephalitis and acanthamoeba keratitis. However, no specific drug to treat the diseases has been developed. Therefore, the discovery or development of novel drugs for treating Acanthamoeba infections is urgently needed. The anti-protozoan activity of (‒)-epicatechin (EC) has been reported, suggesting it is an attractive anti-protozoal drug candidate. In this study, the amoebicidal activity of EC against A. castellanii was assessed and its mechanism of action was unveiled. METHODS: The amoebicidal activity of EC against A. castellanii trophozoites and the cytotoxicity of EC in HCE-2 and C6 cells were determined with cell viability assay. The underlying amoebicidal mechanism of EC against A. castellanii was analyzed by the apoptosis/necrosis assay, TUNEL assay, mitochondrial dysfunction assay, caspase-3 assay, and quantitative reverse transcription polymerase chain reaction. The cysticidal activity of EC was also investigated. RESULTS: EC revealed amoebicidal activity against A. castellanii trophozoites with an IC50 of 37.01 ± 3.96 µM, but was not cytotoxic to HCE-2 or C6 cells. EC induced apoptotic events such as increases in DNA fragmentation and intracellular reactive oxygen species production in A. castellanii. EC also caused mitochondrial dysfunction in the amoebae, as evidenced by the loss of mitochondrial membrane potential and reductions in ATP production. Caspase-3 activity, autophagosome formation, and the expression levels of autophagy-related genes were also increased in EC-treated amoebae. EC led to the partial death of cysts and the inhibition of excystation. CONCLUSION: EC revealed promising amoebicidal activity against A. castellanii trophozoites via programmed cell death events. EC could be a candidate drug or supplemental compound for treating Acanthamoeba infections.


Subject(s)
Acanthamoeba castellanii , Amebiasis , Amebicides , Catechin , Dieldrin/analogs & derivatives , Mitochondrial Diseases , Animals , Humans , Amebicides/pharmacology , Amebicides/therapeutic use , Caspase 3 , Catechin/pharmacology , Amebiasis/drug therapy , Trophozoites , Apoptosis , Mitochondrial Diseases/drug therapy
10.
Acta Trop ; 248: 107033, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37783284

ABSTRACT

Acanthamoeba castellanii is an opportunistic free-living amoeba (FLA) pathogen which can cause fatal central nervous system (CNS) infection, granulomatous amoebic encephalitis (GAE) and potentially blinding ocular infection, Acanthamoeba keratitis (AK). Acanthamoeba species remain a challenging protist to treat due to the unavailability of safe and effective therapeutic drugs and their ability to protect themselves in the cyst stage. Natural products and their secondary metabolites play a pivotal role in drug discovery against various pathogenic microorganisms. In the present study, the ethyl acetate extract of Myristica cinnamomea King fruit was evaluated against A. castellanii (ATCC 50492), showing an IC50 of 45.102 ± 4.62 µg/mL. Previously, the bio-guided fractionation of the extract resulted in the identification of three active compounds, namely Malabaricones (A-C). The isolated and thoroughly characterized acylphenols were evaluated for their anti-amoebic activity against A. castellanii for the first time. Among tested compounds, Malabaricone B (IC50 of 101.31 ± 17.41 µM) and Malabaricone C (IC50 of 49.95 ± 6.33 µM) showed potent anti-amoebic activity against A. castellanii trophozoites and reduced their viability up-to 75 and 80 %, respectively. Moreover, both extract and Malabaricones also significantly (p < 0.05) inhibit the encystation and excystation of A. castellanii, while showed minimal toxicity against human keratinocyte cells (HaCaT cells) at lower tested concentrations. Following that, the explanation of the possible mechanism of action of purified compounds were assessed by detection of the state of chromatin. Hoechst/PI 33342 double staining showed that necrotic cell death occurred in A. castellanii trophozoites after 8 h treatment of Malabaricones (A-C). These findings demonstrate that Malabaricones B and C could serve as promising therapeutic options against A. castellanii infections.


Subject(s)
Acanthamoeba Keratitis , Acanthamoeba castellanii , Amebiasis , Amebicides , Myristica , Animals , Humans , Amebicides/pharmacology , Fruit , Amebiasis/drug therapy , Trophozoites
11.
Parasitol Res ; 122(11): 2539-2548, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37665414

ABSTRACT

Naegleria fowleri is a free-living thermophilic flagellate amoeba that causes a rare but life-threatening infection called primary amoebic meningoencephalitis (PAM), with a very high fatality rate. Herein, the anti-amoebic potential of carboxamide derivatives possessing sulfonyl or sulfamoyl moiety was assessed against pathogenic N. fowleri using amoebicidal, cytotoxicity and cytopathogenicity assays. The results from amoebicidal experiments showed that derivatives dramatically reduced N. fowleri viability. Selected derivatives demonstrated IC50 values at lower concentrations; 1j showed IC50 at 24.65 µM, while 1k inhibited 50% amoebae growth at 23.31 µM. Compounds with significant amoebicidal effects demonstrated limited cytotoxicity against human cerebral microvascular endothelial cells. Finally, some derivatives mitigated N. fowleri-instigated host cell death. Ultimately, this study demonstrated that 1j and 1k exhibited potent anti-amoebic activity and ought to be looked at in future studies for the development of therapeutic anti-amoebic pharmaceuticals. Further investigation is required to determine the clinical relevance of our findings.


Subject(s)
Amebicides , Amoeba , Central Nervous System Protozoal Infections , Naegleria fowleri , Humans , Endothelial Cells , Amebicides/pharmacology , Brain/pathology , Central Nervous System Protozoal Infections/drug therapy
12.
Molecules ; 28(16)2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37630260

ABSTRACT

Amoebiasis is the second leading cause of death worldwide associated with parasitic disease and is becoming a critical health problem in low-income countries, urging new treatment alternatives. One of the most promising strategies is enhancing the redox imbalance within these susceptible parasites related to their limited antioxidant defense system. Metal-based drugs represent a perfect option due to their extraordinary capacity to stabilize different oxidation states and adopt diverse geometries, allowing their interaction with several molecular targets. This work describes the amoebicidal activity of five 2-(Z-2,3-diferrocenylvinyl)-4X-4,5-dihydrooxazole derivatives (X = H (3a), Me (3b), iPr (3c), Ph (3d), and benzyl (3e)) on Entamoeba histolytica trophozoites and the physicochemical, experimental, and theoretical properties that can be used to describe the antiproliferative activity. The growth inhibition capacity of these organometallic compounds is strongly related to a fine balance between the compounds' redox potential and hydrophilic character. The antiproliferative activity of diferrocenyl derivatives studied herein could be described either with the redox potential, the energy of electronic transitions, logP, or the calculated HOMO-LUMO values. Compound 3d presents the highest antiproliferative activity of the series with an IC50 of 23 µM. However, the results of this work provide a pipeline to improve the amoebicidal activity of these compounds through the directed modification of their electronic environment.


Subject(s)
Amebicides , Entamoeba histolytica , Amebicides/pharmacology , Antioxidants , Electronics
13.
Protist ; 174(3): 125966, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37229821

ABSTRACT

The purpose of this study was to assess the efficacy of certain plant extracts and to compare them with current biocides on the viability of Acanthamoeba castellanii cysts and trophozoites in vitro. Amoebicidal and cysticidal assays were performed against both trophozoites and cysts of Acanthamoeba castellanii (ATCC 50370). Ten plant extracts were evaluated alongside the current agents included polyhexamethylene biguanide (PHMB), octenidine and chlorhexidine digluconate. A. castellanii (ATCC 50370) was treated to serial two-fold dilutions of the test compounds and extracts in microtitre plate wells to investigate the effect on trophozoites and cysts of A. castellanii (ATCC 50370). Furthermore, the toxicity of each of the test compounds and extracts were assessed towards a mammalian cell line. Minimum trophozoite inhibitory concentration (MTIC), minimum trophozoite amoebicidal concentration (MTAC), and minimum cysticidal concentration (MCC) were used to establish A. castellanii (ATCC 50370) in vitro sensitivity. The findings of this research revealed that the biguanides PHMB, chlorhexidine, and octenidine all had excellent effectiveness against trophozoites and cysts of A. castellanii (ATCC 50370). The plant extracts testing results showed that, great activity against trophozoites and cysts ofA. castellanii (ATCC 50370) at lower concentrations. This is the first study to demonstrate that the Proskia plant extract had the lowest MCC value, which was 3.9 µg/mL. The time kill experiment confirmed this finding, as this extract reduced cysts of A. castellanii (ATCC 50370) by more than 3-log at 6 hour and by 4-log after 24 hour. The anti-amoebic efficacy of new plant extracts on the viability of A. castellanii (ATCC 50370) cysts and trophozoites was comparable to existing biocide treatments and was not toxic when tested on a mammalian cell line. This could be a promising novel Acanthamoeba treatment by using the tested plant extracts as a monotherapy against trophozoites and cysts.


Subject(s)
Acanthamoeba castellanii , Amebicides , Disinfectants , Animals , Disinfectants/pharmacology , Plant Extracts/pharmacology , Pyridines/pharmacology , Amebicides/pharmacology , Trophozoites , Mammals
14.
J Appl Microbiol ; 134(4)2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37024269

ABSTRACT

AIM: Herein, the anti-parasitic activity of azoles (fluconazole and itraconazole) and 5-nitroimdazole (metronidazole) against the brain-eating amoebae: Naegleria fowleri and Balamuthia mandrillaris was elucidated. METHODS AND RESULTS: Azoles and 5-nitroimidazole based nanoformulations were synthesized and characterized using a UV-visible spectrophotometer, atomic force microscopy, and fourier transform infrared spectroscopy. H1-NMR, EI-MS, and ESI-MS were performed to determine their molecular mass and elucidate their structures. Their size, zeta potential, size distribution, and polydispersity index (PDI) were assessed. Amoebicidal assays revealed that all the drugs and their nanoformulations, (except itraconazole) presented significant anti-amoebic effects against B. mandrillaris, while all the treatments indicated notable amoebicidal properties against N. fowleri. Amoebicidal effects were radically enhanced upon conjugating the drugs with nanoparticles. The IC50 values for KM-38-AgNPs-F, KM-20-AgNPs-M, and KM-IF were 65.09, 91.27, and 72.19 µg.mL-1, respectively, against B. mandrillaris. Whereas against N. fowleri, the IC50 values were: 71.85, 73.95, and 63.01 µg.mL-1, respectively. Additionally, nanoformulations significantly reduced N. fowleri-mediated host cell death, while nanoformulations along with fluconazole and metronidazole considerably reduced Balamuthia-mediated human cell damage. Finally, all the tested drugs and their nanoformulations revealed limited cytotoxic activity against human cerebral microvascular endothelial cell (HBEC-5i) cells. CONCLUSION: These compounds should be developed into novel chemotherapeutic options for use against these distressing infections due to free-living amoebae, as currently there are no effective treatments.


Subject(s)
Amebicides , Amoeba , Antiprotozoal Agents , Naegleria fowleri , Humans , Azoles/pharmacology , Fluconazole/pharmacology , Metronidazole/pharmacology , Itraconazole/pharmacology , Antiprotozoal Agents/pharmacology , Amebicides/pharmacology , Amebicides/chemistry , Brain
15.
Arch Microbiol ; 205(5): 170, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37017767

ABSTRACT

Balamuthia mandrillaris and Naegleria fowleri are protist pathogens that can cause fatal infections. Despite mortality rate of > 90%, there is no effective therapy. Treatment remains problematic involving repurposed drugs, e.g., azoles, amphotericin B and miltefosine but requires early diagnosis. In addition to drug discovery, modifying existing drugs using nanotechnology offers promise in the development of therapeutic interventions against these parasitic infections. Herein, various drugs conjugated with nanoparticles were developed and evaluated for their antiprotozoal activities. Characterizations of the drugs' formulations were accomplished utilizing Fourier-transform infrared spectroscopy, efficiency of drug entrapment, polydispersity index, zeta potential, size, and surface morphology. The nanoconjugates were tested against human cells to determine their toxicity in vitro. The majority of drug nanoconjugates exhibited amoebicidal effects against B. mandrillaris and N. fowleri. Amphotericin B-, Sulfamethoxazole-, Metronidazole-based nanoconjugates are of interest since they exhibited significant amoebicidal effects against both parasites (p < 0.05). Furthermore, Sulfamethoxazole and Naproxen significantly diminished host cell death caused by B. mandrillaris by up to 70% (p < 0.05), while Amphotericin B-, Sulfamethoxazole-, Metronidazole-based drug nanoconjugates showed the highest reduction in host cell death caused by N. fowleri by up to 80%. When tested alone, all of the drug nanoconjugates tested in this study showed limited toxic effects against human cells in vitro (less than 20%). Although these are promising findings, prospective work is warranted to comprehend the mechanistic details of nanoconjugates versus amoebae as well as their in vivo testing, to develop antimicrobials against the devastating infections caused by these parasites.


Subject(s)
Amebiasis , Amebicides , Balamuthia mandrillaris , Naegleria fowleri , Humans , Amphotericin B/pharmacology , Metronidazole/pharmacology , Metronidazole/therapeutic use , Nanoconjugates/chemistry , Nanoconjugates/therapeutic use , Prospective Studies , Amebicides/chemistry , Amebicides/pharmacology , Sulfamethoxazole/pharmacology , Sulfamethoxazole/therapeutic use , Amebiasis/drug therapy , Amebiasis/parasitology
16.
Biomed Pharmacother ; 158: 114185, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36916403

ABSTRACT

Free Living Amoeba (FLA) infections caused by Acanthamoeba genus include chronic nervous system diseases such as Granulomatous Amoebic Encephalitis (GAE), or a severe eye infection known as Acanthamoeba keratitis (AK). Current studies focused on therapy against these diseases are aiming to find novel compounds with amoebicidal activity and low toxicity to human tissues. Brown algae, such as Gongolaria abies-marina (previously known as Cystoseira abies-marina, S.G. Gmelin), presents bioactive molecules of interest, including some with antiprotozoal activity. In this study, six meroterpenoids were isolated and purified from the species Gongolaria abies-marina. Gongolarones A (1), B (2) and C (3) were identified as new compounds. Additionally, cystomexicone B (4), 1'-methoxyamentadione (5) and 6Z-1'-methoxyamentadione (6) were isolated. All compounds exhibited amoebicidal activity against Acanthamoeba castellanii Neff, A. polyphaga and A. griffini strains. Gongolarones A (1) and C (3) showed the lowest IC50 values against the two stages of these amoebae (trophozoite and cyst). Structure-activity relationship revealed that the cyclization by ether formation from C-12 to C-15 of 1, and the isomerization Δ2 t to Δ3 t of 3, increased the antiamoeboid activity of both compounds. Furthermore, gongolarones A (1) and C (3) triggered chromatin condensation, mitochondrial malfunction, oxidative stress, and disorganization of the tubulin-actin cytoskeleton in treated trophozoites. Moreover, transmission electron microscopy (TEM) images analysis revealed that compounds 1 and 3 induced autophagy process and inhibited the encystation process. All those results suggest that both compounds could induce programmed cell death (PCD) in Acanthamoeba.


Subject(s)
Acanthamoeba castellanii , Amebicides , Animals , Humans , Amebicides/pharmacology , Trophozoites , Actin Cytoskeleton
17.
PLoS One ; 18(2): e0281141, 2023.
Article in English | MEDLINE | ID: mdl-36745609

ABSTRACT

As the number of contact lens users increases, contact lens induced corneal infection is becoming more common. Acanthamoeba keratitis (AK) is a type of those which is caused by Acanthamoeba species, and may cause severe ocular inflammation and visual loss. We evaluated whether Torreya nucifera (T. nucifera) extract has an anti-amoebic effect and studied its mechanism of action on Acanthamoeba lugdunensis (A. lugdunensis). Cell viability was tested using the alamarBlue™ method, and the cell death mechanism was confirmed using the Tali® Apoptosis Kit. The SYTOX® Green assay was performed to check the plasma membrane permeability. The JC-1 dye was used to measure the mitochondrial membrane potential. A CellTiter-Glo® Luminescent Assay was used to measure the adenosine-triphosphate (ATP) level. Morphological changes in the mitochondria were examined by transmission electron microscopy (TEM). Cystic changes and a decrease in cell viability after treatment with T. nucifera were observed. Both apoptotic and necrotic cells were found in the Tali® Apoptosis assay. There was no significant difference in plasma membrane permeability between the control and T. nucifera treated groups. The collapse of the mitochondrial membrane potential and reduced ATP level in A. lugdunensis was confirmed in the groups treated with T. nucifera. Structural damage to the mitochondria was observed on TEM in the groups treated with T. nucifera. T. nucifera showed an anti-amoebic effect on A. lugdunensis, by inducing the loss of mitochondrial membrane potential. Thus, it could be a future therapeutic agent for AK.


Subject(s)
Acanthamoeba Keratitis , Acanthamoeba , Amebicides , Humans , Amebicides/pharmacology , Amebicides/therapeutic use , Acanthamoeba Keratitis/drug therapy , Adenosine Triphosphate/metabolism , Plant Extracts/pharmacology
18.
Cont Lens Anterior Eye ; 46(2): 101758, 2023 04.
Article in English | MEDLINE | ID: mdl-36243521

ABSTRACT

PURPOSE: This aim of this study was to assess anti-parasitic properties of deep eutectic solvents against eye pathogen, Acanthamoeba, often associated with the use of contact lens. METHODS: Assays were performed to investigate the effects of various Methyltrioctylammonium chloride-based deep eutectic solvents on Acanthamoeba castellanii, comprising amoebicidal assays, encystment assays, excystment assays, cytotoxicity assays by measuring lactate dehydrogenase release from human cells, and cytopathogenicity assays to determine parasite-mediated host cell death. RESULTS: In a 2 h incubation period, DES-B, DES-C, DES-D, and DES-E exhibited up to 85 % amoebicidal activity at micromolar doses, which was enhanced further following 24 h incubation. When tested in encystment assays, selected deep eutectic solvents abolished cyst formation and were able to block excystment of A. castellanii. All solvents exhibited minimal human cell cytotoxicity except DES-D. Finally, all tested deep eutectic solvents inhibited amoeba-mediated cytopathogenicity, except DES-B. CONCLUSIONS: Deep eutectic solvents show potent antiamoebic effects. These findings are promising and could lead to the development of novel contact lens disinfectants, as well as opening several avenues to explore the molecular mechanisms, various doses and incubation periods, and use of different bases against Acanthamoeba castellanii.


Subject(s)
Acanthamoeba castellanii , Amebicides , Humans , Deep Eutectic Solvents , Amebicides/pharmacology , Quaternary Ammonium Compounds/pharmacology , Contact Lens Solutions/pharmacology
19.
Sci Rep ; 12(1): 14926, 2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36056060

ABSTRACT

Amoebae from the genus Acanthamoeba are important pathogens responsible for severe illnesses in humans such as Acanthamoeba keratitis and granulomatous amoebic encephalitis. In the last few decades, AK diagnoses have steadily increased. Most patients suffering from AK were contact lens users and the infection was related to poor hygiene. However, therapy is not yet well established, and treatments may last for several months due to resistance. Moreover, these treatments have been described to generate cytotoxicity. Therefore, there is an urgent need to develop new therapeutic strategies against AK. In this study, the amoebicidal activity of different generation cationic carbosilane dendrons derived with 4-phenylbutyric acid was demonstrated against Acanthamoeba polyphaga and Acanthamoeba griffini trophozoites and cysts. In addition, the combination of chlorhexidine digluconate and the most effective dendron (ArCO2G2(SNMe3I)4) showed an in vitro effect against Acanthamoeba trophozoites and cysts, reducing the minimal trophozoite amoebicidal concentration as well as concentrations with cysticidal activity.


Subject(s)
Acanthamoeba castellanii , Acanthamoeba , Amebicides , Cysts , Dendrimers , Amebicides/pharmacology , Animals , Cations/pharmacology , Dendrimers/pharmacology , Humans , Phenylbutyrates , Silanes , Trophozoites
20.
Eur J Pharm Biopharm ; 180: 11-22, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36162636

ABSTRACT

Statins are effective sterol lowering agents with high amoebicidal activity. Nevertheless, due to their poor aqueous solubility, they remain underused especially in eye drop formulation. The aim of the present study is to develop Pitavastatin loaded nanoparticles suitable for ophthalmic administration and designed for the management of Acanthamoeba Keratitis. These nanocarriers are aimed to solve both the ophthalmic route-associated problems and the limited aqueous drug solubility issues of Pitavastatin. Nanoparticles were obtained by a nanoprecipitation-solvent displacement method and their amoebicidal activity was evaluated against four strains of Acanthamoeba: A. castellanii Neff, A. polyphaga, A. griffini and A. quina. In Acanthamoeba polyphaga, the effect of the present nanoparticles was investigated with respect to the microtubule distribution and several programmed cell death features. Nanoparticles were able to eliminate all the tested strains and Acanthamoeba polyphaga was determined to be the most resistance strain. Nanoparticles induced chromatin condensation, autophagic vacuoles and mitochondria dysfunction.


Subject(s)
Acanthamoeba Keratitis , Acanthamoeba , Amebicides , Nanoparticles , Humans , Acanthamoeba Keratitis/drug therapy , Administration, Ophthalmic , Amebicides/pharmacology , Amebicides/therapeutic use , Cell Death , Autophagy
SELECTION OF CITATIONS
SEARCH DETAIL