Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 264
Filter
1.
Int J Mol Sci ; 25(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38892321

ABSTRACT

AMELX mutations cause X-linked amelogenesis imperfecta (AI), known as AI types IE, IIB, and IIC in Witkop's classification, characterized by hypoplastic (reduced thickness) and/or hypomaturation (reduced hardness) enamel defects. In this study, we conducted whole exome analyses to unravel the disease-causing mutations for six AI families. Splicing assays, immunoblotting, and quantitative RT-PCR were conducted to investigate the molecular and cellular effects of the mutations. Four AMELX pathogenic variants (NM_182680.1:c.2T>C; c.29T>C; c.77del; c.145-1G>A) and a whole gene deletion (NG_012494.2:g.307534_403773del) were identified. The affected individuals exhibited enamel malformations, ranging from thin, poorly mineralized enamel with a "snow-capped" appearance to severe hypoplastic defects with minimal enamel. The c.145-1G>A mutation caused a -1 frameshift (NP_001133.1:p.Val35Cysfs*5). Overexpression of c.2T>C and c.29T>C AMELX demonstrated that mutant amelogenin proteins failed to be secreted, causing elevated endoplasmic reticulum stress and potential cell apoptosis. This study reveals a genotype-phenotype relationship for AMELX-associated AI: While amorphic mutations, including large deletions and 5' truncations, of AMELX cause hypoplastic-hypomaturation enamel with snow-capped teeth (AI types IIB and IIC) due to a complete loss of gene function, neomorphic variants, including signal peptide defects and 3' truncations, lead to severe hypoplastic/aplastic enamel (AI type IE) probably caused by "toxic" cellular effects of the mutant proteins.


Subject(s)
Amelogenesis Imperfecta , Amelogenin , Genetic Association Studies , Mutation , Amelogenesis Imperfecta/genetics , Amelogenesis Imperfecta/pathology , Humans , Amelogenin/genetics , Male , Female , Pedigree , Phenotype , Child , Endoplasmic Reticulum Stress/genetics , Genotype , Exome Sequencing
2.
Matrix Biol ; 131: 62-76, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38815936

ABSTRACT

Extracellular matrix proteins play crucial roles in the formation of mineralized tissues like bone and teeth via multifunctional mechanisms. In tooth enamel, ameloblastin (Ambn) is one such multifunctional extracellular matrix protein implicated in cell signaling and polarity, cell adhesion to the developing enamel matrix, and stabilization of prismatic enamel morphology. To provide a perspective for Ambn structure and function, we begin this review by describing dental enamel and enamel formation (amelogenesis) followed by a description of enamel extracellular matrix. We then summarize the established domains and motifs in Ambn protein, human amelogenesis imperfecta cases, and genetically engineered mouse models involving mutated or null Ambn. We subsequently delineate in silico, in vitro, and in vivo evidence for the amphipathic helix in Ambn as a proposed cell-matrix adhesive and then more recent in vitro evidence for the multitargeting domain as the basis for dynamic interactions of Ambn with itself, amelogenin, and membranes. The multitargeting domain facilitates tuning between Ambn-membrane interactions and self/co-assembly and supports a likely overall role for Ambn as a matricellular protein. We anticipate that this review will enhance the understanding of multifunctional matrix proteins by consolidating diverse mechanisms through which Ambn contributes to enamel extracellular matrix mineralization.


Subject(s)
Amelogenesis Imperfecta , Amelogenesis , Dental Enamel Proteins , Dental Enamel , Extracellular Matrix , Humans , Animals , Dental Enamel Proteins/metabolism , Dental Enamel Proteins/genetics , Amelogenesis/genetics , Amelogenesis Imperfecta/genetics , Amelogenesis Imperfecta/metabolism , Amelogenesis Imperfecta/pathology , Mice , Dental Enamel/metabolism , Dental Enamel/chemistry , Extracellular Matrix/metabolism , Amelogenin/metabolism , Amelogenin/genetics , Amelogenin/chemistry , Cell Adhesion
3.
Sci Rep ; 14(1): 9497, 2024 04 25.
Article in English | MEDLINE | ID: mdl-38664418

ABSTRACT

Raine syndrome (RNS) is a rare autosomal recessive osteosclerotic dysplasia. RNS is caused by loss-of-function disease-causative variants of the FAM20C gene that encodes a kinase that phosphorylates most of the secreted proteins found in the body fluids and extracellular matrix. The most common RNS clinical features are generalized osteosclerosis, facial dysmorphism, intracerebral calcifications and respiratory defects. In non-lethal RNS forms, oral traits include a well-studied hypoplastic amelogenesis imperfecta (AI) and a much less characterized gingival phenotype. We used immunomorphological, biochemical, and siRNA approaches to analyze gingival tissues and primary cultures of gingival fibroblasts of two unrelated, previously reported RNS patients. We showed that fibrosis, pathological gingival calcifications and increased expression of various profibrotic and pro-osteogenic proteins such as POSTN, SPARC and VIM were common findings. Proteomic analysis of differentially expressed proteins demonstrated that proteins involved in extracellular matrix (ECM) regulation and related to the TGFß/SMAD signaling pathway were increased. Functional analyses confirmed the upregulation of TGFß/SMAD signaling and subsequently uncovered the involvement of two closely related transcription cofactors important in fibrogenesis, Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ). Knocking down of FAM20C confirmed the TGFß-YAP/TAZ interplay indicating that a profibrotic loop enabled gingival fibrosis in RNS patients. In summary, our in vivo and in vitro data provide a detailed description of the RNS gingival phenotype. They show that gingival fibrosis and calcifications are associated with, and most likely caused by excessed ECM production and disorganization. They furthermore uncover the contribution of increased TGFß-YAP/TAZ signaling in the pathogenesis of the gingival fibrosis.


Subject(s)
Abnormalities, Multiple , Adaptor Proteins, Signal Transducing , Cleft Palate , Dental Enamel Hypoplasia , Exophthalmos , Fibroblasts , Fibrosis , Gingiva , Osteosclerosis , Proteomics , Signal Transduction , Transcription Factors , Transforming Growth Factor beta , YAP-Signaling Proteins , Humans , Transforming Growth Factor beta/metabolism , Gingiva/metabolism , Gingiva/pathology , Proteomics/methods , Fibrosis/metabolism , YAP-Signaling Proteins/metabolism , YAP-Signaling Proteins/genetics , Osteosclerosis/metabolism , Osteosclerosis/genetics , Osteosclerosis/pathology , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Dental Enamel Hypoplasia/metabolism , Dental Enamel Hypoplasia/genetics , Dental Enamel Hypoplasia/pathology , Fibroblasts/metabolism , Fibroblasts/pathology , Microcephaly/metabolism , Microcephaly/genetics , Microcephaly/pathology , Female , Transcriptional Coactivator with PDZ-Binding Motif Proteins/metabolism , Male , Trans-Activators/metabolism , Trans-Activators/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Casein Kinase I/metabolism , Casein Kinase I/genetics , Extracellular Matrix Proteins/metabolism , Extracellular Matrix Proteins/genetics , Amelogenesis Imperfecta/metabolism , Amelogenesis Imperfecta/genetics , Amelogenesis Imperfecta/pathology , Cells, Cultured
4.
JAMA Dermatol ; 160(5): 544-549, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38506824

ABSTRACT

Importance: Kindler epidermolysis bullosa is a genetic skin-blistering disease associated with recessive inherited pathogenic variants in FERMT1, which encodes kindlin-1. Severe orofacial manifestations of Kindler epidermolysis bullosa, including early oral squamous cell carcinoma, have been reported. Objective: To determine whether hypoplastic pitted amelogenesis imperfecta is a feature of Kindler epidermolysis bullosa. Design, Settings, and Participants: This longitudinal, 2-center cohort study was performed from 2003 to 2023 at the Epidermolysis Bullosa Centre, University of Freiburg, Germany, and the Special Care Dentistry Clinic, University of Chile in association with DEBRA Chile. Participants included a convenience sampling of all patients with a diagnosis of Kindler epidermolysis bullosa. Main Outcomes and Measures: The primary outcomes were the presence of hypoplastic pitted amelogenesis imperfecta, intraoral wounds, gingivitis and periodontal disease, gingival hyperplasia, vestibular obliteration, cheilitis, angular cheilitis, chronic lip wounds, microstomia, and oral squamous cell carcinoma. Results: The cohort consisted of 36 patients (15 female [42%] and 21 male [58%]; mean age at first examination, 23 years [range, 2 weeks to 70 years]) with Kindler epidermolysis bullosa. The follow-up ranged from 1 to 24 years. The enamel structure was assessed in 11 patients, all of whom presented with enamel structure abnormalities. The severity of hypoplastic pitted amelogenesis imperfecta varied from generalized to localized pitting. Additional orofacial features observed include gingivitis and periodontal disease, which was present in 90% (27 of 30 patients) of those assessed, followed by intraoral lesions (16 of 22 patients [73%]), angular cheilitis (24 of 33 patients [73%]), cheilitis (22 of 34 patients [65%]), gingival overgrowth (17 of 26 patients [65%]), microstomia (14 of 25 patients [56%]), and vestibular obliteration (8 of 16 patients [50%]). Other features included chronic lip ulcers (2 patients) and oral squamous cell carcinoma with lethal outcome (2 patients). Conclusions and Relevance: These findings suggest that hypoplastic pitted amelogenesis imperfecta is a feature of Kindler epidermolysis bullosa and underscore the extent and severity of oral manifestations in Kindler epidermolysis bullosa and the need for early and sustained dental care.


Subject(s)
Epidermolysis Bullosa , Humans , Male , Female , Adult , Young Adult , Child, Preschool , Adolescent , Child , Epidermolysis Bullosa/complications , Middle Aged , Longitudinal Studies , Periodontal Diseases/complications , Periodontal Diseases/epidemiology , Carcinoma, Squamous Cell/pathology , Amelogenesis Imperfecta/complications , Amelogenesis Imperfecta/genetics , Amelogenesis Imperfecta/pathology , Cohort Studies , Mouth Neoplasms/pathology , Mouth Neoplasms/complications , Gingivitis/pathology , Gingivitis/etiology , Cheilitis , Chile
5.
J Med Genet ; 61(7): 689-698, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38458752

ABSTRACT

BACKGROUND: Plexins are large transmembrane receptors for the semaphorin family of signalling proteins. Semaphorin-plexin signalling controls cellular interactions that are critical during development as well as in adult life stages. Nine plexin genes have been identified in humans, but despite the apparent importance of plexins in development, only biallelic PLXND1 and PLXNA1 variants have so far been associated with Mendelian genetic disease. METHODS: Eight individuals from six families presented with a recessively inherited variable clinical condition, with core features of amelogenesis imperfecta (AI) and sensorineural hearing loss (SNHL), with variable intellectual disability. Probands were investigated by exome or genome sequencing. Common variants and those unlikely to affect function were excluded. Variants consistent with autosomal recessive inheritance were prioritised. Variant segregation analysis was performed by Sanger sequencing. RNA expression analysis was conducted in C57Bl6 mice. RESULTS: Rare biallelic pathogenic variants in plexin B2 (PLXNB2), a large transmembrane semaphorin receptor protein, were found to segregate with disease in all six families. The variants identified include missense, nonsense, splicing changes and a multiexon deletion. Plxnb2 expression was detected in differentiating ameloblasts. CONCLUSION: We identify rare biallelic pathogenic variants in PLXNB2 as a cause of a new autosomal recessive, phenotypically diverse syndrome with AI and SNHL as core features. Intellectual disability, ocular disease, ear developmental abnormalities and lymphoedema were also present in multiple cases. The variable syndromic human phenotype overlaps with that seen in Plxnb2 knockout mice, and, together with the rarity of human PLXNB2 variants, may explain why pathogenic variants in PLXNB2 have not been reported previously.


Subject(s)
Amelogenesis Imperfecta , Intellectual Disability , Pedigree , Humans , Animals , Male , Female , Mice , Intellectual Disability/genetics , Intellectual Disability/pathology , Amelogenesis Imperfecta/genetics , Amelogenesis Imperfecta/pathology , Receptors, Cell Surface/genetics , Nerve Tissue Proteins/genetics , Alleles , Child , Hearing Loss/genetics , Hearing Loss/pathology , Hearing Loss, Sensorineural/genetics , Hearing Loss, Sensorineural/pathology , Adult , Mutation/genetics , Adolescent , Child, Preschool , Phenotype
6.
Oral Dis ; 30(2): 537-550, 2024 Mar.
Article in English | MEDLINE | ID: mdl-36650945

ABSTRACT

OBJECTIVES: To identify etiologic variants and perform deep dental phenotyping in patients with amelogenesis imperfecta (AI). METHODS: Three patients of two unrelated families were evaluated. Genetic variants were investigated by exome and Sanger sequencing. An unerupted permanent third molar (AI1) from Patient1 and a deciduous first molar (AI2) from Patient2, along with three tooth-type matched controls for each were characterized. RESULTS: All three patients harbored biallelic pathogenic variants in FAM20A, indicating AI1G. Of the four identified variants, one, c.1231C > T p.(Arg411Trp), was novel. Patient1 possessed the largest deletion, 7531 bp, ever identified in FAM20A. In addition to hypoplastic enamel, multiple impacted teeth, intrapulpal calcification, pericoronal radiolucencies, malocclusion, and periodontal infections were found in all three patients, gingival hyperplasia in Patient1 and Patient2, and alveolar bone exostosis in Patient3. Surface roughness was increased in AI1 but decreased in AI2. Decreased enamel mineral density, hardness, and elastic modulus were observed in AI1 enamel and dentin and AI2 dentin, along with decreased phosphorus, increased carbon, and increased calcium/phosphorus and carbon/oxygen ratios. Severely collapsed enamel rods and disorganized dentin-enamel junction were observed. CONCLUSIONS: We report a novel FAM20A variant and, for the first time, the defective mineral composition and physical/mechanical properties of AI1G teeth.


Subject(s)
Amelogenesis Imperfecta , Dental Enamel Proteins , Humans , Amelogenesis Imperfecta/genetics , Amelogenesis Imperfecta/pathology , Mutation , Dental Enamel Proteins/genetics , Phosphorus , Minerals , Carbon
7.
Pediatr Dev Pathol ; 26(6): 572-582, 2023.
Article in English | MEDLINE | ID: mdl-37962547

ABSTRACT

Unique dental conditions in children include odontogenic cysts and tumors, hereditary dental diseases, developmental anomalies, and lesions associated with the eruption of the primary or permanent teeth. Many of these conditions have long lasting effects on the adult dentition in terms of affecting esthetics, function, and overall quality of life. Inherited dental syndromes affect the dental hard tissues specifically the enamel, dentin, and/or cementum in a generalized manner, involving both primary and permanent teeth. These conditions manifest in altered quality or quantity of the hard tissues, leading to fragility, tooth loss and dental diseases such as caries, periapical pathology, and periodontal disease. This category includes amelogenesis imperfecta, dentinogenesis imperfecta, dentin dysplasia, hypophosphatasia, and hypophosphatemia. Developmental defects such as regional odontodysplasia are defined by involvement of the primary and permanent dentition in a localized manner, identified in early childhood. This review will elaborate on the histologic findings in these selected dental conditions with a discussion on clinical and radiographic findings, as well as molecular features wherever appropriate.


Subject(s)
Amelogenesis Imperfecta , Tooth , Adult , Humans , Child, Preschool , Child , Quality of Life , Tooth/pathology , Amelogenesis Imperfecta/pathology , Syndrome
8.
Eur J Hum Genet ; 31(11): 1337-1341, 2023 11.
Article in English | MEDLINE | ID: mdl-37670079

ABSTRACT

Amelogenesis imperfecta (AI) is a group of rare genetic conditions characterized by quantitative and/or qualitative tooth enamel alterations. AI can manifest as an isolated trait or as part of a syndrome. Recently, five biallelic disease-causing variants in the RELT gene were identified in 7 families with autosomal recessive amelogenesis imperfecta (ARAI). RELT encodes an orphan receptor in the tumor necrosis factor (TNFR) superfamily expressed during tooth development, with unknown function. Here, we report one Brazilian and two French families with ARAI and a distinctive hypomineralized phenotype with hypoplastic enamel, post-eruptive enamel loss, and occlusal attrition. Using Next Generation Sequencing (NGS), four novel RELT variants were identified (c.120+1G>A, p.(?); c.120+1G>T, p.(?); c.193T>C, p.(Cys65Arg) and c.1260_1263dup, p.(Arg422Glyfs*5)). Our findings extend the knowledge of ARAI dental phenotypes and expand the disease-causing variants spectrum of the RELT gene.


Subject(s)
Amelogenesis Imperfecta , Humans , Amelogenesis Imperfecta/genetics , Amelogenesis Imperfecta/pathology , Receptors, Tumor Necrosis Factor/genetics , Phenotype , Brazil , Pedigree
9.
Zhonghua Kou Qiang Yi Xue Za Zhi ; 58(9): 933-937, 2023 Sep 09.
Article in Chinese | MEDLINE | ID: mdl-37659852

ABSTRACT

Objective: FAM83H is one of the major pathogenic genes of amelogenesis imperfecta (AI). Previous studies focused on the abnormal enamel development and mineralization caused by the mutations in FAM83H. Here we aimed to observe other effects of FAM83H mutations on tooth eruption besides AI through clinical case analysis. Methods: Published AI cases with FAM83H mutations were searched through PubMed database, and the characteristics of tooth eruption of each cases were counted and analyzed. The literature search range was from January 1, 2008 to February 28, 2023, using the keywords FAM83H and amelogenesis imperfecta. The included literature must provide the detailed radiographic imaging or dental eruption information of AI patients, as well as FAM83H gene mutation information. The basic clinical information, tooth phenotypes, and mutations of all the enrolled cases were collected and analyzed in order to find the characteristics of abnormal tooth eruption. Results: Among 45 papers about FAM83H related to AI, twenty meeting the inclusion criteria were selected, involving 50 AI patients carrying FAM83H mutations who had radiographic image data or the detailed description of tooth eruption. A total of 34 abnormal erupted teeth were from 12 patients (12/50, 24%), among which 85% (29/34) had clear eruption path without any eruption obstructions, either embedded (25/34, 74%) or partially erupted (4/34, 12%). Tooth position analysis found that abnormal eruption of canines and second molars accounted for the highest proportion, accounting for 38% (13/34) respectively. Conclusions: The mutations in FAM83H may lead to amelogenesis imperfecta as well as abnormal tooth eruption at specific tooth positions.


Subject(s)
Amelogenesis Imperfecta , Humans , Amelogenesis Imperfecta/genetics , Amelogenesis Imperfecta/pathology , Tooth Eruption/genetics , Proteins/genetics , Dental Enamel , Mutation
10.
Harefuah ; 162(6): 352-358, 2023 Jun.
Article in Hebrew | MEDLINE | ID: mdl-37394436

ABSTRACT

BACKGROUND: Short stature is a common finding among the general population, mostly presented as an isolated phenotype. The syndromic short statute is rare and complex. Recently, we examined several patients from related families sharing both short stature and congenital dental abnormalities. OBJECTIVES: 1. Clinical characterization of syndromic short stature; 2. To find the disease mutation and evaluate the carrier state in the particular community. METHODS: Clinical characterization- by medical history, medical records and physical examination; Homozygosity mapping - by using the Single nucleotide polymorphism (SNP) chromosomal microarrays (CMA) analysis and gene mutation detection by ABI Sanger sequence. RESULTS: All patients present with short stature severe dental anomalies including enamel formation and mineralization defect, oligodontia, abnormal shape and retarded eruption. CMA analysis in 3 patients and 2 healthy members of four families was normal. One homozygote region in chromosome 11 (11p11.2- 11q13.3) was found in all patients. By using the candidate gene approach, amongst the 301 genes found within this region, only one, the LTBP3 gene (Latent Transforming Growth Factor-Beta-Binding Protein-3) has high priority for sequence. Hence, LTBP3 (OMIM-602090) pathogenic variant is responsible for "brachyolmia with amelogenesis imperfecta" also known as "Dental Anomalies and Short Stature (DASS)" (OMIM- 601216). We sequenced all 29 LTBP3 exons and a novel splice pathogenic variant, c.1346-1G>A chr11:65319629, in exon 8 was identified. The variant segregated well within healthy tested family members. We found a high carrier rate in the village (1:15). CONCLUSIONS: We identified a novel and common LTBP3 gene pathogenic variant responsible for short stature, brachyolmia and amelogenesis imperfecta in Druze Arab patients.


Subject(s)
Amelogenesis Imperfecta , Osteochondrodysplasias , Humans , Amelogenesis Imperfecta/genetics , Amelogenesis Imperfecta/pathology , Arabs , Mutation , Osteochondrodysplasias/genetics , Latent TGF-beta Binding Proteins/genetics
11.
Oral Dis ; 29(6): 2334-2365, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37154292

ABSTRACT

Amelogenesis imperfecta (AI) is one of the typical dental genetic diseases in human. It can occur isolatedly or as part of a syndrome. Previous reports have mainly clarified the types and mechanisms of nonsyndromic AI. This review aimed to compare the phenotypic differences among the hereditary enamel defects with or without syndromes and their underlying pathogenic genes. We searched the articles in PubMed with different strategies or keywords including but not limited to amelogenesis imperfecta, enamel defects, hypoplastic/hypomaturation/hypocalcified, syndrome, or specific syndrome name. The articles with detailed clinical information about the enamel and other phenotypes and clear genetic background were used for the analysis. We totally summarized and compared enamel phenotypes of 18 nonsyndromic AI with 17 causative genes and 19 syndromic AI with 26 causative genes. According to the clinical features, radiographic or ultrastructural changes in enamel, the enamel defects were basically divided into hypoplastic and hypomineralized (hypomaturated and hypocalcified) and presented a higher heterogeneity which were closely related to the involved pathogenic genes, types of mutation, hereditary pattern, X chromosome inactivation, incomplete penetrance, and other mechanisms.The gene-specific enamel phenotypes could be an important indicator for diagnosing nonsyndromic and syndromic AI.


Subject(s)
Amelogenesis Imperfecta , Dental Enamel Hypoplasia , Dental Enamel Proteins , Humans , Amelogenesis Imperfecta/genetics , Amelogenesis Imperfecta/pathology , Dental Enamel/chemistry , Dental Enamel Proteins/genetics , Phenotype
12.
Int Endod J ; 56(8): 943-954, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37159186

ABSTRACT

AIM: Biallelic loss-of-function FAM20A mutations cause amelogenesis imperfecta (AI) type IG, better known as enamel renal syndrome (ERS), characterized by severe enamel hypoplasia, delayed/failed tooth eruption, intrapulpal calcifications, gingival hyperplasia and nephrocalcinosis. FAM20A binds to FAM20C, the Golgi casein kinase (GCK) and potentiates its function to phosphorylate secreted proteins critical for biomineralization. While many FAM20A pathogenic mutations have been reported, the pathogeneses of orodental anomalies in ERS remain to be elucidated. This study aimed to identify disease-causing mutations for patients with ERS phenotypes and to discern the molecular mechanism underlying ERS intrapulpal calcifications. METHODOLOGY: Phenotypic characterization and whole exome analyses were conducted for 8 families and 2 sporadic cases with hypoplastic AI. A minigene assay was performed to investigate the molecular consequences of a FAM20A splice-site variant. RNA sequencing followed by transcription profiling and gene ontology (GO) analyses were carried out for dental pulp tissues of ERS and the control. RESULTS: Biallelic FAM20A mutations were demonstrated for each affected individual, including 7 novel pathogenic variants: c.590-5T>A, c.625T>A (p.Cys209Ser), c.771del (p.Gln258Argfs*28), c.832_835delinsTGTCCGACGGTGTCCGACGGTGTC CA (p.Val278Cysfs*29), c.1232G>A (p.Arg411Gln), c.1297A>G (p.Arg433Gly) and c.1351del (p.Gln451Serfs*4). The c.590-5T>A splice-site mutation caused Exon 3 skipping, which resulted in an in-frame deletion of a unique region of the FAM20A protein, p.(Asp197_Ile214delinsVal). Analyses of differentially expressed genes in ERS pulp tissues demonstrated that genes involved in biomineralization, particularly dentinogenesis, were significantly upregulated, such as DSPP, MMP9, MMP20 and WNT10A. Enrichment analyses indicated overrepresentation of gene sets associated with BMP and SMAD signalling pathways. In contrast, GO terms related to inflammation and axon development were underrepresented. Among BMP signalling genes, BMP agonists GDF7, GDF15, BMP3, BMP8A, BMP8B, BMP4 and BMP6 were upregulated, while BMP antagonists GREM1, BMPER and VWC2 showed decreased expression in ERS dental pulp tissues. CONCLUSIONS: Upregulation of BMP signalling underlies intrapulpal calcifications in ERS. FAM20A plays an essential role in pulp tissue homeostasis and prevention of ectopic mineralization in soft tissues. This critical function probably depends upon MGP (matrix Gla protein), a potent mineralization inhibitor that must be properly phosphorylated by FAM20A-FAM20C kinase complex.


Subject(s)
Amelogenesis Imperfecta , Calcinosis , Dental Enamel Proteins , Nephrocalcinosis , Humans , Nephrocalcinosis/genetics , Nephrocalcinosis/pathology , Amelogenesis Imperfecta/genetics , Amelogenesis Imperfecta/metabolism , Amelogenesis Imperfecta/pathology , Dental Pulp/metabolism , Dental Enamel Proteins/genetics , Mutation , Gene Expression Profiling , Carrier Proteins/genetics
13.
Bone ; 166: 116595, 2023 01.
Article in English | MEDLINE | ID: mdl-36272714

ABSTRACT

Truncation mutations in family with sequence similarity, member H (FAM83H) gene are considered the main cause of autosomal dominant hypocalcified amelogenesis imperfecta (ADHCAI); however, its pathogenic mechanism in amelogenesis remains poorly characterized. This study aimed to investigate the effects of truncated FAM83H on developmental defects in enamel. CRISPR/Cas9 technology was used to develop a novel Fam83h c.1186C > T (p.Q396*) knock-in mouse strain, homologous to the human FAM83H c.1192C > T mutation in ADHCAI. The Fam83hQ396⁎/Q396⁎ mice showed poor growth, a sparse and scruffy coat, scaly skin and early mortality compared to control mice. Moreover, the forelimbs of homozygous mice were swollen, exhibiting a significant inflammatory response. Incisors of Fam83hQ396⁎/Q396⁎ mice appeared chalky white, shorter, and less sharp than those of control mice, and energy dispersive X-ray spectroscopy (EDS) analysis and Prussian blue staining helped identify decreased iron and increased calcium (Ca) and phosphorus (P) levels, with an unchanged Ca/P ratio. The expression of iron transportation proteins, transferrin receptor (TFRC) and solute carrier family 40 member 1 (SLC40A1), was decreased in Fam83h-mutated ameloblasts. Micro-computed tomography revealed enamel defects in Fam83hQ396⁎/Q396⁎ mice. Fam83hQ396⁎/Q396⁎ enamel showed decreased Vickers hardness and distorted enamel rod structure and ameloblast arrangement. mRNA sequencing showed that the cell adhesion pathway was most notably clustered in LS8-Fam83h-mutated cells. Immunofluorescence analysis further revealed decreased protein expression of desmoglein 3, a component of desmosomes, in Fam83h-mutated ameloblasts. The FAM83H-casein kinase 1α (CK1α)-keratin 14 (K14)-amelogenin (AMELX) interaction was detected in ameloblasts. And K14 and AMELX were disintegrated from the tetramer in Fam83h-mutated ameloblasts in vitro and in vivo. In secretory stage ameloblasts of Fam83hQ396⁎/Q396⁎ mice, AMELX secretion exhibited obvious retention in the cytoplasm. In conclusion, truncated FAM83H exerted dominant-negative effects on gross development, amelogenesis, and enamel biomineralization by disturbing iron transportation, influencing the transportation and secretion of AMELX, and interfering with cell-cell adhesion in ameloblasts.


Subject(s)
Amelogenesis Imperfecta , Proteins , Animals , Male , Mice , Ameloblasts/metabolism , Amelogenesis/genetics , Amelogenesis Imperfecta/genetics , Amelogenesis Imperfecta/metabolism , Amelogenesis Imperfecta/pathology , Iron/metabolism , Mutation , Proteins/genetics , X-Ray Microtomography
14.
J Cell Mol Med ; 26(22): 5670-5679, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36300761

ABSTRACT

Family with sequence similarity 83 members H (Fam83h) is essential for dental enamel formation. Fam83h mutations cause human amelogenesis imperfecta (AI), an inherited disorder characterized by severe hardness defects in dental enamel. Nevertheless, previous studies showed no enamel defects in Fam83h-knockout/lacZ-knockin mice. In this study, a large deletion of the Fam83h gene (900 bp) was generated via a dual sgRNA-directed CRISPR/Cas9 system in rabbits. Abnormal tooth mineralization and loose dentine were found in homozygous Fam83h knockout (Fam83h-/- ) rabbits compared with WT rabbits. In addition, reduced hair follicle counts in dorsal skin, hair cycling dysfunction and hair shaft differentiation deficiency were observed in Fam83h-/- rabbits. Moreover, X-rays and staining of bone sections showed abnormal bending of the ulna and radius and an ulnar articular surface with insufficient trabecular bone in Fam83h-/- rabbits. Taken together, these data are the first report of defective hair cycling, hair shaft differentiation and abnormal bending of the ulna and radius in Fam83h-/- rabbits. This novel Fam83h-/- rabbit model may facilitate understanding the function of Fam83h and the pathogenic mechanism of the Fam83h mutation.


Subject(s)
Amelogenesis Imperfecta , CRISPR-Cas Systems , Humans , Mice , Animals , Rabbits , CRISPR-Cas Systems/genetics , Proteins/genetics , Amelogenesis Imperfecta/genetics , Amelogenesis Imperfecta/pathology , Tooth Calcification , Hair/pathology
15.
Genes (Basel) ; 13(7)2022 07 18.
Article in English | MEDLINE | ID: mdl-35886055

ABSTRACT

Amelogenesis imperfecta (AI) is a heterogeneous group of genetic disorders of dental enamel. X-linked AI results from disease-causing variants in the AMELX gene. In this paper, we characterise the genetic aetiology and enamel histology of female AI patients from two unrelated families with similar clinical and radiographic findings. All three probands were carefully selected from 40 patients with AI. In probands from both families, scanning electron microscopy confirmed hypoplastic and hypomineralised enamel. A neonatal line separated prenatally and postnatally formed enamel of distinctly different mineralisation qualities. In both families, whole exome analysis revealed the intron variant NM_182680.1: c.103-3T>C, located three nucleotides before exon 4 of the AMELX gene. In family I, an additional variant, c.2363G>A, was found in exon 5 of the FAM83H gene. This report illustrates a variant in the AMELX gene that was not previously reported to be causative for AI as well as an additional variant in the FAM83H gene with probably limited clinical significance.


Subject(s)
Amelogenesis Imperfecta , Amelogenesis Imperfecta/genetics , Amelogenesis Imperfecta/pathology , Amelogenin/genetics , Exons/genetics , Female , Humans , Infant, Newborn , Introns/genetics , Mutation , Proteins/genetics
16.
Matrix Biol ; 111: 245-263, 2022 08.
Article in English | MEDLINE | ID: mdl-35820561

ABSTRACT

Amelogenesis imperfecta (AI) is an inherited developmental enamel defect affecting tooth masticatory function, esthetic appearance, and the well-being of patients. As one of the major enamel matrix proteins (EMPs), enamelin (ENAM) has three serines located in Ser-x-Glu (S-x-E) motifs, which are potential phosphorylation sites for the Golgi casein kinase FAM20C. Defects in FAM20C have similarly been associated with AI. In our previous study of EnamRgsc514 mice, the Glu57 in the S55-X56-E57 motif was mutated into Gly, which was expected to cause a phosphorylation failure of Ser55 because Ser55 cannot be recognized by FAM20C. The severe enamel defects in ENAMRgsc514 mice reminiscent of Enam-knockout mouse enamel suggested a potentially important role of Ser55 phosphorylation in ENAM function. However, the enamel defects and ENAM dysfunction may also be attributed to distinct physicochemical differences between Glu57 and Gly57. To clarify the significance of Ser55 phosphorylation to ENAM function, we generated two lines of Enam knock-in mice using CRISPR-Cas9 method to eliminate or mimic the phosphorylation state of Ser55 by substituting it with Ala55 or Asp55 (designated as S55A or S55D), respectively. The teeth of 6-day or 4-week-old mice were subjected to histology, micro-CT, SEM, TEM, immunohistochemistry, and mass spectrometry analyses to characterize the morphological, microstructural and proteomic changes in ameloblasts, enamel matrix and enamel rods. Our results showed that the enamel formation and EMP expression in S55D heterozygotes (Het) were less disturbed than those in S55A heterozygotes, while both homozygotes (Homo) had no mature enamel formation. Proteomic analysis revealed alterations of enamel matrix biosynthetic and mineralization processes in S55A Hets. Our present findings indicate that Asp55 substitution partially mimics the phosphorylation state of Ser55 in ENAM. Ser55 phosphorylation is essential for ENAM function during amelogenesis.


Subject(s)
Amelogenesis Imperfecta , Dental Enamel Proteins , Amelogenesis/genetics , Amelogenesis Imperfecta/genetics , Amelogenesis Imperfecta/pathology , Animals , Calcium-Binding Proteins/metabolism , Dental Enamel Proteins/genetics , Dental Enamel Proteins/metabolism , Extracellular Matrix Proteins/metabolism , Mice , Mice, Knockout , Phosphorylation , Proteomics , Serine/metabolism
17.
Sci Rep ; 12(1): 2820, 2022 02 18.
Article in English | MEDLINE | ID: mdl-35181734

ABSTRACT

As the hardest tissue in the human body, tooth enamel formation is a highly regulated process involving several stages of differentiation and key regulatory genes. One such gene, tryptophan-aspartate repeat domain 72 (WDR72), has been found to cause a tooth enamel defect when deleted or mutated, resulting in a condition called amelogenesis imperfecta. Unlike the canonical genes regulating tooth development, WDR72 remains intracellularly and is not secreted to the enamel matrix space to regulate mineralization, and is found in other major organs of the body, namely the kidney, brain, liver, and heart. To date, a link between intracellular vesicle transport and enamel mineralization has been suggested, however identification of the mechanistic regulators has yet to be elucidated, in part due to the limitations associated with studying highly differentiated ameloblast cells. Here we show compelling evidence that WDR72 regulates endocytosis of proteins, both in vivo and in a novel in vitro ameloblast cell line. We elucidate WDR72's function to be independent of intracellular vesicle acidification while still leading to defective enamel matrix pH extracellularly. We identify a vesicle function associated with microtubule assembly and propose that WDR72 directs microtubule assembly necessary for membrane mobilization and subsequent vesicle transport. Understanding WDR72 function provides a mechanistic basis for determining physiologic and pathologic tissue mineralization.


Subject(s)
Ameloblasts/metabolism , Calcification, Physiologic/genetics , Dental Enamel/growth & development , Tooth/growth & development , Amelogenesis Imperfecta/genetics , Amelogenesis Imperfecta/pathology , Brain/metabolism , Cell Differentiation/genetics , Dental Enamel/metabolism , Endocytosis/genetics , Humans , Kidney/metabolism , Liver/metabolism , Microtubules/genetics , Myocardium/metabolism , Tooth/metabolism
18.
Front Endocrinol (Lausanne) ; 12: 752568, 2021.
Article in English | MEDLINE | ID: mdl-34777248

ABSTRACT

The enamel renal syndrome (ERS) is a rare disorder featured by amelogenesis imperfecta, gingival fibromatosis and nephrocalcinosis. ERS is caused by bi-allelic mutations in the secretory pathway pseudokinase FAM20A. How mutations in FAM20A may modify the gingival connective tissue homeostasis and cause fibromatosis is currently unknown. We here analyzed conditioned media of gingival fibroblasts (GFs) obtained from four unrelated ERS patients carrying distinct mutations and control subjects. Secretomic analysis identified 109 dysregulated proteins whose abundance had increased (69 proteins) or decreased (40 proteins) at least 1.5-fold compared to control GFs. Proteins over-represented were mainly involved in extracellular matrix organization, collagen fibril assembly, and biomineralization whereas those under-represented were extracellular matrix-associated proteins. More specifically, transforming growth factor-beta 2, a member of the TGFß family involved in both mineralization and fibrosis was strongly increased in samples from GFs of ERS patients and so were various known targets of the TGFß signaling pathway including Collagens, Matrix metallopeptidase 2 and Fibronectin. For the over-expressed proteins quantitative RT-PCR analysis showed increased transcript levels, suggesting increased synthesis and this was further confirmed at the tissue level. Additional immunohistochemical and western blot analyses showed activation and nuclear localization of the classical TGFß effector phospho-Smad3 in both ERS gingival tissue and ERS GFs. Exposure of the mutant cells to TGFB1 further upregulated the expression of TGFß targets suggesting that this pathway could be a central player in the pathogenesis of the ERS gingival fibromatosis. In conclusion our data strongly suggest that TGFß -induced modifications of the extracellular matrix contribute to the pathogenesis of ERS. To our knowledge this is the first proteomic-based analysis of FAM20A-associated modifications.


Subject(s)
Amelogenesis Imperfecta/genetics , Amelogenesis Imperfecta/pathology , Dental Enamel Proteins/genetics , Fibromatosis, Gingival/genetics , Fibromatosis, Gingival/pathology , Nephrocalcinosis/genetics , Nephrocalcinosis/pathology , Adolescent , Amelogenesis Imperfecta/complications , Amelogenesis Imperfecta/etiology , Extracellular Matrix/genetics , Extracellular Matrix/pathology , Fibroblasts/metabolism , Fibromatosis, Gingival/complications , Gingiva/pathology , Humans , Male , Mutation , Nephrocalcinosis/complications , Nephrocalcinosis/etiology , Proteomics , Signal Transduction/genetics , Transforming Growth Factor beta , Young Adult
19.
Genes (Basel) ; 12(5)2021 04 26.
Article in English | MEDLINE | ID: mdl-33926089

ABSTRACT

This study aimed to identify the molecular genetic etiology of an 8-year-old boy with amelogenesis imperfecta in permanent dentition. Bilateral cochlear implants were placed due to sensorineural hearing loss, and there was no other family member with a similar phenotype. Peripheral blood samples were collected with the understanding and written consent of the participating family members. A constitutional chromosome study was performed for the proband. Genomic DNA was isolated, and whole exome sequencing was performed. A series of bioinformatic analyses were performed with the obtained paired-end sequencing reads, and the variants were filtered and annotated with dbSNP147. There was no abnormality in the constitutional chromosome study. Whole exome sequencing analysis with trio samples identified a homozygous mutation (c.506T>C, p. (Leu169Pro)) in the PEX26 gene. We verified "temperature sensitivity (ts)" of patient-derived Pex26-L169P by expression in pex26 CHO mutant ZP167 cells to determine the effect of the L169P mutation on Pex26 function. The L169P mutation causes a mild ts-cellular phenotype representing the decreased peroxisomal import of catalase. This study supports the finding that the recessive mutations in PEX26 are associated with Heimler syndrome and demonstrates the importance of an early and correct diagnosis.


Subject(s)
Amelogenesis Imperfecta/genetics , Hearing Loss, Sensorineural/genetics , Membrane Proteins/genetics , Nails, Malformed/genetics , Amelogenesis Imperfecta/pathology , Animals , CHO Cells , Child , Cricetinae , Cricetulus , Hearing Loss, Sensorineural/pathology , Homozygote , Humans , Male , Membrane Proteins/metabolism , Mutation , Nails, Malformed/pathology , Phenotype , Protein Transport
20.
Int J Mol Sci ; 22(4)2021 Feb 23.
Article in English | MEDLINE | ID: mdl-33672174

ABSTRACT

Amelogenesis imperfecta is a congenital form of enamel hypoplasia. Although a number of genetic mutations have been reported in humans, the regulatory network of these genes remains mostly unclear. To identify signatures of biological pathways in amelogenesis imperfecta, we conducted bioinformatic analyses on genes associated with the condition in humans. Through an extensive search of the main biomedical databases, we found 56 genes in which mutations and/or association/linkage were reported in individuals with amelogenesis imperfecta. These candidate genes were further grouped by function, pathway, protein-protein interaction, and tissue-specific expression patterns using various bioinformatic tools. The bioinformatic analyses highlighted a group of genes essential for extracellular matrix formation. Furthermore, advanced bioinformatic analyses for microRNAs (miRNAs), which are short non-coding RNAs that suppress target genes at the post-transcriptional level, predicted 37 candidates that may be involved in amelogenesis imperfecta. To validate the miRNA-gene regulation association, we analyzed the target gene expression of the top seven candidate miRNAs: miR-3195, miR-382-5p, miR-1306-5p, miR-4683, miR-6716-3p, miR-3914, and miR-3935. Among them, miR-1306-5p, miR-3195, and miR-3914 were confirmed to regulate ameloblast differentiation through the regulation of genes associated with amelogenesis imperfecta in AM-1 cells, a human ameloblastoma cell line. Taken together, our study suggests a potential role for miRNAs in amelogenesis imperfecta.


Subject(s)
Amelogenesis Imperfecta/genetics , Amelogenesis Imperfecta/pathology , MicroRNAs/genetics , Ameloblasts/pathology , Ameloblasts/physiology , Cell Differentiation/genetics , Cell Line , Computational Biology/methods , Humans , Protein Interaction Maps/genetics , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...