Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.601
Filter
1.
Eur J Med Chem ; 278: 116790, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39236497

ABSTRACT

New antibacterial compounds are urgently needed, especially for infections caused by the top-priority Gram-negative bacteria that are increasingly difficult to treat. Lipid A is a key component of the Gram-negative outer membrane and the LpxH enzyme plays an important role in its biosynthesis, making it a promising antibacterial target. Inspired by previously reported ortho-N-methyl-sulfonamidobenzamide-based LpxH inhibitors, novel benzamide substitutions were explored in this work to assess their in vitro activity. Our findings reveal that maintaining wild-type antibacterial activity necessitates removal of the N-methyl group when shifting the ortho-N-methyl-sulfonamide to the meta-position. This discovery led to the synthesis of meta-sulfonamidobenzamide analogs with potent antibacterial activity and enzyme inhibition. Moreover, we demonstrate that modifying the benzamide scaffold can alter blocking of the cardiac voltage-gated potassium ion channel hERG. Furthermore, two LpxH-bound X-ray structures show how the enzyme-ligand interactions of the meta-sulfonamidobenzamide analogs differ from those of the previously reported ortho analogs. Overall, our study has identified meta-sulfonamidobenzamide derivatives as promising LpxH inhibitors with the potential for optimization in future antibacterial hit-to-lead programs.


Subject(s)
Anti-Bacterial Agents , Benzamides , Drug Design , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Benzamides/pharmacology , Benzamides/chemistry , Benzamides/chemical synthesis , Structure-Activity Relationship , Humans , Sulfonamides/chemistry , Sulfonamides/pharmacology , Sulfonamides/chemical synthesis , Molecular Structure , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Dose-Response Relationship, Drug , Amidohydrolases/antagonists & inhibitors , Amidohydrolases/metabolism , Models, Molecular
2.
Biochim Biophys Acta Proteins Proteom ; 1872(6): 141043, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39128657

ABSTRACT

Canavan disease is caused by mutations in the ASPA gene, leading to diminished catalytic activity of aspartoacylase in the brain. Clinical missense mutations are found throughout the enzyme structure, with many of these mutated enzymes having not only decreased activity but also compromised stability. High-throughput screening of a small molecule library has identified several compounds that significantly increase the thermal stability of the E285A mutant enzyme, the most predominant clinical mutation in Canavan disease, while having a negligible effect on the native enzyme. Based on the initial successes, some structural analogs of these initial hits were selected for further examination. Glutathione, NAAG and patulin were each confirmed to be competitive inhibitors, indicating the binding of these compounds at the dimer interface or near the active site of the E285A enzyme. The experimental results were theoretically examined with the help of the docking analysis method. The structure activity-guided optimization of these compounds can potentially lead to potential pharmacological chaperones that could alleviate the detrimental effect of ASPA mutations in Canavan patients.


Subject(s)
Amidohydrolases , Canavan Disease , Canavan Disease/drug therapy , Canavan Disease/genetics , Canavan Disease/enzymology , Amidohydrolases/genetics , Amidohydrolases/antagonists & inhibitors , Amidohydrolases/metabolism , Amidohydrolases/chemistry , Humans , Molecular Docking Simulation , Enzyme Stability/drug effects , Mutation, Missense , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemistry , Catalytic Domain , Mutation , High-Throughput Screening Assays
3.
J Chem Inf Model ; 64(17): 6866-6879, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39177258

ABSTRACT

Dimethylarginine dimethylaminohydrolase-1 (DDAH-1) accounts for the catabolism of the endogenous inhibitors of nitric oxide (NO) synthases, namely, ADMA (Nω,Nω-dimethyl-l-arginine) and NMMA (Nω-monomethyl-l-arginine). Inhibition of DDAH-1 may prove a therapeutic benefit in diseases associated with elevated nitric oxide (NO) levels by providing a tissue-specific increase of ADMA and NMMA. In this work, we have used molecular dynamics to generate a pool of DDAH-1 conformations in the apo and holo forms. Ensemble docking has been instrumental in screening an in-house fragment-based library of 824 compounds. Resulting virtual hits have been validated for their binding activity to recombinant human DDAH-1 using microscale thermophoresis (MST). As a key result, three non-amino acidic ligands of DDAH-1 (VIS212, VIS268, VIS726) are identified with higher binding efficiency index than ADMA. Amid these compounds, purpurogallin (VIS726) proves a potent ligand of DDAH-1, showing a mixed behavior of enzymatic inhibition in a biochemical assay. This finding widens the panel of known molecular targets of purpurogallin and provides clues into the molecular mechanisms of its cellular NO inhibition activity as well as its anti-inflammatory and neuroprotective effects.


Subject(s)
Amidohydrolases , Humans , Amidohydrolases/antagonists & inhibitors , Amidohydrolases/metabolism , Amidohydrolases/chemistry , Biophysical Phenomena , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Protein Conformation
4.
Int J Mol Sci ; 25(14)2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39062935

ABSTRACT

The endocannabinoid system, known for its regulatory role in various physiological processes, relies on the activities of several hydrolytic enzymes, such as fatty acid amide hydrolase (FAAH), N-acylethanolamine-hydrolyzing acid amidase (NAAA), monoacylglycerol lipase (MAGL), and α/ß-hydrolase domains 6 (ABHD6) and 12 (ABHD12), to maintain homeostasis. Accurate measurement of these enzymes' activities is crucial for understanding their function and for the development of potential therapeutic agents. Fluorometric assays, which offer high sensitivity, specificity, and real-time monitoring capabilities, have become essential tools in enzymatic studies. This review provides a comprehensive overview of the principles behind these assays, the various substrates and fluorophores used, and advances in assay techniques used not only for the determination of the kinetic mechanisms of enzyme reactions but also for setting up kinetic assays for the high-throughput screening of each critical enzyme involved in endocannabinoid degradation. Through this comprehensive review, we aim to highlight the strengths and limitations of current fluorometric assays and suggest future directions for improving the measurement of enzyme activity in the endocannabinoid system.


Subject(s)
Amidohydrolases , Endocannabinoids , Enzyme Assays , Endocannabinoids/metabolism , Humans , Enzyme Assays/methods , Amidohydrolases/metabolism , Amidohydrolases/antagonists & inhibitors , Hydrolysis , Monoacylglycerol Lipases/metabolism , Monoacylglycerol Lipases/antagonists & inhibitors , Animals , Fluorometry/methods , Fluorescence , Kinetics , Fluorescent Dyes/chemistry , Enzyme Inhibitors/pharmacology
5.
Arch Biochem Biophys ; 758: 110079, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38969195

ABSTRACT

Streptococcus oralis an opportunistic bacterium has been reported to be involved in various blood borne infections like subacute bacterial endocarditis, septicemia, bacterial meningitis and in some cases dental caries too. Among various targets the peptide deformylase, of S.oralis appears to be most potent druggable target as it is involved in protein synthesis is opted for the current study. Due to unavailability of PDB structure of peptide deformylase from S. oralis the study initiates with homology modelling of the protein and 6OW2 of S pneumoniae is considered as the template. Thereafter, Molecular docking, Molecular dynamic simulation, ADME analysis, and MMPBSA analysis was carried out to explore the inhibitory potential of phyto-constituents as potential inhibitors for Peptide deformylase from S.oralis. Actinonin was considered as reference drug. Among 2370 phyto compounds the best observations were recorded for A1-Barrigenol (IMPHY010984) with binding affinity of -8.5 kcal/mol. Calculated RMSD, RMSF, Binding Free Energy for IMPHY010984 averaged at about 0.10 ± 0.03 nm, 0.08 ± 0.05 nm, 131 ± 21 kJ/mol respectively whereas the RMSD, RMSF, Binding Free Energy recorded for reference drug averaged at about 0.19 ± 0.04 nm, 0.11 ± 0.08 nm, -94 ± 18 kJ/mol respectively. Based on in silico observations IMPHY010984 is proved out as superior candidate over reference drug. The study reflects the potential of IMPHY010984 as prophylactic therapeutics for S.oralis.


Subject(s)
Amidohydrolases , Molecular Docking Simulation , Molecular Dynamics Simulation , Streptococcus oralis , Amidohydrolases/antagonists & inhibitors , Amidohydrolases/metabolism , Amidohydrolases/chemistry , Streptococcus oralis/enzymology , Streptococcus oralis/drug effects , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Phytochemicals/chemistry , Phytochemicals/pharmacology , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Hydroxamic Acids
6.
Org Biomol Chem ; 22(32): 6520-6531, 2024 08 14.
Article in English | MEDLINE | ID: mdl-39072429

ABSTRACT

A base-promoted palladium-catalyzed cascade reaction is described to access trifluoromethylated dipyridodiazepinone derivatives in an aqueous system (1,4-dioxane-H2O). This methodology uses simple chemicals, has a broad substrate scope, is waste minimized (E-factor = 0.3-0.9) and produces 11-CF3-tethered dipyridiodiazepinone derivatives in good to excellent yields. All the synthesized analogues were preliminarily examined for antibacterial activity against E. coli and S. aureus and compared to the reference drugs. Furthermore, inhibition of the peptide deformylase enzyme and antibiofilm studies were performed and compound 5i exhibited the best inhibitory effect among the other analogues. Furthermore, these analogues were in silico analysed via molecular docking, molecular simulation, drug-likeness, physicochemical and ADMET studies. Results from biological evaluation and computational studies revealed that compound 5i could be used as a lead molecular structure for the development of novel antibacterial agents. In conclusion, the green metrics evaluation of the defined protocol provides advantages in the synthesis of biologically active compounds.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Microbial Sensitivity Tests , Molecular Docking Simulation , Staphylococcus aureus , Water , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Water/chemistry , Amidohydrolases/antagonists & inhibitors , Amidohydrolases/metabolism , Molecular Structure , Structure-Activity Relationship , Azepines/pharmacology , Azepines/chemical synthesis , Azepines/chemistry , Biofilms/drug effects , Palladium/chemistry
7.
Drug Des Devel Ther ; 18: 2143-2167, 2024.
Article in English | MEDLINE | ID: mdl-38882045

ABSTRACT

Over the past decade, the idea of targeting the endocannabinoid system to treat anxiety disorders has received increasing attention. Previous studies focused more on developing cannabinoid receptor agonists or supplementing exogenous cannabinoids, which are prone to various adverse effects due to their strong pharmacological activity and poor receptor selectivity, limiting their application in clinical research. Endocannabinoid hydrolase inhibitors are considered to be the most promising development strategies for the treatment of anxiety disorders. More recent efforts have emphasized that inhibition of two major endogenous cannabinoid hydrolases, monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH), indirectly activates cannabinoid receptors by increasing endogenous cannabinoid levels in the synaptic gap, circumventing receptor desensitization resulting from direct enhancement of endogenous cannabinoid signaling. In this review, we comprehensively summarize the anxiolytic effects of MAGL and FAAH inhibitors and their potential pharmacological mechanisms, highlight reported novel inhibitors or natural products, and provide an outlook on future directions in this field.


Subject(s)
Amidohydrolases , Anti-Anxiety Agents , Endocannabinoids , Enzyme Inhibitors , Monoacylglycerol Lipases , Humans , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/chemistry , Amidohydrolases/antagonists & inhibitors , Amidohydrolases/metabolism , Monoacylglycerol Lipases/antagonists & inhibitors , Monoacylglycerol Lipases/metabolism , Animals , Endocannabinoids/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Anxiety Disorders/drug therapy , Anxiety Disorders/metabolism
8.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(7): 159524, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38857757

ABSTRACT

Neuroinflammation is a hallmark of several neurodegenerative disorders that has been extensively studied in recent years. Microglia, the primary immune cells of the central nervous system (CNS), are key players in this physiological process, demonstrating a remarkable adaptability in responding to various stimuli in the eye and the brain. Within the complex network of neuroinflammatory signals, the fatty acid N-ethanolamines, in particular N-arachidonylethanolamine (anandamide, AEA), emerged as crucial regulators of microglial activity under both physiological and pathological states. In this study, we interrogated for the first time the impact of the signaling of these bioactive lipids on microglial cell responses to a sub-lethal acute UVB radiation, a physical stressor responsible of microglia reactivity in either the retina or the brain. To this end, we developed an in vitro model using mouse microglial BV-2 cells. Upon 24 h of UVB exposure, BV-2 cells showed elevated oxidative stress markers and, cyclooxygenase (COX-2) expression, enhanced phagocytic and chemotactic activities, along with an altered immune profiling. Notably, UVB exposure led to a selective increase in expression and activity of fatty acid amide hydrolase (FAAH), the main enzyme responsible for degradation of fatty acid ethanolamides. Pharmacological FAAH inhibition via URB597 counteracted the effects of UVB exposure, decreasing tumor necrosis factor α (TNF-α) and nitric oxide (NO) release and reverting reactive oxidative species (ROS), interleukin-1ß (IL-1ß), and interleukin-10 (IL-10) levels to the control levels. Our findings support the potential of enhanced fatty acid amide signaling in mitigating UVB-induced cellular damage, paving the way to further exploration of these lipids in light-induced immune responses.


Subject(s)
Amidohydrolases , Microglia , Ultraviolet Rays , Microglia/metabolism , Microglia/drug effects , Microglia/radiation effects , Animals , Mice , Amidohydrolases/metabolism , Amidohydrolases/antagonists & inhibitors , Ultraviolet Rays/adverse effects , Cell Line , Carbamates/pharmacology , Benzamides/pharmacology , Oxidative Stress/drug effects , Endocannabinoids/metabolism , Cyclooxygenase 2/metabolism , Cyclooxygenase 2/genetics , Arachidonic Acids/metabolism , Arachidonic Acids/pharmacology , Interleukin-10/metabolism , Polyunsaturated Alkamides
9.
Cells ; 13(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38786051

ABSTRACT

The inhibition of endocannabinoid hydrolysis by enzymatic inhibitors may interfere with mechanisms underlying migraine-related pain. The dual FAAH/MAGL inhibitor AKU-005 shows potent inhibitory activity in vitro. Here, we assessed the effect of AKU-005 in a migraine animal model based on nitroglycerin (NTG) administration. Male rats were treated with AKU-005 (0.5 mg/kg, i.p.) or vehicle 3 h after receiving NTG (10 mg/kg, i.p.) or NTG vehicle. One hour later, rats were subjected to the open field test followed by the orofacial formalin test. At the end of the test, we collected serum samples for assessing calcitonin gene-related peptide (CGRP) levels as well as meninges, trigeminal ganglia, and brain areas to assess mRNA levels of CGRP and pro-inflammatory cytokines, and endocannabinoid and related lipid levels. AKU-005 reduced NTG-induced hyperalgesia during the orofacial formalin test but did not influence NTG-induced changes in the open field test. It significantly reduced serum levels of CGRP, CGRP, and pro-inflammatory cytokine mRNA levels in the meninges, trigeminal ganglia, and central areas. Surprisingly, AKU-005 caused no change in endocannabinoids and related lipids in the regions evaluated. The present findings suggest that AKU-005 may have anti-migraine effects by reducing CGRP synthesis and release and the associated inflammatory events. This effect, however, does not seem mediated via an interference with the endocannabinoid pathway.


Subject(s)
Amidohydrolases , Calcitonin Gene-Related Peptide , Hyperalgesia , Trigeminal Ganglion , Animals , Male , Hyperalgesia/drug therapy , Rats , Amidohydrolases/antagonists & inhibitors , Amidohydrolases/metabolism , Amidohydrolases/genetics , Calcitonin Gene-Related Peptide/metabolism , Calcitonin Gene-Related Peptide/blood , Trigeminal Ganglion/drug effects , Trigeminal Ganglion/metabolism , Rats, Sprague-Dawley , Monoacylglycerol Lipases/antagonists & inhibitors , Monoacylglycerol Lipases/metabolism , Endocannabinoids/metabolism , Nitroglycerin/pharmacology , Disease Models, Animal , Cytokines/metabolism , Cytokines/blood , Migraine Disorders/drug therapy , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Oligopeptides , Salivary Proteins and Peptides
10.
Biomed Pharmacother ; 175: 116677, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701570

ABSTRACT

The current pharmacological approaches to multiple sclerosis (MS) target its inflammatory and autoimmune components, but effective treatments to foster remyelination and axonal repair are still lacking. We therefore selected two targets known to be involved in MS pathogenesis: N-acylethanolamine-hydrolyzing acid amidase (NAAA) and glycogen synthase kinase-3ß (GSK-3ß). We tested whether inhibiting these targets exerted a therapeutic effect against experimental autoimmune encephalomyelitis (EAE), an animal model of MS. The combined inhibition of NAAA and GSK-3ß by two selected small-molecule compounds, ARN16186 (an NAAA inhibitor) and AF3581 (a GSK-3ß inhibitor), effectively mitigated disease progression, rescuing the animals from paralysis and preventing a worsening of the pathology. The complementary activity of the two inhibitors reduced the infiltration of immune cells into the spinal cord and led to the formation of thin myelin sheaths around the axons post-demyelination. Specifically, the inhibition of NAAA and GSK-3ß modulated the over-activation of NF-kB and STAT3 transcription factors in the EAE-affected mice and induced the nuclear translocation of ß-catenin, reducing the inflammatory insult and promoting the remyelination process. Overall, this work demonstrates that the dual-targeting of key aspects responsible for MS progression could be an innovative pharmacological approach to tackle the pathology.


Subject(s)
Amidohydrolases , Encephalomyelitis, Autoimmune, Experimental , Glycogen Synthase Kinase 3 beta , Mice, Inbred C57BL , Multiple Sclerosis , Animals , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Multiple Sclerosis/drug therapy , Multiple Sclerosis/metabolism , Mice , Amidohydrolases/antagonists & inhibitors , Amidohydrolases/metabolism , Female , Spinal Cord/drug effects , Spinal Cord/metabolism , Spinal Cord/pathology , NF-kappa B/metabolism , Enzyme Inhibitors/pharmacology , Myelin Sheath/metabolism , Myelin Sheath/drug effects
11.
J Med Chem ; 67(8): 6384-6396, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38574272

ABSTRACT

Peptide deformylase (PDF) is involved in bacterial protein maturation processes. Originating from the interest in a new antibiotic, tremendous effort was put into the refinement of PDF inhibitors (PDFIs) and their selectivity. We obtained a full NMR backbone assignment the emergent additional protein backbone resonances of ecPDF 1-147 in complex with 2-(5-bromo-1H-indol-3-yl)-N-hydroxyacetamide (2), a potential new structural scaffold for more selective PDFIs. We also determined the complex crystal structures of E. coli PDF (ecPDF fl) and 2. Our structure suggests an alternative ligand conformation within the protein, a possible starting point for further selectivity optimization. The orientation of the second ligand conformation in the crystal structure points toward a small region of the S1' pocket, which differs between bacterial PDFs and human PDF. Moreover, we analyzed the binding mode of 2 via NMR TITAN line shape analysis, revealing an induced fit mechanism.


Subject(s)
Amidohydrolases , Anti-Bacterial Agents , Escherichia coli , Amidohydrolases/antagonists & inhibitors , Amidohydrolases/metabolism , Amidohydrolases/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Escherichia coli/enzymology , Escherichia coli/drug effects , Crystallography, X-Ray , Binding Sites , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Models, Molecular , Humans , Structure-Activity Relationship
12.
Exp Brain Res ; 242(5): 1149-1160, 2024 May.
Article in English | MEDLINE | ID: mdl-38489023

ABSTRACT

Hypofunctioning of NMDA receptors, and the resulting shift in the balance between excitation and inhibition, is considered a key process in the pathophysiology of schizophrenia. One important manifestation of this phenomenon is changes in neural oscillations, those above 30 Hz (i.e., gamma-band oscillations), in particular. Although both preclinical and clinical studies observed increased gamma activity following acute administration of NMDA receptor antagonists, the relevance of this phenomenon has been recently questioned given the reduced gamma oscillations typically observed during sensory and cognitive tasks in schizophrenia. However, there is emerging, yet contradictory, evidence for increased spontaneous gamma-band activity (i.e., at rest or under baseline conditions). Here, we use the sub-chronic phencyclidine (PCP) rat model for schizophrenia, which has been argued to model the pathophysiology of schizophrenia more closely than acute NMDA antagonism, to investigate gamma oscillations (30-100 Hz) in the medial prefrontal cortex of anesthetized animals. While baseline gamma oscillations were not affected, oscillations induced by train stimulation of the posterior dorsal CA1 (pdCA1) field of the hippocampus were enhanced in PCP-treated animals (5 mg/kg, twice daily for 7 days, followed by a 7-day washout period). This effect was reversed by pharmacological enhancement of endocannabinoid levels via systemic administration of URB597 (0.3 mg/kg), an inhibitor of the catabolic enzyme of the endocannabinoid anandamide. Intriguingly, the pharmacological blockade of CB1 receptors by AM251 unmasked a reduced gamma oscillatory activity in PCP-treated animals. The findings are consistent with the observed effects of URB597 and AM251 on behavioral deficits reminiscent of the symptoms of schizophrenia and further validate the potential for cannabinoid-based drugs as a treatment for schizophrenia.


Subject(s)
Amidohydrolases , Benzamides , Carbamates , Phencyclidine , Piperidines , Schizophrenia , Animals , Male , Rats , Amidohydrolases/antagonists & inhibitors , Amidohydrolases/metabolism , Arachidonic Acids/metabolism , Arachidonic Acids/pharmacology , Benzamides/pharmacology , Carbamates/pharmacology , Disease Models, Animal , Endocannabinoids/metabolism , Excitatory Amino Acid Antagonists/pharmacology , Excitatory Amino Acid Antagonists/administration & dosage , Gamma Rhythm/physiology , Gamma Rhythm/drug effects , Phencyclidine/pharmacology , Piperidines/pharmacology , Polyunsaturated Alkamides/metabolism , Polyunsaturated Alkamides/pharmacology , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Prefrontal Cortex/physiopathology , Pyrazoles/pharmacology , Rats, Sprague-Dawley , Schizophrenia/physiopathology , Schizophrenia/metabolism , Schizophrenia/drug therapy
13.
J Biol Chem ; 300(4): 107143, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38458396

ABSTRACT

A promising yet clinically unexploited antibiotic target in difficult-to-treat Gram-negative bacteria is LpxC, the key enzyme in the biosynthesis of lipopolysaccharides, which are the major constituents of the outer membrane. Despite the development of dozens of chemically diverse LpxC inhibitor molecules, it is essentially unknown how bacteria counteract LpxC inhibition. Our study provides comprehensive insights into the response against five different LpxC inhibitors. All compounds bound to purified LpxC from Escherichia coli. Treatment of E. coli with these compounds changed the cell shape and stabilized LpxC suggesting that FtsH-mediated proteolysis of the inactivated enzyme is impaired. LpxC inhibition sensitized E. coli to vancomycin and rifampin, which poorly cross the outer membrane of intact cells. Four of the five compounds led to an accumulation of lyso-phosphatidylethanolamine, a cleavage product of phosphatidylethanolamine, generated by the phospholipase PldA. The combined results suggested an imbalance in lipopolysaccharides and phospholipid biosynthesis, which was corroborated by the global proteome response to treatment with the LpxC inhibitors. Apart from LpxC itself, FabA and FabB responsible for the biosynthesis of unsaturated fatty acids were consistently induced. Upregulated compound-specific proteins are involved in various functional categories, such as stress reactions, nucleotide, or amino acid metabolism and quorum sensing. Our work shows that antibiotics targeting the same enzyme do not necessarily elicit identical cellular responses. Moreover, we find that the response of E. coli to LpxC inhibition is distinct from the previously reported response in Pseudomonas aeruginosa.


Subject(s)
Amidohydrolases , Enzyme Inhibitors , Escherichia coli , Amidohydrolases/antagonists & inhibitors , Amidohydrolases/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Escherichia coli/drug effects , Escherichia coli/enzymology , Lipopolysaccharides/biosynthesis , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/enzymology , Drug Resistance, Bacterial/drug effects , Cell Membrane/drug effects
14.
Brain Res ; 1822: 148636, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37865139

ABSTRACT

Macamides, amides of fatty acids first isolated from maca (Lepidium meyenii) are potentially responsible for the reduction of ischemic injury in the stroke animal model followed by maca extract administration. This deduction comes from its ability to inhibit the fatty acid amide hydrolase activity, an enzyme related to the endocannabinoid anandamide hydrolysis. However, no study about the effects of isolated macamides on in-vivo models has been published yet. Our objective was to evaluate the effect of a 10-day 30 mg/kg i.p. MCH1 administration, the macamide with the higher FAAH inhibition capability, on the neurological recovery and brain infarction area of Sprague-Dawley rats exposed to the transient middle cerebral artery occlusion (MCAO) model. Our results showed that the group receiving MCH1 for 10 days did not improve Garcia's neurological score compared to receiving the vehicle only. Likewise, the MCH1 group did not improve their sensorimotor dysfunction as indicated by the latency to detect and remove the tape from the contralateral forepaw in the adhesive removal test, and a similar number of errors with the contralateral forepaw in the foot fault test compared to the vehicle group at the 10th day. Evaluation of the spatial memory and learning using the Barnes test showed longer latency to reach the escape box in the Vehicle and MCH1 groups compared to the control group (no MCAO) only in the retrieval test, while no effect of MCAO procedure or MCH1 administration was observed in the reversal learning test. Despite the lack of behavioral effect of MCH1, analysis of the infarcted areas in the brain using the 2, 3, 5-Triphenyltetrazolium chloride (TTC) staining method in the seven consecutive coronal sections revealed that the infarcted area in the first (bregma + 4.2 mm) and fifth (bregma -3.8 mm) coronal sections of the MCAO + MCH1 group remained similar to the Control group. These results provide evidence that MCH1 can limit damage from ischemic stroke, although it is not reflected in neurological or sensorimotor behavior and spatial learning and memory.


Subject(s)
Infarction, Middle Cerebral Artery , Motor Cortex , Stroke , Animals , Rats , Disease Models, Animal , Infarction, Middle Cerebral Artery/drug therapy , Motor Cortex/drug effects , Rats, Sprague-Dawley , Spatial Learning/drug effects , Amidohydrolases/antagonists & inhibitors
15.
Antiviral Res ; 216: 105664, 2023 08.
Article in English | MEDLINE | ID: mdl-37414288

ABSTRACT

Recent evidence suggests that lipids play a crucial role in viral infections beyond their traditional functions of supplying envelope and energy, and creating protected niches for viral replication. In the case of Zika virus (ZIKV), it alters host lipids by enhancing lipogenesis and suppressing ß-oxidation to generate viral factories at the endoplasmic reticulum (ER) interface. This discovery prompted us to hypothesize that interference with lipogenesis could serve as a dual antiviral and anti-inflammatory strategy to combat the replication of positive sense single-stranded RNA (ssRNA+) viruses. To test this hypothesis, we examined the impact of inhibiting N-Acylethanolamine acid amidase (NAAA) on ZIKV-infected human Neural Stem Cells. NAAA is responsible for the hydrolysis of palmitoylethanolamide (PEA) in lysosomes and endolysosomes. Inhibition of NAAA results in PEA accumulation, which activates peroxisome proliferator-activated receptor-α (PPAR-α), directing ß-oxidation and preventing inflammation. Our findings indicate that inhibiting NAAA through gene-editing or drugs moderately reduces ZIKV replication by approximately one log10 in Human Neural Stem Cells, while also releasing immature virions that have lost their infectivity. This inhibition impairs furin-mediated prM cleavage, ultimately blocking ZIKV maturation. In summary, our study highlights NAAA as a host target for ZIKV infection.


Subject(s)
Zika Virus Infection , Zika Virus , Humans , Amidohydrolases/antagonists & inhibitors , Amidohydrolases/metabolism , Anti-Inflammatory Agents/pharmacology , Inflammation/drug therapy , Zika Virus Infection/drug therapy
16.
Bioorg Chem ; 131: 106331, 2023 02.
Article in English | MEDLINE | ID: mdl-36587505

ABSTRACT

In order to develop novel inhibitors of the bacterial deacetylase LpxC bearing a substituent to target the UDP binding site of the enzyme, a series of aldotetronic acid-based hydroxamic acids was accessed in chiral pool syntheses starting from 4,6-O-benzylidene-d-glucose and l-arabinitol. The synthesized hydroxamic acids were tested for LpxC inhibitory activity in vitro, revealing benzyl ether 17a ((2S,3S)-4-(benzyloxy)-N,3-dihydroxy-2-[(4-{[4-(morpholinomethyl)phenyl]ethynyl}benzyl)oxy]butanamide) as the most potent LpxC inhibitor. This compound was additionally tested for antibacterial activity against a panel of clinically relevant Gram-negative bacteria, bacterial uptake, and susceptibility to efflux pumps. Molecular docking studies were performed to rationalize the observed structure-activity relationships.


Subject(s)
Amidohydrolases , Anti-Bacterial Agents , Enzyme Inhibitors , Escherichia coli , Amidohydrolases/antagonists & inhibitors , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacteria/metabolism , Binding Sites , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Hydroxamic Acids/pharmacology , Hydroxamic Acids/chemistry , Molecular Docking Simulation , Structure-Activity Relationship
17.
Int J Biol Macromol ; 234: 122960, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36565833

ABSTRACT

Microbial infections are becoming resistant to traditional antibiotics. As novel resistance mechanisms are developed and disseminated across the world, our ability to treat the most common infectious diseases is becoming increasingly compromised. As existing antibiotics are losing their effectiveness, especially treatment of bacterial infections, is difficult. In order to combat this issue, it is of utmost importance to identify novel pharmacological targets or antibiotics. LpxC, a zinc-dependent metalloamidase that catalyzes the committed step in the biosynthesis of lipid A (endotoxin) in bacteria, is a prime candidate for drug/therapeutic target. So far, the rate-limiting metallo-amidase LpxC has been the most-targeted macromolecule in the Raetz pathway. This is because it is important for the growth of these bacterial infections. This review showcases on the research done to develop efficient drugs in this area before and after the 2015.


Subject(s)
Amidohydrolases , Anti-Bacterial Agents , Drug Design , Amidohydrolases/antagonists & inhibitors , Amidohydrolases/metabolism , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Zinc/metabolism , Humans , Animals
18.
FASEB J ; 37(1): e22690, 2023 01.
Article in English | MEDLINE | ID: mdl-36468880

ABSTRACT

Fatty amide hydrolase (FAAH) is a key degradation enzyme of the endocannabinoid system, mainly responsible for the hydrolysis of arachidonic acid ethanolamine (AEA). Previous investigations have shown that FAAH is involved in a series of biological processes, such as inflammation, immune regulation, and transmembrane signal transduction of neurons. Endogenous cannabinoids and cannabinoid receptors have been reported to participate in the regulation of bone homeostasis by regulating the differentiation of osteoblasts and osteoclasts. We hypothesized that FAAH may play an important role in osteoclastogenesis based on the above evidence. The present study found that the FAAH expression was increased at both mRNA and protein levels during RANKL-induced osteoclastogenesis. Pharmacological and genetic inhibition of FAAH in bone marrow-derived macrophages (BMMs) inhibited osteoclastogenesis, F-actin ring formation, bone resorption, and osteoclast-specific gene expression in vitro. Moreover, intragastric administration of the FAAH inhibitor PF-04457845(PF) ameliorated ovariectomy (OVX)-induced bone loss in mice. Further investigation revealed that nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways were inhibited by PF treatment and FAAH knockdown. RNAseq indicated that the IL17 pathway was blocked by PF, and administration of recombinant murine IL17 protein could partially restore osteoclastogenesis and activate NF-κB and MAPK pathways. To sum up, our findings demonstrate that targeting FAAH could be a promising candidate strategy for treating osteoclast-related diseases, especially osteoporosis.


Subject(s)
Amidohydrolases , Bone Resorption , Interleukin-17 , Osteogenesis , Animals , Female , Mice , Bone Resorption/etiology , Bone Resorption/prevention & control , Cell Differentiation , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , Osteoclasts/metabolism , Ovariectomy/adverse effects , RANK Ligand/metabolism , Amidohydrolases/antagonists & inhibitors , Interleukin-17/metabolism
19.
Int J Mol Sci ; 23(24)2022 Dec 17.
Article in English | MEDLINE | ID: mdl-36555739

ABSTRACT

Early life stress (ELS) increases predisposition to depression. We compared the effects of treatment with the fatty acid amide hydrolase (FAAH) inhibitor URB597, and the selective serotonin reuptake inhibitor paroxetine, on ELS-induced depressive-like behavior and the expression of microRNAs (miRs) associated with depression in the medial prefrontal cortex (mPFC), hippocampal CA1 area, lateral habenula and dorsal raphe in rats. We also examined the mRNA expression of serotonergic (htr1a and slc6a4) and endocannabinoid (cnr1, cnr2 and faah) targets in the mPFC following ELS and pharmacological treatment. Adult males and females exposed to the 'Limited Bedding and Nesting' ELS paradigm demonstrated a depressive-like phenotype and late-adolescence URB597 treatment, but not paroxetine, reversed this phenotype. In the mPFC, ELS downregulated miR-16 in males and miR-135a in females and URB597 treatment restored this effect. In ELS females, the increase in cnr2 and decrease in faah mRNAs in the mPFC were reversed by URB597 treatment. We show for the first time that URB597 reversed ELS-induced mPFC downregulation in specific miRs and stress-related behaviors, suggesting a novel mechanism for the beneficial effects of FAAH inhibition. The differential effects of ELS and URB597 on males and females highlight the importance of developing sex-specific treatment approaches.


Subject(s)
Amidohydrolases , MicroRNAs , Stress, Psychological , Animals , Female , Male , Rats , Amidohydrolases/antagonists & inhibitors , Amidohydrolases/metabolism , Benzamides/pharmacology , Benzamides/therapeutic use , Endocannabinoids/metabolism , MicroRNAs/genetics , Stress, Psychological/genetics , Stress, Psychological/metabolism
20.
Phytochemistry ; 203: 113339, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35961409

ABSTRACT

Ganoderma lucidum is a famous edible and medicinal fungus. Through a bioactive phytochemical investigation of the ethanolic extracts of the fruiting bodies of G. lucidum, twenty-nine triterpenoids, including eleven previously undescribed triterpenoids, were isolated and characterized based on spectroscopic data. The inhibitory effects of all the triterpenes against fatty acid amide hydrolase (FAAH) were found to be in the range of 30-60% at 100 µM. Methyl ganoderate A displayed the strongest inhibitory activity (61%) against FAAH. Furthermore, all compounds displayed no cytotoxicity against LOVO and MCF-7 human cancer cells. Hence, our present study provides information about G. lucidum as a functional food or pharmaceutical supplement for the treatment of neuroinflammation.


Subject(s)
Amidohydrolases , Reishi , Triterpenes , Amidohydrolases/antagonists & inhibitors , Fruiting Bodies, Fungal/chemistry , Humans , Molecular Structure , Reishi/chemistry , Steroids/analysis , Triterpenes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL