Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.897
Filter
1.
Carbohydr Polym ; 343: 122474, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39174099

ABSTRACT

Alginate is one of the most important marine colloidal polysaccharides, and its oligosaccharides have been proven to possess diverse biological functions. Alginate lyases could specifically degrade alginate and therefore serve as desirable tools for the research and development of alginate. In this report, a novel catalytic domain, which demonstrated no significant sequence similarity with all previously defined functional domains, was verified to exhibit a random endo-acting lyase activity to alginate. The action pattern analysis revealed that the heterologously expressed protein, named Aly44A, preferred to degrade polyM. Its minimum substrates and the minimum products were identified as unsaturated alginate trisaccharides and disaccharides, respectively. Based on the sequence novelty of Aly44A and its homologs, a new polysaccharide lyase family (PL44) was proposed. The discovery of the novel enzyme and polysaccharide lyase family provided a new entrance for the gene-mining and acquiring of alginate lyases, and would facilitate to the utilization of alginate and its oligosaccharides.


Subject(s)
Alginates , Polysaccharide-Lyases , Polysaccharide-Lyases/metabolism , Polysaccharide-Lyases/chemistry , Polysaccharide-Lyases/genetics , Alginates/chemistry , Alginates/metabolism , Substrate Specificity , Catalytic Domain , Oligosaccharides/chemistry , Oligosaccharides/metabolism , Amino Acid Sequence , Hexuronic Acids/chemistry , Hexuronic Acids/metabolism
2.
Arch Insect Biochem Physiol ; 116(4): e22080, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39148444

ABSTRACT

Spotted-wing drosophila, Drosophila suzukii (Matsumura), is an invasive vinegar fly that is a major threat to the small fruits industries globally. Insect capa genes encode multiple neuropeptides, including CAPA-periviscerokinin (CAPA-PVK) peptides, that are specifically known to cause diuresis or anti-diuresis in various organisms. Here we identified and characterized a corresponding G protein-coupled receptor (GPCR) of the D. suzukii CAPA-PVK peptides: CAPA receptor (CAPA-R). To better characterize the behavior of D. suzukii CAPA-R, we used insect cell-based functional expression assays to evaluate responses of CAPA-R against D. suzukii CAPA-PVKs, CAPA-PVKs from five species in Insecta, one species from Mollusca, modified CAPA-PVK peptides, and some PRXamide family peptides: pyrokinin (PK), diapause hormone (DH), and ecdysis-triggering hormone (ETH). Functional studies revealed that the D. suzukii CAPA-R is strongly activated by both of its own natural D. suzukii CAPA-PVKs, and interestingly, it was strongly activated by other CAPA-PVK peptides from Frankliniella occidentallis (Thysanoptera), Solenopsis invicta (Hymenoptera), Helicoverpa zea (Lepidoptera) and Plutella xylostella (Lepidoptera). However, D. suzukii CAPA-R was not activated by Mollusca CAPA-PVK or the other PRXamide peptides. Gene expression analyses showed that the CAPA-R was highly expressed in the Malpighian tubules and moderately in hindgut compared to other digestive organs or the rest of body, supporting diuretic/antidiuretic functionality. When compared across life stages of D. suzukii, expression of CAPA-R was approximately 1.5x greater in the third instar than the other stages and minimally detected in the eggs, 4-day old pupae and 3-day old adults. Our results functionally characterized the D. suzukii CAPA-R and a few short peptides were identified as potential biological targets to exploit the CAPA-R for D. suzukii management.


Subject(s)
Drosophila Proteins , Drosophila , Neuropeptides , Animals , Female , Amino Acid Sequence , Drosophila/metabolism , Drosophila/genetics , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Gastrointestinal Tract/metabolism , Insect Hormones/metabolism , Larva/growth & development , Larva/metabolism , Larva/genetics , Neuropeptides/metabolism , Neuropeptides/genetics , Pupa/growth & development , Pupa/metabolism , Pupa/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics
3.
Sci Rep ; 14(1): 19533, 2024 08 22.
Article in English | MEDLINE | ID: mdl-39174623

ABSTRACT

Due to the high affinity and specificity of antibodies toward antigens, various antibody-based applications have been developed. Recently, variable antigen-binding domains of heavy-chain antibodies (VHH) have become an attractive alternative to conventional fragment antibodies due to their unique molecular characteristics. As an antibody-generating strategy, synthetic VHH libraries (including humanized VHH libraries) have been developed using distinct strategies to constrain the diversity of amino acid sequences. In this study, we designed and constructed several novel synthetic humanized VHH libraries based on biophysical analyses conducted using the complementarity determining region-grafting method and comprehensive sequence analyses of VHHs deposited in the protein data bank. We obtained VHHs from the libraries, and hit clones exhibited considerable thermal stability. We also found that VHHs from distinct libraries tended to have different epitopes. Based on our results, we propose a strategy for generating humanized VHHs with distinct epitopes toward various antigens by utilizing our library combinations.


Subject(s)
Complementarity Determining Regions , Peptide Library , Humans , Complementarity Determining Regions/chemistry , Complementarity Determining Regions/immunology , Complementarity Determining Regions/genetics , Epitopes/immunology , Epitopes/chemistry , Immunoglobulin Heavy Chains/chemistry , Immunoglobulin Heavy Chains/immunology , Immunoglobulin Heavy Chains/genetics , Amino Acid Sequence , Antigens/immunology , Protein Stability
4.
Commun Biol ; 7(1): 979, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39134636

ABSTRACT

Previous work has shown that binding of target proteins to a sparse, unbiased sample of all possible peptide sequences is sufficient to train a machine learning model that can then predict, with statistically high accuracy, target binding to any possible peptide sequence of similar length. Here, highly sequence-specific molecular recognition is explored by measuring binding of 8 monoclonal antibodies (mAbs) with specific linear cognate epitopes to an array containing 121,715 near-random sequences about 10 residues in length. Network models trained on resulting sequence-binding values are used to predict the binding of each mAb to its cognate sequence and to an in silico generated one million random sequences. The model always ranks the binding of the cognate sequence in the top 100 sequences, and for 6 of the 8 mAbs, the cognate sequence ranks in the top ten. Practically, this approach has potential utility in selecting highly specific mAbs for therapeutics or diagnostics. More fundamentally, this demonstrates that very sparse random sampling of a large amino acid sequence spaces is sufficient to generate comprehensive models predictive of highly specific molecular recognition.


Subject(s)
Antibodies, Monoclonal , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/chemistry , Amino Acid Sequence , Machine Learning , Epitopes/immunology , Epitopes/chemistry , Humans , Protein Binding , Binding Sites, Antibody , Computer Simulation
5.
J Agric Food Chem ; 72(33): 18585-18593, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39133835

ABSTRACT

d-Tagatose is a highly promising functional sweetener known for its various physiological functions. In this study, a novel tagatose 4-epimerase from Thermoprotei archaeon (Thar-T4Ease), with the ability to convert d-fructose to d-tagatose, was discovered through a combination of structure similarity search and sequence-based protein clustering. The recombinant Thar-T4Ease exhibited optimal activity at pH 8.5 and 85 °C, in the presence of 1 mM Ni2+. Its kcat and kcat/Km values toward d-fructose were measured to be 248.5 min-1 and 2.117 mM-1·min-1, respectively. Notably, Thar-T4Ease exhibited remarkable thermostability, with a t1/2 value of 198 h at 80 °C. Moreover, it achieved a conversion ratio of 18.9% using 100 g/L d-fructose as the substrate. Finally, based on sequence and structure analysis, crucial residues for the catalytic activity of Thar-T4Ease were identified by molecular docking and site-directed mutagenesis. This research expands the repertoire of enzymes with C4-epimerization activity and opens up new possibilities for the cost-effective production of d-tagatose from d-fructose.


Subject(s)
Enzyme Stability , Hexoses , Molecular Docking Simulation , Hexoses/chemistry , Hexoses/metabolism , Kinetics , Archaeal Proteins/genetics , Archaeal Proteins/chemistry , Archaeal Proteins/metabolism , Fructose/chemistry , Fructose/metabolism , Carbohydrate Epimerases/genetics , Carbohydrate Epimerases/chemistry , Carbohydrate Epimerases/metabolism , Hydrogen-Ion Concentration , Substrate Specificity , Hot Temperature , Amino Acid Sequence , Racemases and Epimerases/genetics , Racemases and Epimerases/chemistry , Racemases and Epimerases/metabolism
6.
Cell Mol Life Sci ; 81(1): 357, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39158587

ABSTRACT

SLC30A9 (ZnT9) is a mitochondria-resident zinc transporter. Mutations in SLC30A9 have been reported in human patients with a novel cerebro-renal syndrome. Here, we show that ZnT9 is an evolutionarily highly conserved protein, with many regions extremely preserved among evolutionarily distant organisms. In Drosophila melanogaster (the fly), ZnT9 (ZnT49B) knockdown results in acutely impaired movement and drastic mitochondrial deformation. Severe Drosophila ZnT9 (dZnT9) reduction and ZnT9-null mutant flies are pupal lethal. The phenotype of dZnT9 knockdown can be partially rescued by mouse ZnT9 expression or zinc chelator TPEN, indicating the defect of dZnT9 loss is indeed a result of zinc dyshomeostasis. Interestingly, in the mouse, germline loss of Znt9 produces even more extreme phenotypes: the mutant embryos exhibit midgestational lethality with severe development abnormalities. Targeted mutagenesis of Znt9 in the mouse brain leads to serious dwarfism and physical incapacitation, followed by death shortly. Strikingly, the GH/IGF-1 signals are almost non-existent in these tissue-specific knockout mice, consistent with the medical finding in some human patients with severe mitochondrial deficiecny. ZnT9 mutations cause mitochondrial zinc dyshomeostasis, and we demonstrate mechanistically that mitochondrial zinc elevation quickly and potently inhibits the activities of respiration complexes. These results reveal the critical role of ZnT9 and mitochondrial zinc homeostasis in mammalian development. Based on our functional analyses, we finally discussed the possible nature of the so far identified human SLC30A9 mutations.


Subject(s)
Cation Transport Proteins , Embryonic Development , Mitochondria , Zinc , Animals , Cation Transport Proteins/metabolism , Cation Transport Proteins/genetics , Humans , Zinc/metabolism , Mice , Mitochondria/metabolism , Embryonic Development/genetics , Drosophila melanogaster/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/embryology , Evolution, Molecular , Mice, Knockout , Amino Acid Sequence , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Transcription Factors , Cell Cycle Proteins
7.
Cell Mol Life Sci ; 81(1): 356, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39158730

ABSTRACT

FGF12 belongs to a subfamily of FGF proteins called FGF homologous factors (FHFs), which until recently were thought to be non-signaling intracellular proteins. Our recent studies have shown that although they lack a conventional signal peptide for secretion, they can reach the extracellular space, especially under stress conditions. Here, we unraveled that the long "a" isoform of FGF12 is secreted in a pathway involving the A1 subunit of Na(+)/K(+) ATPase (ATP1A1), Tec kinase and lipids such as phosphatidylinositol and phosphatidylserine. Further, we showed that the short "b" isoform of FGF12, which binds ATP1A1 and phosphatidylserine less efficiently, is not secreted from cells. We also indicated regions in the FGF12a protein sequence that are crucial for its secretion, including N-terminal fragment and specific residues, and proposed that liquid-liquid phase separation may be important in this process. Our results strongly suggest that the mechanism of this process is very similar for all unconventionally secreted FGF proteins.


Subject(s)
Fibroblast Growth Factors , Humans , Fibroblast Growth Factors/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Animals , Protein Isoforms/metabolism , Protein Isoforms/genetics , Phosphatidylserines/metabolism , Amino Acid Sequence
8.
PLoS One ; 19(8): e0308541, 2024.
Article in English | MEDLINE | ID: mdl-39159160

ABSTRACT

Plants have developed precise defense mechanisms against cadmium (Cd) stress, with vacuolar compartmentalization of Cd2+ being a crucial process in Cd detoxification. The transport of Cd into vacuoles by these cation / H+ antiporters is powered by the pH gradient created by proton pumps. In this study, the full-length cDNA of a vacuolar H+-pyrophosphatase (V-PPase) gene from Boehmeria nivea (ramie), BnVP1, was isolated using the rapid amplification of cDNA ends (RACE) method. The open reading frame (ORF) of BnVP1 is 2292 bp, encoding a 763 amino acid V-PPase protein with 15 predicted transmembrane domains. Sequence alignment and phylogenetic analysis revealed that BnVP1 belongs to the Type I V-PPase family. Quantitative RT-PCR assays demonstrated that BnVP1 expression was significantly higher in ramie roots than in shoots. Cd treatments markedly induced BnVP1 expression in both roots and leaves of ramie seedlings, with a more pronounced effect in roots. Additionally, BnVP1 expression was significantly upregulated by the plant hormone methyl jasmonate (MeJA). Heterologous expression of BnVP1 in transgenic Arabidopsis significantly enhanced V-PPase activity in the roots. The growth performance, root elongation, and total chlorophyll content of transgenic plants with high tonoplast H+-PPase (V-PPase) activity were superior to those of wild-type plants. Overexpression of BnVP1 reduced membrane lipid peroxidation and ion leakage, and significantly increased Cd accumulation in the roots of transgenic Arabidopsis seedlings. This study provides new genetic resources for the phytoremediation of Cd-contaminated farmland.


Subject(s)
Arabidopsis , Boehmeria , Cadmium , Gene Expression Regulation, Plant , Inorganic Pyrophosphatase , Phylogeny , Plants, Genetically Modified , Vacuoles , Arabidopsis/genetics , Cadmium/metabolism , Cadmium/toxicity , Plants, Genetically Modified/genetics , Inorganic Pyrophosphatase/genetics , Inorganic Pyrophosphatase/metabolism , Vacuoles/metabolism , Boehmeria/genetics , Boehmeria/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Plant Roots/growth & development , Plant Roots/drug effects , Amino Acid Sequence , Cyclopentanes/pharmacology , Cyclopentanes/metabolism , Oxylipins/pharmacology , Oxylipins/metabolism , Acetates
9.
Bioorg Med Chem ; 111: 117865, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39098126

ABSTRACT

Influenza viruses are susceptible to seasonal influenza, which has repeatedly caused global pandemics and jeopardized human health. Vaccines are only used as preventive medicine due to the extreme mutability of influenza viruses, and antiviral medication is the most significant clinical treatment to reduce influenza morbidity and mortality. Nevertheless, the clinical application of anti-influenza virus agents is characterized by the narrow therapeutic time window, the susceptibility to drug resistance, and relatively limited effect on severe influenza. Therefore, it is of great significance to develop novel anti-influenza virus drugs to fulfill the urgent clinical needs. Influenza viruses enter host cells through the hemagglutinin (HA) mediated membrane fusion process, and fusion inhibitors function antivirally by blocking hemagglutinin deformation, promising better therapeutic efficacy and resolving drug resistance, with targets different from marketed medicines. Previous studies have shown that unnatural peptides derived from Human Immunodeficiency Virus Type 1 (HIV-1) membrane fusion proteins exhibit anti-HIV-1 activity. Based on the similarity of the membrane fusion protein deformation process between HIV-1 and H1N1, we selected sequences derived from the gp41 subunit in the HIV-1 fusion protein, and then constructed N-trimer spatial structure through inter-helical isopeptide bond modification, to design the novel anti-H1N1 fusion inhibitors. The results showed that the novel peptides could block 6-HB formation during H1N1 membrane fusion procedure, and thus possessed significant anti-H1N1 activity, comparable to the positive control oseltamivir. Our study demonstrates the design viability of peptide fusion inhibitors based on similar membrane fusion processes among viruses, and furthermore provides an important idea for the novel anti-H1N1 inhibitors development.


Subject(s)
Antiviral Agents , Influenza A Virus, H1N1 Subtype , Peptides , Influenza A Virus, H1N1 Subtype/drug effects , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/chemical synthesis , Humans , Peptides/chemistry , Peptides/pharmacology , Peptides/chemical synthesis , Microbial Sensitivity Tests , Structure-Activity Relationship , Madin Darby Canine Kidney Cells , Dogs , Dose-Response Relationship, Drug , Animals , Molecular Structure , Amino Acid Sequence
10.
Arch Virol ; 169(9): 183, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39164596

ABSTRACT

Porcine transmissible gastroenteritis virus (TGEV) is a major pathogen that causes viral enteritis and severe diarrhea in newborn piglets. TGEV strains have been isolated in the USA, Europe, and China, and their molecular characteristics are well known. However, there have been few reports of molecular analysis of TGEV strains isolated in Southeast Asia. In 2016, we isolated TGEV strain VET-16 from fecal samples collected from piglets in Vietnam and determined its complete genome sequence by Sanger sequencing. We found that, while the full genome of the VET-16 strain was 92.4-99.9% identical to those of other TGEV strains, the ORF3 gene showed very little sequence similarity. Phylogenetic analysis suggested that the VET-16 strain belongs to the Purdue subgroup. Comparison of the predicted amino acid (aa) sequence of the spike protein of strain VET-16 with those of other TGEV strains revealed three aa substitutions (V378L, S379T, and D380N) and a 3-aa insertion (F383_F387insWEK) in antigenic site D of the VET-16 strain. Also, a single aa deletion (∆F1413) was found in the transmembrane domain of the spike gene of VET-16. Like the ORF3 gene from the TGEV Miller M60 vaccine strain, the VET-16 strain has a large deletion (∆725 nt) in the ORF3 gene. Previous studies have suggested that these mutations in the spike and ORF3 genes might be associated with a reduction in pathogenicity. The data from this study will facilitate further genetic analysis and research into the evolution of TGEV in pigs in Vietnam.


Subject(s)
Gastroenteritis, Transmissible, of Swine , Genome, Viral , Phylogeny , Transmissible gastroenteritis virus , Animals , Swine , Vietnam , Transmissible gastroenteritis virus/genetics , Transmissible gastroenteritis virus/isolation & purification , Transmissible gastroenteritis virus/classification , Gastroenteritis, Transmissible, of Swine/virology , Genome, Viral/genetics , Feces/virology , Whole Genome Sequencing , Swine Diseases/virology , Amino Acid Sequence
11.
Arch Insect Biochem Physiol ; 116(4): e22130, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39118437

ABSTRACT

Toll receptors are important regulators of insects' innate immune system which, upon binding of pathogen molecules, activate a conserved signal transduction cascade known as the Toll pathway. RNA interference (RNAi) is a powerful tool to study the function of genes via reverse genetics. However, due to the reported refractory of RNAi efficiency in lepidopteran insects, successful reports of silencing of Toll receptors in the silkworm Bombyx mori have not been reported yet. In this study, a Toll receptor of the silkworm Bombyx Toll9-2 (BmToll9-2) was cloned and its expression and function were analyzed. The results showed that BmToll9-2 contains an ectodomain (ECD) with a signal peptide and nine leucine-rich repeats, a transmembrane helix, and a cytoplasmic region with a Toll/interleukin-1 domain. Phylogenetic analysis indicates that BmToll9-2 clusters with other insect Toll9 receptors and mammalian Toll-like receptor 4. Oral infection of exogenous pathogens showed that the Gram-negative bacterium Escherichia coli and its main cell wall component lipopolysaccharide (LPS), as well as the Gram-positive bacterium Staphylococcus aureus and its main cell wall component peptidoglycan, significantly induce BmToll9-2 expression in vivo. LPS also induced the expression of BmToll9-2 in BmN4 cells in vitro. These observations indicate its role as a sensor in the innate immunity to exogenous pathogens and as a pathogen-associated receptor that is responsive to LPS. RNAi of BmToll9-2 was effective in the midgut and epidermis. RNAi-mediated knock-down of BmToll9-2 reduced the weight and growth of the silkworm. Bacterial challenge following RNAi upregulated the expression of BmToll9-2 and rescued the weight differences of the silkworm, which may be related to its participation in the immune response and the regulation of the microbiota in the midgut lumen of the silkworm larvae.


Subject(s)
Bombyx , Escherichia coli , Insect Proteins , Larva , Lipopolysaccharides , Phylogeny , Animals , Bombyx/immunology , Bombyx/genetics , Bombyx/growth & development , Bombyx/microbiology , Bombyx/metabolism , Larva/immunology , Larva/growth & development , Larva/microbiology , Larva/genetics , Larva/metabolism , Insect Proteins/genetics , Insect Proteins/metabolism , Lipopolysaccharides/pharmacology , Toll-Like Receptors/metabolism , Toll-Like Receptors/genetics , Immunity, Innate , Staphylococcus aureus , Gastrointestinal Tract/immunology , Gastrointestinal Tract/microbiology , Gastrointestinal Tract/metabolism , Amino Acid Sequence , RNA Interference
12.
Nat Commun ; 15(1): 6807, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39122719

ABSTRACT

The cell division cycle 25 phosphatases CDC25A, B and C regulate cell cycle transitions by dephosphorylating residues in the conserved glycine-rich loop of CDKs to activate their activity. Here, we present the cryo-EM structure of CDK2-cyclin A in complex with CDC25A at 2.7 Å resolution, providing a detailed structural analysis of the overall complex architecture and key protein-protein interactions that underpin this 86 kDa complex. We further identify a CDC25A C-terminal helix that is critical for complex formation. Sequence conservation analysis suggests CDK1/2-cyclin A, CDK1-cyclin B and CDK2/3-cyclin E are suitable binding partners for CDC25A, whilst CDK4/6-cyclin D complexes appear unlikely substrates. A comparative structural analysis of CDK-containing complexes also confirms the functional importance of the conserved CDK1/2 GDSEID motif. This structure improves our understanding of the roles of CDC25 phosphatases in CDK regulation and may inform the development of CDC25-targeting anticancer strategies.


Subject(s)
Cryoelectron Microscopy , Cyclin A , Cyclin-Dependent Kinase 2 , cdc25 Phosphatases , cdc25 Phosphatases/metabolism , cdc25 Phosphatases/chemistry , cdc25 Phosphatases/ultrastructure , cdc25 Phosphatases/genetics , Cyclin-Dependent Kinase 2/metabolism , Cyclin-Dependent Kinase 2/chemistry , Cyclin-Dependent Kinase 2/ultrastructure , Humans , Cyclin A/metabolism , Cyclin A/chemistry , Protein Binding , Models, Molecular , Amino Acid Sequence
13.
Sci Rep ; 14(1): 18420, 2024 08 08.
Article in English | MEDLINE | ID: mdl-39117724

ABSTRACT

A zinc metallopeptidase neurolysin (Nln) processes diverse bioactive peptides to regulate signaling in the mammalian nervous system. To understand how Nln interacts with various peptides with dissimilar sequences, we determined crystal structures of Nln in complex with diverse peptides including dynorphins, angiotensin, neurotensin, and bradykinin. The structures show that Nln binds these peptides in a large dumbbell-shaped interior cavity constricted at the active site, making minimal structural changes to accommodate different peptide sequences. The structures also show that Nln readily binds similar peptides with distinct registers, which can determine whether the peptide serves as a substrate or a competitive inhibitor. We analyzed the activities and binding of Nln toward various forms of dynorphin A peptides, which highlights the promiscuous nature of peptide binding and shows how dynorphin A (1-13) potently inhibits the Nln activity while dynorphin A (1-8) is efficiently cleaved. Our work provides insights into the broad substrate specificity of Nln and may aid in the future design of small molecule modulators for Nln.


Subject(s)
Dynorphins , Neurotensin , Humans , Substrate Specificity , Dynorphins/chemistry , Dynorphins/metabolism , Neurotensin/chemistry , Neurotensin/metabolism , Metalloendopeptidases/metabolism , Metalloendopeptidases/chemistry , Metalloendopeptidases/antagonists & inhibitors , Protein Binding , Crystallography, X-Ray , Models, Molecular , Catalytic Domain , Bradykinin/chemistry , Bradykinin/metabolism , Angiotensins/metabolism , Angiotensins/chemistry , Amino Acid Sequence
14.
Nat Commun ; 15(1): 6975, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39143113

ABSTRACT

Receptor-interacting protein kinase 1 (RIPK1) is a therapeutic target in treating neurodegenerative diseases and cancers. RIPK1 has three distinct functional domains, with the center domain containing a receptor-interacting protein homotypic interaction motif (RHIM), which mediates amyloid formation. The functional amyloid formed by RIPK1 and/or RIPK3 is a crucial intermediate in regulating cell necroptosis. In this study, the amyloid structure of mouse RIPK1, formed by an 82-residue sequence centered at RHIM, is presented. It reveals the "N"-shaped folding of the protein subunit in the fibril with four ß-strands. The folding pattern is shared by several amyloid structures formed by proteins with RHIM, with the central ß-strand formed by the most conserved tetrad sequence I/VQI/VG. However, the solid-state NMR results indicate a structural difference between mouse RIPK1 and mouse RIPK3. A change in the structural rigidity is also suggested by the observation of weakened signals for mouse RIPK3 upon mixing with RIPK1 to form the RIPK1/RIPK3 complex fibrils. Our results provide vital information to understand the interactions between different proteins with RHIM, which will help us further comprehend the regulation mechanism in cell necroptosis.


Subject(s)
Amyloid , Receptor-Interacting Protein Serine-Threonine Kinases , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/chemistry , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Animals , Mice , Amyloid/metabolism , Amyloid/chemistry , Humans , Necroptosis , Amino Acid Sequence , Protein Domains , Protein Binding , Models, Molecular
15.
Biochem Pharmacol ; 227: 116465, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39102991

ABSTRACT

In sensory neurons that transmit pain signals, whether acute or chronic, voltage-gated sodium channels (VGSCs) are crucial for regulating excitability. NaV1.1, NaV1.3, NaV1.6, NaV1.7, NaV1.8, and NaV1.9 have been demonstrated and defined their functional roles in pain signaling based on their biophysical properties and distinct patterns of expression in each subtype of sensory neurons. Scorpions and spiders are traditional Chinese medicinal materials, belonging to the arachnid class. Most of the studied species of them have evolved venom peptides that exhibit a wide variety of knottins specifically targeting VGSCs with subtype selectivity and conformational specificity. This review provides an overview on the exquisite knottins from scorpion and spider venoms targeting pain-related NaV channels, describing the sequences and the structural features as well as molecular determinants that influence their selectivity on special subtype and at particular conformation, with an aim for the development of novel research tools on NaV channels and analgesics with minimal adverse effects.


Subject(s)
Pain , Scorpion Venoms , Signal Transduction , Spider Venoms , Voltage-Gated Sodium Channels , Animals , Scorpion Venoms/chemistry , Scorpion Venoms/pharmacology , Scorpion Venoms/metabolism , Spider Venoms/pharmacology , Spider Venoms/chemistry , Spider Venoms/metabolism , Voltage-Gated Sodium Channels/metabolism , Voltage-Gated Sodium Channels/drug effects , Voltage-Gated Sodium Channels/chemistry , Voltage-Gated Sodium Channels/physiology , Pain/drug therapy , Pain/metabolism , Humans , Signal Transduction/drug effects , Signal Transduction/physiology , Scorpions/metabolism , Voltage-Gated Sodium Channel Blockers/pharmacology , Voltage-Gated Sodium Channel Blockers/chemistry , Amino Acid Sequence , Spiders/metabolism
16.
Protein Sci ; 33(9): e5135, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39150232

ABSTRACT

Tardigrades are unique micro-organisms with a high tolerance to desiccation. The protection of their cells against desiccation involves tardigrade-specific proteins, which include the so-called cytoplasmic abundant heat soluble (CAHS) proteins. As a first step towards the design of peptides capable of mimicking the cytoprotective properties of CAHS proteins, we have synthesized several model peptides with sequences selected from conserved CAHS motifs and investigated to what extent they exhibit the desiccation-induced structural changes of the full-length proteins. Using circular dichroism spectroscopy, two-dimensional infrared spectroscopy, and molecular dynamics simulations, we have found that the CAHS model peptides are mostly disordered, but adopt a more α $$ \alpha $$ -helical structure upon addition of 2,2,2-trifluoroethanol, which mimics desiccation. This structural behavior is similar to that of full-length CAHS proteins, which also adopt more ordered conformations upon desiccation. We also have investigated the surface activity of the peptides at the air/water interface, which also mimics partial desiccation. Interestingly, sum-frequency generation spectroscopy shows that all model peptides are surface active and adopt a helical structure at the air/water interface. Our results suggest that amino acids with high helix-forming propensities might contribute to the propensity of these peptides to adopt a helical structure when fully or partially dehydrated. Thus, the selected sequences retain part of the CAHS structural behavior upon desiccation, and might be used as a basis for the design of new synthetic peptide-based cryoprotective materials.


Subject(s)
Molecular Dynamics Simulation , Peptides , Tardigrada , Tardigrada/chemistry , Animals , Peptides/chemistry , Protein Structure, Secondary , Amino Acid Sequence
17.
Cell Chem Biol ; 31(8): 1394-1404, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39151406

ABSTRACT

Voltage-gated sodium (Nav) and calcium (Cav) channels are responsible for the initiation of electrical signals. They have long been targeted for the treatment of various diseases. The mounting number of cryoelectron microscopy (cryo-EM) structures for diverse subtypes of Nav and Cav channels from multiple organisms necessitates a generic residue numbering system to establish the structure-function relationship and to aid rational drug design or optimization. Here we suggest a structure-based residue numbering scheme, centering around the most conserved residues on each of the functional segments. We elaborate the generic numbers through illustrative examples, focusing on representative drug-binding sites of eukaryotic Nav and Cav channels. We also extend the numbering scheme to compare common disease mutations among different Nav subtypes. Application of the generic residue numbering scheme affords immediate insights into hotspots for pathogenic mutations and critical loci for drug binding and will facilitate drug discovery targeting Nav and Cav channels.


Subject(s)
Calcium Channels , Humans , Calcium Channels/metabolism , Calcium Channels/chemistry , Calcium Channels/genetics , Voltage-Gated Sodium Channels/chemistry , Voltage-Gated Sodium Channels/metabolism , Voltage-Gated Sodium Channels/genetics , Animals , Binding Sites , Mutation , Cryoelectron Microscopy , Models, Molecular , Amino Acid Sequence
18.
Arch Virol ; 169(9): 180, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39150572

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) is an enteric coronavirus that has been the main cause of diarrhea in piglets since 2010 in China. The aim of this study was to investigate sequence variation and recombination events in the spike (S) gene of PEDV isolates from China. Thirty complete S gene sequences were obtained from PEDV-positive samples collected in six provinces in China from 2020 to 2023. Phylogenetic analysis showed that 10% (3/30) belonged to subtype GII-a, 6.67% (2/30) were categorized as subtype GII-b, 66.67% (20/30) were categorized as subtype GII-c, and 16.66% (5/30) were clustered with the S-INDEL strains. Amino acid sequence alignments showed that, when compared to strains of other subtypes, the GII-c strains had two characteristic amino acid substitutions (N139D and I289M). Five S-INDEL subtype strains had a single amino acid deletion (139N) and four amino acid substitutions (N118G, T137S, A138S, and D141G). Recombination analysis allowed six putative recombination events to be identified, one involving recombination between GII-c strains, two involving GII-c and GII-b strains, two involving GII-c and GI-a strains, and one involving GII-a and GI-b strains. These results suggest that recombination between PEDV strains has been common and complex in recent years and is one of the main reasons for the continuous variation of PEDV strains.


Subject(s)
Coronavirus Infections , Phylogeny , Porcine epidemic diarrhea virus , Recombination, Genetic , Spike Glycoprotein, Coronavirus , Swine Diseases , Porcine epidemic diarrhea virus/genetics , Porcine epidemic diarrhea virus/classification , Porcine epidemic diarrhea virus/isolation & purification , Animals , Swine , China/epidemiology , Swine Diseases/virology , Swine Diseases/epidemiology , Coronavirus Infections/virology , Coronavirus Infections/veterinary , Coronavirus Infections/epidemiology , Spike Glycoprotein, Coronavirus/genetics , Genetic Variation , Diarrhea/virology , Diarrhea/veterinary , Diarrhea/epidemiology , Amino Acid Sequence , Amino Acid Substitution , Genotype
19.
Arch Virol ; 169(9): 181, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39150574

ABSTRACT

Here, we characterized a novel mitovirus from the fungus Nigrospora oryzae, which was named "Nigrospora oryzae mitovirus 3" (NoMV3). The NoMV3 genome is 2,492 nt in length with a G + C content of 33%, containing a single large open reading frame (ORF) using the fungal mitochondrial genetic code. The ORF encodes an RNA-dependent RNA polymerase (RdRp) of 775 amino acids with a molecular mass of 88.75 kDa. BLASTp analysis revealed that the RdRp of NoMV3 had 68.6%, 50.6%, and 48.6% sequence identity to those of Nigrospora oryzae mitovirus 2, Suillus luteus mitovirus 6, and Fusarium proliferatum mitovirus 3, respectively, which belong to the genus Unuamitovirus within the family Mitoviridae. Phylogenetic analysis based on amino acid sequences supported the classification of NoMV3 as a member of a new species in the genus Unuamitovirus within the family Mitoviridae.


Subject(s)
Ascomycota , Fungal Viruses , Genome, Viral , Open Reading Frames , Phylogeny , Plant Diseases , RNA Viruses , RNA-Dependent RNA Polymerase , Genome, Viral/genetics , Fungal Viruses/genetics , Fungal Viruses/classification , Fungal Viruses/isolation & purification , RNA Viruses/genetics , RNA Viruses/classification , RNA Viruses/isolation & purification , RNA-Dependent RNA Polymerase/genetics , Plant Diseases/microbiology , Plant Diseases/virology , Ascomycota/virology , Ascomycota/genetics , RNA, Viral/genetics , Viral Proteins/genetics , Base Composition , Amino Acid Sequence
20.
Gene ; 928: 148809, 2024 Nov 30.
Article in English | MEDLINE | ID: mdl-39089532

ABSTRACT

SP3 (specificity protein 3) is a transcription factor characterized by three conserved Cys2His2 zinc finger motifs that exert a transregulatory effect by binding to GC boxes, either upregulating or downregulating multiple genes or by co-regulating gene expression in coordination with other proteins. SP3 potentially regulates a series of processes, such as the cell cycle, growth, metabolic pathways, and apoptosis, and plays an important role in antiviral effect. The function of sp3 in fish is poorly understood. In this study, the Sp3a open reading frame was cloned from the orange-spotted grouper, Epinephelus coioides. The full-length open reading frame of Sp3a was 2034 bp, encoding 677 amino acids, with a predicted molecular weight of 72.34 kDa and an isoelectric point of 5.05. Phylogenetically, Sp3a in Epinephelus coioides was the most closely related to Sp3a in the Malabar grouper, Epinephelus malabaricus. RT-qPCR revealed ubiquitous expression of Sp3a in all examined grouper tissues, with no significant differences in expression levels among tissues. A eukaryotic expression vector, pEGFP-Sp3a, was constructed and transfected into grouper spleen (GS) cells. Subcellular localization of Sp3a was observed using an inverted fluorescence microscope. When Spa3 was overexpressed in GS cells, the expression of orange-spotted grouper nerve necrosis virus (RGNNV) genes (CP and RdRp) decreased significantly, indicating that Sp3a significantly inhibited RGNNV replication. siRNA inhibition of Sp3a accelerated the intracellular replication of RGNNV, implying the antiviral effect of Sp3a. Conclusively, our findings contribute to further research on the antiviral capabilities of Sp3a in grouper and other fish. Therefore, our research has potential implications on the development of the aquaculture industry.


Subject(s)
Bass , Fish Diseases , Fish Proteins , Animals , Fish Diseases/virology , Fish Diseases/genetics , Fish Proteins/genetics , Fish Proteins/metabolism , Bass/genetics , Bass/virology , Sp3 Transcription Factor/metabolism , Sp3 Transcription Factor/genetics , Phylogeny , Nodaviridae/genetics , Cloning, Molecular , RNA Virus Infections/veterinary , RNA Virus Infections/virology , RNA Virus Infections/genetics , DNA Virus Infections/veterinary , DNA Virus Infections/virology , DNA Virus Infections/genetics , Amino Acid Sequence
SELECTION OF CITATIONS
SEARCH DETAIL