Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Blood ; 142(18): 1529-1542, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37584437

ABSTRACT

The cross talk between extrinsic niche-derived and intrinsic hematopoietic stem cell (HSC) factors controlling HSC maintenance remains elusive. Here, we demonstrated that amphiregulin (AREG) from bone marrow (BM) leptin receptor (LepR+) niche cells is an important factor that mediates the cross talk between the BM niche and HSCs in stem cell maintenance. Mice deficient of the DNA repair gene Brca2, specifically in LepR+ cells (LepR-Cre;Brca2fl/fl), exhibited increased frequencies of total and myeloid-biased HSCs. Furthermore, HSCs from LepR-Cre;Brca2fl/fl mice showed compromised repopulation, increased expansion of donor-derived, myeloid-biased HSCs, and increased myeloid output. Brca2-deficient BM LepR+ cells exhibited persistent DNA damage-inducible overproduction of AREG. Ex vivo treatment of wild-type HSCs or systemic treatment of C57BL/6 mice with recombinant AREG impaired repopulation, leading to HSC exhaustion. Conversely, inhibition of AREG by an anti-AREG-neutralizing antibody or deletion of the Areg gene in LepR-Cre;Brca2fl/fl mice rescued HSC defects caused by AREG. Mechanistically, AREG activated the phosphoinositide 3-kinases (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway, promoted HSC cycling, and compromised HSC quiescence. Finally, we demonstrated that BM LepR+ niche cells from other DNA repair-deficient and aged mice also showed persistent DNA damage-associated overexpression of AREG, which exerts similar negative effects on HSC maintenance. Therefore, we identified an important factor that regulates HSCs function under conditions of DNA repair deficiency and aging.


Subject(s)
DNA Repair-Deficiency Disorders , Receptors, Leptin , Mice , Animals , Amphiregulin/genetics , Amphiregulin/metabolism , Receptors, Leptin/genetics , Receptors, Leptin/metabolism , Mice, Inbred C57BL , Hematopoietic Stem Cells/metabolism , Aging/genetics , DNA Repair-Deficiency Disorders/metabolism , Stem Cell Niche/genetics , Mammals/metabolism
2.
Theriogenology ; 119: 28-34, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-29960164

ABSTRACT

During folliculogenesis, the luteinizing hormone (LH) surge triggers dynamic events in granulosa cells that culminate with ovulation. The aim of this study was to evaluate if the epidermal growth factor receptor (EGFR) is required for ovulation in cattle, and if it regulates the expression of the natriuretic peptide (NP) system in granulosa cells after gonadotropin-releasing hormone (GnRH)/LH stimulation. It was observed that GnRH induces amphiregulin (AREG) and epiregulin (EREG) mRNA at 3 and 6 h after in vivo treatment, but the expression of these genes was not regulated by atrial (ANP) and C-type (CNP) NPs in granulosa cells cultured in vitro. The abundance of mRNA encoding the NP receptors (NPR1, 2 and 3) was not altered by LH supplementation and/or EGFR inhibition (AG1478; AG) in granulosa cells after 6 h of in vitro culture. However, in the same conditions, mRNA encoding the natriuretic peptide precursor C (NPPC) was upregulated by LH, whereas AG (0.5 and 5 µM) inhibited the LH effect. In order to confirm those results, 5 µM AG or saline were intrafollicularly injected in preovulatory follicles and cows were simultaneously treated with GnRH intramuscularly. Granulosa cells harvested at 6 h after GnRH injection revealed higher NPR3 and lower NPPC mRNA levels in AG-treated, compared to control cows. However, intrafollicular injection of AG did not inhibit GnRH-induced ovulation. In granulosa cells cultured in vitro, ANP associated with LH increased prostaglandin-endoperoxide synthase 2 (PTGS2) mRNA abundance. In conclusion, we inferred that LH modulated NPPC and NPR3 mRNA abundance through EGFR in bovine granulosa cells, but ovulation in cattle did not seem to depend on EGFR activation.


Subject(s)
Cattle , Gene Expression Regulation/drug effects , Granulosa Cells/drug effects , Luteinizing Hormone/pharmacology , Receptors, Atrial Natriuretic Factor/metabolism , Amphiregulin/metabolism , Animals , Biomarkers , Epiregulin/metabolism , ErbB Receptors , Female , Granulosa Cells/physiology , RNA, Messenger , Receptors, Atrial Natriuretic Factor/genetics , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL