Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.521
Filter
1.
Physiol Rep ; 12(13): e16097, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38955666

ABSTRACT

Latent associations between low serum amylase and reduced plasma insulin levels and increased adiposity have been described previously in a small study of asymptomatic middle-aged humans. In the present study, we sought to determine the nature of such changes during the longitudinal progression from metabolically normal to overt type 2 diabetes mellitus (T2DM) in nonhuman primates (NHPs), a disease that appears to be the same in both pathophysiology and underlying mechanisms as that which most commonly develops in middle-aged adult humans. Amylase and lipase levels were characterized in 157 unrelated adult rhesus monkeys (Macaca mulatta); 38% developed T2DM while under study. In all monkeys, multivariable linear regression analysis revealed that amylase could be negatively predicted by % body fat (ß -0.29; p = 0.002), age (ß -0.27; p = 0.005), and HbA1c (ß -0.18; p = 0.037). Amylase levels were positively predicted by lipase levels (ß = 0.19; p = -0.024) in all NHPs included in the study. Amylase was significantly lower in NHPs with metabolic syndrome (p < 0.001), prediabetes (PreDM) (p < 0.001), and T2DM (p < 0.001) compared to metabolically normal adult NHPs. Lipase increased in NHPs with PreDM (p = 0.005) and T2DM (p = 0.04) compared to normal NHPs. This is the first longitudinal study of any species, including humans, to show the dynamics of amylase and lipase during the metabolic progression from normal to metabolic syndrome, to PreDM and then to overt T2DM. The extraordinary similarity between humans and monkeys in T2DM, in pancreatic pathophysiology and in metabolic functions give these findings high translational value.


Subject(s)
Amylases , Diabetes Mellitus, Type 2 , Lipase , Macaca mulatta , Metabolic Syndrome , Animals , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/metabolism , Lipase/blood , Lipase/metabolism , Male , Metabolic Syndrome/blood , Metabolic Syndrome/metabolism , Longitudinal Studies , Amylases/blood , Amylases/metabolism , Female
2.
Arch Microbiol ; 206(7): 291, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849576

ABSTRACT

Biomass-degrading enzymes produced by microorganisms have a great potential in the processing of agricultural wastes. In order to produce suitable biomass-degrading enzymes for releasing sugars and aroma compounds from tobacco scraps, the feasibility of directly using the scraps as a carbon source for enzyme production was investigated in this study. By comparative studies of ten fungal strains isolated from tobacco leaves, Aspergillus brunneoviolaceus Ab-10 was found to produce an efficient enzyme mixture for the saccharification of tobacco scraps. Proteomic analysis identified a set of plant biomass-degrading enzymes in the enzyme mixture, including amylases, hemicellulases, cellulases and pectinases. At a substrate concentration of 100 g/L and enzyme dosage of 4 mg/g, glucose of 17.6 g/L was produced from tobacco scraps using the crude enzyme produced by A. brunneoviolaceus Ab-10. In addition, the contents of 23 volatile molecules, including the aroma compounds 4-ketoisophorone and benzyl alcohol, were significantly increased after the enzymatic treatment. The results provide a strategy for valorization of tobacco waste by integrating the production of biomass-degrading enzymes into the tobacco scrap processing system.


Subject(s)
Aspergillus , Biomass , Nicotiana , Nicotiana/microbiology , Nicotiana/metabolism , Aspergillus/enzymology , Aspergillus/metabolism , Sugars/metabolism , Odorants/analysis , Fungal Proteins/metabolism , Glycoside Hydrolases/metabolism , Amylases/metabolism , Volatile Organic Compounds/metabolism , Plant Leaves/microbiology , Cellulases/metabolism , Polygalacturonase/metabolism
3.
Microbiology (Reading) ; 170(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38847798

ABSTRACT

Bacillus subtilis is a Gram-positive bacterium that is frequently used in the bioindustry for the production of various proteins, because of its superior protein secretion capacities. To determine optimal conditions for protein secretion by B. subtilis, a quick and sensitive method for measuring protein secretion is crucial. A fast and universal assay is most useful for detecting diverse proteins in a high-throughput manner. In this study, we introduce a split-luciferase-based method for measuring protein secretion by B. subtilis. The NanoBiT system was used to monitor secretion of four different proteins: xylanase A, amylase M, protein glutaminase A, and GFP nanobody. Our findings underscore the split-luciferase system as a quick, sensitive, and user-friendly method.


Subject(s)
Bacillus subtilis , Bacterial Proteins , Bacillus subtilis/metabolism , Bacillus subtilis/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Luciferases/metabolism , Luciferases/genetics , Endo-1,4-beta Xylanases/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Protein Transport , Amylases/metabolism , Glutaminase/metabolism
4.
BMC Microbiol ; 24(1): 209, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877423

ABSTRACT

Fungi can spoil the majority of baked products. Spoilage of cake during storage is commonly associated with fungi. Therefore, this study aimed to assess the quality of different types of cakes sold in the market. The most predominant fungal genera in the tested cake samples (14 samples) were Aspergillus spp., and Penicillium spp. On Potato Dextrose Agar (PDA), the medium fungal total count was 43.3 colonies /g. Aspergillus was the most dominant genus and was isolated from six samples of cake. Aspergillus was represented by 3 species namely, A. flavus, A. niger, and A. nidulans, represented by 13.32, 19.99, and 3.33 colonies /g respectively. On Malt Extract Agar (MEA) Medium, the fungal total count was 123.24 colonies / g. Aspergillus was the most dominant isolated genus from 11 samples of cake and was represented by 5 species, namely, A. flavus, A. niger, A. ochraceous, A. terreus, and A. versicolor (26. 65, 63.29, 3.33, 6.66, and 3.33 colonies / g , respectively). Twenty-four isolates (88.88 %) of the total tested twenty-seven filamentous fungi showed positive results for amylase production. Ten isolates (37.03%) of the total tested filamentous fungi showed positive results for lipase production, and finally eleven isolates (40.74 %) of the total fungal isolates showed positive results for protease production. Aflatoxins B1, B2, G1, G2, and ochratoxin A were not detected in fourteen collected samples of cake. In this study, clove oil was the best choice overpeppermint oil and olive oil for preventing mold development when natural agents were compared. It might be due to the presence of a varietyof bioactive chemical compounds in clove oil, whose major bioactive component is eugenol, which acts as an antifungal reagent. Therefore, freshly baked cake should be consumed within afew days to avoid individuals experiencing foodborne illnesses.


Subject(s)
Food Microbiology , Fungi , Mycotoxins , Fungi/isolation & purification , Fungi/classification , Fungi/enzymology , Fungi/genetics , Mycotoxins/analysis , Aspergillus/isolation & purification , Aspergillus/enzymology , Penicillium/isolation & purification , Penicillium/enzymology , Food Contamination/analysis , Aflatoxins/analysis , Lipase/metabolism , Amylases/metabolism , Amylases/analysis
5.
Int J Biol Macromol ; 272(Pt 2): 132822, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38830493

ABSTRACT

Fat depots or triglycerides are hydrolysed by the action of lipases in fish to be used for energy and/or for growth and reproduction. In herbivores fishes, de novo synthesis of lipids from non- lipid substrates (glucose) leads to fat deposits and/or fatty infiltration in organs especially on ovaries limiting its normal functions. This study was aimed to understand lipases from the digestive tract (DT) of adult Hypselobarbus pulchellus of different sizes, their partial purification, characterisation and their isozymes. In-vitro hydrolysis study on interaction of carbohydrate with proteins was evaluated to establish specific protein selection that combat undue glucose release. Results of the study identified four lipase isoenzymes of ~ mol. wt 19.88, 24.29, 32.86, 54.56 kDa with optimal pH of 3.5 and 8, pH stability between pH 5.5-10; optimal temperature at 35 °C and heat stability between 35 and 45 °C. Characterisation studies indicated presence of thiol group in their active site and Ca, Na and Zn ions activated lipase activity. Rice bran as carbohydrate source when used along with azolla (plant protein) and fish meal (animal protein) may combat undue release of excess glucose that leads to visceral fat formation in H. pulchellus as assessed from in vitro studies.


Subject(s)
Amylases , Carps , Lipase , Animals , Lipase/metabolism , Lipase/chemistry , Carps/metabolism , Hydrogen-Ion Concentration , Amylases/metabolism , Amylases/chemistry , Intra-Abdominal Fat/metabolism , Temperature , Hydrolysis
6.
World J Microbiol Biotechnol ; 40(8): 255, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38926189

ABSTRACT

Thermophilic actinomycetes are commonly found in extreme environments and can thrive and adapt to extreme conditions. These organisms exhibit substantial variation and garnered significant interest due to their remarkable enzymatic activities. This study evaluated the potential of Streptomyces griseorubens NBR14 and Nocardiopsis synnemataformans NBRM9 strains to produce thermo-stable amylase via submerged fermentation using wheat and bean straw. The Box-Behnken design was utilized to determine the optimum parameters for amylase biosynthesis. Subsequently, amylase underwent partial purification and characterization. Furthermore, the obtained hydrolysate was applied for ethanol fermentation using Saccharomyces cerevisiae. The optimal parameters for obtaining the highest amylase activity by NBR14 (7.72 U/mL) and NBRM9 (26.54 U/mL) strains were found to be 40 and 30 °C, pH values of 7, incubation time of 7 days, and substrate concentration (3 and 2 g/100 mL), respectively. The NBR14 and NBRM9 amylase were partially purified, resulting in specific activities of 251.15 and 144.84 U/mg, as well as purification factors of 3.91 and 2.69-fold, respectively. After partial purification, the amylase extracted from NBR14 and NBRM9 showed the highest activity level at pH values of 9 and 7 and temperatures of 50 and 60 °C, respectively. The findings also indicated that the maximum velocity (Vmax) for NBR14 and NBRM9 amylase were 57.80 and 59.88 U/mL, respectively, with Km constants of 1.39 and 1.479 mM. After 48 h, bioethanol was produced at concentrations of 5.95 mg/mL and 9.29 mg/mL from hydrolyzed wheat and bean straw, respectively, through fermentation with S. cerevisiae. Thermophilic actinomycetes and their α-amylase yield demonstrated promising potential for sustainable bio-ethanol production from agro-byproducts.


Subject(s)
Actinobacteria , Amylases , Ethanol , Fermentation , Saccharomyces cerevisiae , Temperature , Triticum , Ethanol/metabolism , Amylases/metabolism , Hydrogen-Ion Concentration , Kinetics , Actinobacteria/metabolism , Actinobacteria/enzymology , Saccharomyces cerevisiae/metabolism , Hydrolysis , Streptomyces/enzymology , Streptomyces/metabolism , Enzyme Stability
7.
Cell Rep ; 43(6): 114346, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38850534

ABSTRACT

Histopathological heterogeneity in the human pancreas is well documented; however, functional evidence at the tissue level is scarce. Herein, we investigate in situ glucose-stimulated islet and carbachol-stimulated acinar cell secretion across the pancreas head (PH), body (PB), and tail (PT) regions in donors without diabetes (ND; n = 15), positive for one islet autoantibody (1AAb+; n = 7), and with type 1 diabetes (T1D; <14 months duration, n = 5). Insulin, glucagon, pancreatic amylase, lipase, and trypsinogen secretion along with 3D tissue morphometrical features are comparable across regions in ND. In T1D, insulin secretion and beta-cell volume are significantly reduced within all regions, while glucagon and enzymes are unaltered. Beta-cell volume is lower despite normal insulin secretion in 1AAb+, resulting in increased volume-adjusted insulin secretion versus ND. Islet and acinar cell secretion in 1AAb+ are consistent across the PH, PB, and PT. This study supports low inter-regional variation in pancreas slice function and, potentially, increased metabolic demand in 1AAb+.


Subject(s)
Diabetes Mellitus, Type 1 , Insulin , Islets of Langerhans , Humans , Diabetes Mellitus, Type 1/pathology , Diabetes Mellitus, Type 1/metabolism , Islets of Langerhans/metabolism , Islets of Langerhans/pathology , Male , Insulin/metabolism , Female , Insulin Secretion/drug effects , Adult , Middle Aged , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Acinar Cells/metabolism , Acinar Cells/pathology , Glucagon/metabolism , Glucose/metabolism , Autoantibodies/immunology , Amylases/metabolism
8.
J Dairy Sci ; 107(7): 4426-4448, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38942561

ABSTRACT

This study investigated the effects of feeding an amylase-enabled corn silage (ACS) on the performance and enteric gas emissions in lactating dairy cows. Following a 2-wk covariate period, 48 mid-lactation Holstein cows were assigned to 1 of 3 treatments in a 10-wk randomized complete block design experiment. Treatments were diets containing the same proportion of corn silage (40% of dietary DM) as follows: (1) a conventional hybrid corn silage control (CON), (2) ACS replacing the control silage (ADR), and (3) the ADR diet replacing soybean hulls with ground corn grain to achieve the same dietary starch concentration as CON (ASR). Control corn silage and ACS were harvested on the same day and contained 40.3% and 37.1% DM and (% of DM): 37.2% and 41.0% NDF and 37.1% and 30.0% starch, respectively. Enteric gas emissions were measured using the GreenFeed system. Two cows were culled due to health-related issues during the covariate period. Ruminal fluid was collected from 24 cows (8 per treatment) using the orogastric ruminal sampling technique. When compared with CON, cows fed ADR had increased DMI during experimental wk 3, 4, and 9, but treatment did not affect milk or ECM milk yields (39.0 kg/d on average; SEM = 0.89). Compared with CON, feed efficiency (per unit of milk, but not ECM) tended to be lower for ADR, whereas milk true protein concentration (a tendency) and yield were lower for ASR. Milk urea N was decreased by both ADR and ASR diets relative to CON. Compared with CON, daily CH4 emission and emission intensity were increased by ADR but not ASR. Total protozoal count tended to be increased by both diets formulated with ACS when compared with control corn silage. Total-tract digestibility of dietary NDF was greater for ASR, and that of ADF was greater for both ADR and ASR versus CON. The molar proportion of acetate (a tendency) and acetate-to-propionate ratio were increased by ADR, but not ASR, when compared with CON. Replacement of CON with ACS (having lower starch concentration) in the diet of dairy cows increased DMI during the initial weeks of the experiment, maintained ECM, tended to decrease feed efficiency, and increased enteric CH4 emissions, likely due to increased intake of digestible fiber, compared with CON.


Subject(s)
Amylases , Diet , Fermentation , Lactation , Milk , Rumen , Silage , Starch , Zea mays , Animals , Cattle , Female , Starch/metabolism , Rumen/metabolism , Diet/veterinary , Milk/chemistry , Milk/metabolism , Amylases/metabolism , Animal Feed/analysis , Gases
9.
J Basic Microbiol ; 64(7): e2400049, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38715338

ABSTRACT

Endophytic microbial communities colonize plants growing under various abiotic stress conditions. Candelilla (Euphorbia antisyphilitica Zucc.) is a shrub that develops functionally in arid and semi-arid zones of Mexico; these conditions generate an association between the plant and the microorganisms, contributing to the production of enzymes as a defense mechanism for resistance to abiotic stress. The objective of this research was to isolate and identify endophyte fungi of candelilla and bioprospection of these endophytic fungi for enzyme production using candelilla by-products. Fungi were isolated and identified using ITS1/ITS4 sequencing. Their potency index (PI) was evaluated in producing endoglucanase, xylanase, amylase, and laccase. Fermentation was carried out at 30°C for 8 days at 200 rpm, with measurements every 2 days, using candelilla by-products as substrate. All fungi exhibited higher cellulase, amylase, and laccase activities on the 2nd, 6th, and 8th day of fermentation, respectively, of fermentation. The fungus Aspergillus niger ITD-IN4.1 showed the highest amylase activity (246.84 U/mg), the genus Neurospora showed the highest cellulase activity, reaching up to 13.45 FPU/mg, and the strain Neurospora sp. ITD-IN5.2 showed the highest laccase activity (3.46 U/mg). This work provides the first report on the endophytic diversity of E. antisyphilitica and its potential role in enzyme production.


Subject(s)
Bioprospecting , Cellulase , Endophytes , Fermentation , Laccase , Endophytes/isolation & purification , Endophytes/enzymology , Endophytes/metabolism , Endophytes/genetics , Laccase/metabolism , Laccase/biosynthesis , Cellulase/metabolism , Cellulase/biosynthesis , Amylases/metabolism , Aspergillus niger/isolation & purification , Aspergillus niger/enzymology , Mexico , Neurospora , Fungi/isolation & purification , Fungi/enzymology , Fungi/classification , Fungi/genetics
10.
Microb Pathog ; 192: 106707, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38777241

ABSTRACT

Bacterial wilt of tomato caused by Ralstonia solanacearum is a critical soilborne disease that drastically reduces yield. In the current study, an endophytic strain NEAU-CP5 with strong antagonistic activity against R. solanacearum was isolated from tomato seeds and characterized. The strain was identified as Bacillus velezensis based on 16S rRNA gene and whole genome sequence analysis. NEAU-CP5 can secrete amylase, protease, and cellulase, and also produce known antibacterial metabolites, including cyclo (leucylprolyl), cyclo (phenylalanyl-prolyl), cyclo (Pro-Gly), 3-benzyl-2,5-piperazinedione, pentadecanoic acid, eicosane, 2-methyoic acid, isovaleric acid, dibuty phthalate, and esters of fatty acids (HFDU), which may be responsible for its strong antibacterial activity. Fourteen gene clusters associated with antibacterial properties were also identified in the whole genome sequence of NEAU-CP5. Pot experiment demonstrated that the application of 108 CFU/mL NEAU-CP5 on tomato plants significantly reduced the incidence of tomato bacterial wilt by 68.36 ± 1.67 %. NEAU-CP5 also increased the activity of defense-related enzymes (CAT, POD, PPO, SOD, and PAL) in tomato plants. This is the first report of an effective control of bacterial wilt on tomato plants by B. velezensis and highlights the potential of NEAU-CP5 as a potential biocontrol agent for the management of tomato bacterial wilt.


Subject(s)
Bacillus , Phylogeny , Plant Diseases , RNA, Ribosomal, 16S , Ralstonia solanacearum , Seeds , Solanum lycopersicum , Solanum lycopersicum/microbiology , Plant Diseases/microbiology , Ralstonia solanacearum/genetics , Bacillus/isolation & purification , Bacillus/genetics , Bacillus/metabolism , Bacillus/classification , Seeds/microbiology , RNA, Ribosomal, 16S/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Endophytes/isolation & purification , Endophytes/genetics , Endophytes/metabolism , Genome, Bacterial , Whole Genome Sequencing , Antibiosis , Multigene Family , Amylases/metabolism , Amylases/genetics , DNA, Bacterial/genetics
11.
Molecules ; 29(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38731503

ABSTRACT

This current article was dedicated to the determination of the composition of phenolic compounds in extracts of four species of the genus Filipendula in order to establish a connection between the composition of polyphenols and biological effects. A chemical analysis revealed that the composition of the extracts studied depended both on the plant species and its part (leaf or flower) and on the extractant used. All four species of Filipendula were rich sources of phenolic compounds and contained hydrolyzable tannins, condensed tannins, phenolic acids and their derivatives, and flavonoids. The activities included data on those that are most important for creating functional foods with Filipendula plant components: the influence on blood coagulation measured by prothrombin and activated partial thromboplastin time, and on the activity of the digestive enzymes (pancreatic amylase and lipase). It was established that plant species, their parts, and extraction methods contribute meaningfully to biological activity. The most prominent result is as follows: the plant organ determines the selective inhibition of either amylase or lipase; thus, the anticoagulant activities of F. camtschatica and F. stepposa hold promise for health-promoting food formulations associated with general metabolic disorders.


Subject(s)
Phenols , Plant Extracts , Plant Extracts/chemistry , Plant Extracts/pharmacology , Phenols/chemistry , Phenols/analysis , Phenols/pharmacology , Lipase/antagonists & inhibitors , Lipase/metabolism , Flavonoids/chemistry , Flavonoids/pharmacology , Flavonoids/analysis , Polyphenols/chemistry , Polyphenols/pharmacology , Polyphenols/analysis , Amylases/antagonists & inhibitors , Amylases/metabolism , Blood Coagulation/drug effects , Humans , Anticoagulants/pharmacology , Anticoagulants/chemistry , Plant Leaves/chemistry
12.
Food Chem ; 449: 139232, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38581794

ABSTRACT

To effectively inhibit the retrogradation of staple foods, the effects of maltotetraose-forming amylase(G4-amylase) on the short and long-term retrogradation of different staple starches such as rice starch (RS), wheat starch (WS), potato starch (PS) were studied. The results indicated that G4-amylase decreased the content of amylose. Amylose contents (21.09%) of WSG4 were higher than that (14.82%) of RSG4 and (13.13%) of PSG4. WS had the most obvious change in the chain length distribution of amylopectin. A chains decreased by 18.99% and the B1 chains decreased by 12.08% after G4-amylase treatment. Compared to RS (662 cP) and WS (693 cP), the setback viscosity of RSG4 (338 cP) and WSG4 (385 cP) decreased. Compared to RS (0.41), WS (0.45), and PS (0.51), the long-term retrogradation rate of RSG4 (0.33), WSG4 (0.31), and PSG4 (0.38) significantly reduced. It indicated that G4-amylase significantly inhibited the long-term retrogradation of WS, followed by RS and PS.


Subject(s)
Amylases , Maltose/analogs & derivatives , Oryza , Solanum tuberosum , Starch , Triticum , Starch/chemistry , Amylases/chemistry , Amylases/metabolism , Triticum/chemistry , Viscosity , Solanum tuberosum/chemistry , Oryza/chemistry , Amylose/chemistry , Amylose/analysis , Maltose/chemistry , Biocatalysis
13.
Bioresour Technol ; 401: 130739, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38670291

ABSTRACT

A modified biodegradable plastic (PLA/PBAT) was developed by through covalent bonding with proteinase K, porcine pancreatic lipase, or amylase, and was then investigated in anaerobic co-digestion mixed with food waste. Fluorescence microscope validated that enzymes could remain stable in modified the plastic, even after co-digestion. The results of thermophilic anaerobic co-digestion showed that, degradation of the plastic modified with Proteinase K increased from 5.21 ± 0.63 % to 29.70 ± 1.86 % within 30 days compare to blank. Additionally, it was observed that the cumulative methane production increased from 240.9 ± 0.5 to 265.4 ± 1.8 mL/gVS, and the methane production cycle was shortened from 24 to 20 days. Interestingly, the kinetic model suggested that the modified the plastic promoted the overall hydrolysis progression of anaerobic co-digestion, possibly as a result of the enhanced activities of Bacteroidota and Thermotogota. In conclusion, under anaerobic co-digestion, the modified the plastic not only achieved effective degradation but also facilitated the co-digestion process.


Subject(s)
Biodegradable Plastics , Methane , Anaerobiosis , Methane/metabolism , Biodegradable Plastics/chemistry , Biodegradation, Environmental , Lipase/metabolism , Swine , Animals , Food , Waste Products , Amylases/metabolism , Kinetics , Hydrolysis , Refuse Disposal/methods , Food Loss and Waste
14.
Int J Biol Macromol ; 266(Pt 2): 131310, 2024 May.
Article in English | MEDLINE | ID: mdl-38569986

ABSTRACT

Alpha amylase belonging to starch hydrolyzing enzymes has significant contributions to different industrial processes. The enzyme production through recombinant DNA technology faces certain challenges related to their expression, solubility and purification, which can be overcome through fusion tags. This study explored the influence of SUMO, a protein tag reported to enhance the solubility and stability of target proteins when fused to the N-terminal of the catalytic domain of amylase from Pyrococcus abyssi (PaAD). The insoluble expression of PaAD in E. coli was overcome when the enzyme was expressed in a fusion state (S-PaAD) and culture was cultivated at 18 °C. Moreover, the activity of S-PaAD increased by 1.5-fold as compared to that of PaAD. The ligand binding and enzyme activity assays against different substrates demonstrated that it was more active against 1 % glycogen and amylopectin. The analysis of the hydrolysates through HPLC demonstrated that the enzyme activity is mainly amylolytic, producing longer oligosaccharides as the major end product. The secondary structure analyses by temperature ramping in CD spectroscopy and MD simulation demonstrated the enzymes in the free, as well as fusion state, were stable at 90 °C. The soluble production, thermostability and broad substrate specificity make this enzyme a promising choice for various foods, feed, textiles, detergents, pharmaceuticals, and many industrial applications.


Subject(s)
Catalytic Domain , Enzyme Stability , Pyrococcus abyssi , Recombinant Fusion Proteins , Solubility , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Substrate Specificity , Pyrococcus abyssi/enzymology , Amylases/chemistry , Amylases/metabolism , Amylases/genetics , Hydrolysis , Escherichia coli/genetics , Temperature , Starch/chemistry , Starch/metabolism
15.
Enzyme Microb Technol ; 178: 110447, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38626534

ABSTRACT

Clostridium butyricum (C. butyricum) represents a new generation of probiotics, which is beneficial because of its good tolerance and ability to produce beneficial metabolites, such as short-chain fatty acids and enzymes; however, its low enzyme activity limits its probiotic efficacy. In this study, a mutant strain, C. butyricum FZM 240 was obtained using carbon ion beam irradiation, which exhibited greatly improved enzyme production and tolerance. The highest filter paper, endoglucanase, and amylase activities produced by C. butyricum FZM 240 were 125.69 U/mL, 225.82 U/ mL, and 252.28 U/mL, which were 2.58, 1.95, and 2.21-fold higher, respectively, than those of the original strain. The survival rate of the strain increased by 11.40 % and 5.60 % after incubation at 90 °C for 5 min and with simulated gastric fluid at pH 2.5 for 2 h, respectively, compared with that of the original strain. Whole-genome resequencing and quantitative real-time PCR(qRT-PCR) analysis showed that the expression of genes related to enzyme synthesis (GE000348, GE001963 and GE003123) and tolerance (GE001114) was significantly up-regulated, while that of genes related to acid metabolism (GE003450) was significantly down-regulated. On this basis, homology modeling and functional prediction of the proteins encoded by the mutated genes were performed. According to the results, the properties related to the efficacy of C. butyricum as a probiotic were significantly enhanced by carbon ion beam irradiation, which is a novel strategy for the application of Clostridium spp. as feed additives.


Subject(s)
Clostridium butyricum , Mutation , Probiotics , Clostridium butyricum/genetics , Clostridium butyricum/metabolism , Clostridium butyricum/radiation effects , Carbon/metabolism , Animals , Cellulase/metabolism , Cellulase/genetics , Amylases/metabolism , Amylases/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
16.
Dig Dis Sci ; 69(5): 1691-1700, 2024 May.
Article in English | MEDLINE | ID: mdl-38466463

ABSTRACT

BACKGROUND: Acute pancreatitis (AP) is one of the most common acute abdominal disorders; due to the lack of specific treatment, the treatment of acute pancreatitis, especially serious acute pancreatitis (SAP), is difficult and challenging. We will observe the changes of Interleukin -22 levels in acute pancreatitis animal models, and explore the mechanism of Interleukin -22 in acute pancreatitis. OBJECTIVE: This study aims to assess the potential protective effect of Interleukin -22 on caerulein-induced acute pancreatitis and to explore its mechanism. METHODS: Blood levels of amylase and lipase and Interleukin -22 were assessed in mice with acute pancreatitis. In animal model and cell model of caerulein-induced acute pancreatitis, the mRNA levels of P62 and Beclin-1 were determined using PCR, and the protein expression of P62, LC3-II, mTOR, AKT, p-mTOR, and p-AKT were evaluated through Western blot analysis. RESULTS: Interleukin -22 administration reduced blood amylase and lipase levels and mitigated tissue damage in acute pancreatitis mice model. Interleukin -22 inhibited the relative mRNA levels of P62 and Beclin-1, and the Interleukin -22 group showed a decreased protein expression of LC3-II and P62 and the phosphorylation of the AKT/mTOR pathway. Furthermore, we obtained similar results in the cell model of acute pancreatitis. CONCLUSION: This study suggests that Interleukin -22 administration could alleviate pancreatic damage in caerulein-induced acute pancreatitis. This effect may result from the activation of the AKT/mTOR pathway, leading to the inhibition of autophagy. Consequently, Interleukin -22 shows potential as a treatment.


Subject(s)
Ceruletide , Disease Models, Animal , Interleukin-22 , Interleukins , Pancreatitis , Proto-Oncogene Proteins c-akt , Signal Transduction , TOR Serine-Threonine Kinases , Animals , Pancreatitis/chemically induced , Pancreatitis/metabolism , Pancreatitis/drug therapy , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins c-akt/metabolism , Interleukins/metabolism , Signal Transduction/drug effects , Mice , Male , Lipase/blood , Lipase/metabolism , Amylases/blood , Amylases/metabolism , Autophagy/drug effects , Pancreas/metabolism , Pancreas/pathology , Pancreas/drug effects , Mice, Inbred C57BL , Beclin-1/metabolism , Beclin-1/genetics , Acute Disease
17.
World J Surg ; 48(5): 1231-1241, 2024 05.
Article in English | MEDLINE | ID: mdl-38448035

ABSTRACT

BACKGROUND: Clinically relevant postoperative pancreatic fistula (CR-POPF) after pancreatic resection can lead to severe postoperative complications. POPF is defined based on postoperative day (POD) 3 drainage fluid amylase level. POPF correlates with inflammatory parameters as well as drainage fluid bacterial infection. However, a standardized model based on these factors for predicting CR-POPF remains elusive. We aimed to identify inflammatory parameter- and drainage fluid culture-related risk factors for CR-POPF on POD 3 after pancreatoduodenectomy (PD) and distal pancreatectomy (DP). METHODS: Data from 351 patients who underwent PD or DP between 2013 and 2022 at a single institution were retrospectively analyzed. Risk factors for CR-POPF were investigated using multivariate analyses, and a prediction model combining the risk factors for CR-POPF was developed. RESULTS: Of the 351 patients, 254 and 97 underwent PD and DP, respectively. Multivariate analyses revealed that drainage fluid amylase level ≥722 IU/L, culture positivity, as well as neutrophil count ≥5473/mm3 on POD 3 were independent risk factors for CR-POPF in PD group. Similarly, drainage fluid, amylase level ≥500 IU/L, and culture positivity on POD 3 as well as pancreatic thickness ≥11.1 mm were independent risk factors in the DP group. The model for predicting CR-POPF achieved the maximum overall accuracy rate when the number of risk factors was ≥2 in both the PD and DP groups. CONCLUSIONS: Inflammatory parameters on POD 3 significantly influence the risk of CR-POPF onset after pancreatectomy. The combined models based on these values can accurately predict the risk of CR-POPF after pancreatectomy.


Subject(s)
Drainage , Pancreatectomy , Pancreatic Fistula , Pancreaticoduodenectomy , Postoperative Complications , Humans , Pancreatic Fistula/etiology , Pancreatic Fistula/epidemiology , Pancreatic Fistula/diagnosis , Female , Male , Retrospective Studies , Middle Aged , Aged , Postoperative Complications/etiology , Postoperative Complications/diagnosis , Postoperative Complications/epidemiology , Pancreaticoduodenectomy/adverse effects , Pancreatectomy/adverse effects , Risk Factors , Amylases/analysis , Amylases/metabolism , Predictive Value of Tests , Adult
19.
Surg Endosc ; 38(5): 2699-2708, 2024 May.
Article in English | MEDLINE | ID: mdl-38528262

ABSTRACT

BACKGROUND: Drainage fluid amylase (DFA) is useful for predicting clinically relevant postoperative pancreatic fistula (CR-POPF) after distal pancreatectomy (DP). However, difference in optimal cutoff value of DFA for predicting CR-POPF between open DP (ODP) and laparoscopic DP (LDP) has not been investigated. This study aimed to identify the optimal cutoff values of DFA for predicting CR-POPF after ODP and LDP. METHODS: Data for 294 patients (ODP, n = 127; LDP, n = 167) undergoing DP at Kobe University Hospital between 2010 and 2021 were reviewed. Propensity score matching was performed to minimize treatment selection bias. Receiver operating characteristic (ROC) analysis was performed to determine the optimal cutoff values of DFA for predicting CR-POPF for ODP and LDP. Logistic regression analysis for CR-POPF was performed to investigate the diagnostic value of DFA on postoperative day (POD) three with identified cutoff value. RESULTS: In the matched cohort, CR-POPF rates were 24.7% and 7.9% after ODP and LDP, respectively. DFA on POD one was significantly lower after ODP than after LDP (2263 U/L vs 4243 U/L, p < 0.001), while the difference was not significant on POD three (543 U/L vs 1221 U/L, p = 0.171). ROC analysis revealed that the optimal cutoff value of DFA on POD one and three for predicting CR-POPF were different between ODP and LDP (ODP, 3697 U/L on POD one, 1114 U/L on POD three; LDP, 10564 U/L on POD one, 6020 U/L on POD three). Multivariate analysis showed that DFA on POD three with identified cutoff value was the independent predictor for CR-POPF both for ODP and LDP. CONCLUSIONS: DFA on POD three is an independent predictor for CR-POPF after both ODP and LDP. However, the optimal cutoff value for it is significantly higher after LDP than after ODP. Optimal threshold of DFA for drain removal may be different between ODP and LDP.


Subject(s)
Amylases , Drainage , Laparoscopy , Pancreatectomy , Pancreatic Fistula , Postoperative Complications , Humans , Pancreatic Fistula/etiology , Pancreatic Fistula/diagnosis , Pancreatectomy/methods , Male , Female , Amylases/analysis , Amylases/metabolism , Drainage/methods , Middle Aged , Laparoscopy/methods , Aged , Retrospective Studies , Postoperative Complications/diagnosis , Postoperative Complications/etiology , Predictive Value of Tests , Propensity Score , Adult , ROC Curve
20.
Antonie Van Leeuwenhoek ; 117(1): 58, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38502333

ABSTRACT

Genes flbA-E are involved in sporulation and vegetative growth in Aspergillus nidulans. Inactivation of either of these genes results in a fluffy phenotype with delayed or even abolished sporulation. Previously, a non-sporulating phenotype was obtained by inactivating flbA in Aspergillus niger, which was accompanied by lysis, thinner cell walls, and an increased secretome complexity. Here, we further studied the role of the flb genes of A. niger. Strains ΔflbA, ΔflbB and ΔflbE showed increased biomass formation, while inactivation of flbA-D reduced, or even abolished, formation of conidia. Strain ΔflbA was more sensitive to H2O2, DTT, and the cell wall integrity stress compounds SDS and Congo Red (CR). Also, ΔflbC was more sensitive to SDS, while ΔflbB, ΔflbD, and ΔflbE were more sensitive to CR. On the other hand, inactivation of flbE increased resistance to H2O2. Enzyme secretion was impacted when the Δflb strains were grown on xylose. Strain ΔflbE showed reduced xylanase, cellulase and amylase secretion. On the other hand, amylase secretion at the periphery of the ΔflbA colony was reduced but not in its center, while secretion of this enzyme was increased in the center of the ΔflbB colony but not at its periphery. Inactivation of flbC and flbD also impacted zonal cellulase and amylase activity. Together, the Flb protein family of A. niger function in biomass formation, sporulation, stress response, and protein secretion.


Subject(s)
Aspergillus niger , Cellulases , Animals , Aspergillus niger/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Hydrogen Peroxide/metabolism , Life Cycle Stages , Cellulases/metabolism , Amylases/metabolism , Spores, Fungal
SELECTION OF CITATIONS
SEARCH DETAIL
...