Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Skin Pharmacol Physiol ; 36(5): 249-258, 2023.
Article in English | MEDLINE | ID: mdl-37788642

ABSTRACT

INTRODUCTION: Elastic skin fibers lose their mechanical properties during aging due to enzymatic degradation, lack of maturation, or posttranslational modifications. Dill extract has been observed to increase elastin protein expression and maturation in a 3D skin model, to improve mechanical properties of the skin, to increase elastin protein expression in vascular smooth muscle cells, to preserve aortic elastic lamella, and to prevent glycation. OBJECTIVE: The aim of the study was to highlight dill actions on elastin fibers during aging thanks to elastase digestion model and the underlying mechanism. METHODS: In this study, elastic fibers produced by dermal fibroblasts in 2D culture model were injured by elastase, and we observed the action of dill extract on elastic network by elastin immunofluorescence. Then action of dill extract was examined on mice skin by injuring elastin fibers by intradermal injection of elastase. Then elastin fibers were observed by second harmonic generation microscopy, and their functionality was evaluated by oscillatory shear stress tests. In order to understand mechanism by which dill acted on elastin fibers, enzymatic tests and real-time qPCR on cultured fibroblasts were performed. RESULTS: We evidence in vitro that dill extract is able to prevent elastin from elastase digestion. And we confirm in vivo that dill extract treatment prevents elastase digestion, allowing preservation of the cutaneous elastic network in mice and preservation of the cutaneous elastic properties. Although dill extract does not directly inhibit elastase activity, our results show that dill extract treatment increases mRNA expression of the endogenous inhibitor of elastase, elafin. CONCLUSION: Dill extract can thus be used to counteract the negative effects of elastase on the cutaneous elastic fiber network through modulation of PI3 gene expression.


Subject(s)
Anethum graveolens , Elastic Tissue , Mice , Animals , Elastic Tissue/metabolism , Elafin , Anethum graveolens/metabolism , Elastin/metabolism , Pancreatic Elastase/metabolism
2.
Nutrients ; 15(19)2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37836586

ABSTRACT

Anethum graveolens L., known as European dill, is a versatile herb widely used in both traditional medicine and culinary practices. Despite its long-standing history, the potential impact of the water extract of A. graveolens seeds (WEAG) on bone health remains unexplored. In this study, we investigated the influence of WEAG on osteoclast differentiation and assessed its potential as an anti-osteoporotic agent. WEAG hindered osteoclast differentiation through the suppression of receptor activator of nuclear factor-κB ligand (RANKL) expression in osteoclast-supporting cells and by directly targeting osteoclast precursor cells. WEAG significantly reduced the expression of key osteoclastogenic transcription factors, namely c-Fos and NFATc1, typically induced by RANKL in osteoclast precursors. This reduction was attributed to the suppression of both MAPKs and NF-κB pathways in response to RANKL. In vivo experiments further revealed that WEAG administration effectively reduces trabecular bone loss and weight gain triggered by ovariectomy, mimicking postmenopausal osteoporosis. Furthermore, our comprehensive phytochemical analysis of WEAG identified a range of phytochemical constituents, associated with bone health and weight regulation. Notably, we discovered a specific compound, isorhamnetin-3-O-glucuronide, within WEAG that exhibits anti-osteoclastogenic potential. Overall, this research elucidated the beneficial effects and mechanistic basis of WEAG on osteoclast differentiation and bone loss, indicating its potential as a viable alternative to address bone loss in conditions like postmenopause.


Subject(s)
Anethum graveolens , Bone Resorption , Humans , Female , Anethum graveolens/metabolism , Cell Differentiation , NFATC Transcription Factors/metabolism , Osteoclasts , Osteogenesis , NF-kappa B/metabolism , Phytochemicals/pharmacology , RANK Ligand/metabolism , Bone Resorption/drug therapy , Bone Resorption/prevention & control , Bone Resorption/metabolism , Ovariectomy
3.
Trop Anim Health Prod ; 55(3): 216, 2023 May 22.
Article in English | MEDLINE | ID: mdl-37212936

ABSTRACT

In the present study, we evaluated the antihyperlipidemic and antioxidant effects of garlic and dill in comparison with atorvastatin to combat lipogenesis in broiler chickens. A total of 400 1-day-old chicks (Ross 308 strain) were randomly distributed into four experimental diets. Dietary treatments included a control diet, the control diet plus atorvastatin at 20 mg/kg, the control diet plus garlic dry powder (GDP) at 7.5 g/kg, and the control diet plus dill dry powder (DDP) at 7.5 g/kg. Chicks were maintained on experimental diets for 42 days under the recommended environmental conditions set out by the strain management manual. The results showed that weight gain, feed conversion ratio (FCR), and duodenal, jejunal, and ileal dimensions of villi (height, width, and the surface absorptive area) were improved by in-feed atorvastatin, GDP, or DDP when compared to the control (P < 0.05). The inclusion of atorvastatin or phytobiotic products increased circulatory levels of nitric oxide (NO) but decreased circulatory levels of malondialdehyde (MDA), triacylglycerol (TAG), and low-density lipoproteins cholesterol (LDL), with concomitant reductions in the T, R, and S waves amplitudes in the Lead 2 electrocardiogram (ECG) (P < 0.05). Dietary supplements caused an up-regulation of inducible nitric oxide synthase (iNOS), superoxide dismutase 1 (SOD1), and glutathione peroxidase (GPX) but reduced the expression of key hepatic lipogenic enzymes (fatty acid synthase (FAS) and hydroxy-methylglutaryl-CoA reductase (HMGCR) (P < 0.05). In conclusion, feed supplementation with atorvastatin, GDP, or DDP suppressed lipogenesis, enhanced antioxidant response, and improved gut and cardio-pulmonary function in broiler chicks subjected to hypobaric hypoxia.


Subject(s)
Anethum graveolens , Garlic , Animals , Antioxidants/metabolism , Chickens , Anethum graveolens/metabolism , Atorvastatin/pharmacology , Atorvastatin/metabolism , Lipogenesis , Powders/metabolism , Diet/veterinary , Dietary Supplements , Animal Feed/analysis , Animal Nutritional Physiological Phenomena
4.
Plant J ; 113(3): 562-575, 2023 02.
Article in English | MEDLINE | ID: mdl-36534115

ABSTRACT

The phenylpropene volatiles dillapiole and apiole impart one of the characteristic aromas of dill (Anethum graveolens) weeds. However, very few studies have been conducted to investigate the chemical composition of volatile compounds from different developmental stages and plant parts of A. graveolens. In this study, we examined the distribution of volatile phenylpropenes, including dillapiole, in dill plants at various developmental stages. We observed that young dill seedlings accumulate high levels of dillapiole and apiole, whereas a negligible proportion was found in the flowering plants and dry seeds. Based on transcriptomics and co-expression approaches with phenylpropene biosynthesis genes, we identified dill cDNA encoding S-adenosyl-L-methionine-dependent O-methyltransferase 1 (AgOMT1), an enzyme that can convert 6- and 2-hydroxymyristicin to dillapiole and apiole, respectively, via the methylation of the ortho-hydroxy group. The AgOMT1 protein shows an apparent Km value of 3.5 µm for 6-hydroxymyristicin and is 75% identical to the anise (Pimpinella anisum) O-methyltransferase (PaAIMT1) that can convert isoeugenol to methylisoeugenol via methylation of the hydroxy group at the para-position of the benzene ring. AgOMT1 showed a preference for 6-hydroxymyristicin, whereas PaAIMT1 displayed a large preference for isoeugenol. In vitro mutagenesis experiments demonstrated that substituting only a few residues can substantially affect the substrate specificity of these enzymes. Other plants belonging to the Apiaceae family contained homologous O-methyltransferase (OMT) proteins highly similar to AgOMT1, converting 6-hydroxymyristicin to dillapiole. Our results indicate that apiaceous phenylpropene OMTs with ortho-methylating activity evolved independently of phenylpropene OMTs of other plants and the enzymatic function of AgOMT1 and PaAIMT1 diverged recently.


Subject(s)
Anethum graveolens , Anethum graveolens/chemistry , Anethum graveolens/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism
5.
Pak J Biol Sci ; 25(1): 56-66, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35001576

ABSTRACT

<b>Background and Objective:</b> Dill<i> </i>(<i>Anethum graveolens</i> L.) has the potential to develop as a new alternative medicine due to its pharmacological activities. However, studies into its safety regarding herb-drug interactions have been neglected. This study investigated the risk of dill-induced herb-drug interactions (HDI) by examining its effect on the expression of phase I and II drug-metabolizing enzyme and transporter genes in Caco-2 cells. <b>Materials and Methods:</b> Caco-2 cells (5×10<sup>5</sup> cells/well) were treated with 10 µM ketoconazole, 20 µM rifampicin or dill extract (60-240 µg mL<sup>1</sup>) for 72 hrs. Cell viability was assessed using the resazurin assay and reactive oxygen species (ROS) content was determined with 2 ,7 -dichlorofluorescein diacetate. Aspartate (AST) and alanine aminotransferase (ALT) levels were measured using L-aspartate and L-alanine with α-ketoglutarate as substrate. Expression of phase I (<i>CYP1A2</i>, <i>CYP2C19</i>, <i>CYP2D6</i>, <i>CYP2E1 </i>and <i>CYP3A4</i>) and II (<i>UGT1A6</i>,<i> SULT1A1</i>,<i> NAT1</i>,<i> NAT2 </i>and<i> GSTA1/2</i>) metabolizing genes and transporters (<i>ABCB1</i>,<i> ABCC2</i>,<i> ABCG2 </i>and <i>SLCO1B1</i>) were determined by RT/qPCR. <b>Results:</b> All tested concentrations of dill did not affect cell viability or AST and ALT levels. The highest concentration of dill extract (240 µg mL<sup>1</sup>) significantly lowered the ROS level. Expression of <i>CYP1A2</i>, <i>CYP2C19</i>, <i>SULT1A1</i>, <i>NAT2 </i>and <i>ABCB1 </i>mRNA was significantly up-regulated by dill extract. <b>Conclusion:</b> Dill extract did not directly damage Caco-2 cells but prolonged use of dill may increase the risk of HDI via the up-regulation of the drug-metabolizing genes <i>CYP1A2</i>, <i>CYP2C19</i>, <i>SULT1A1</i>, <i>NAT2 </i>and the transporter <i>ABCB1</i>.


Subject(s)
Anethum graveolens/metabolism , Caco-2 Cells/drug effects , Up-Regulation/genetics , ATP Binding Cassette Transporter, Subfamily B/drug effects , Arylamine N-Acetyltransferase/drug effects , Arylsulfotransferase/drug effects , Cytochrome P-450 CYP1A2/drug effects , Cytochrome P-450 CYP2C19/drug effects , Herb-Drug Interactions/physiology , Humans , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
6.
Braz. J. Pharm. Sci. (Online) ; 58: e19825, 2022. tab, graf
Article in English | LILACS | ID: biblio-1384019

ABSTRACT

Abstract Hepatoprotective effects of many herbal agents have been reported in animal studies and clinical trials. In this study, five hepatoprotective plants with potent antioxidant, anti-inflammatory, and hypolipidemic effects were chosen to prepare a polyherbal compound for managing NAFLD. Sixty patients with NAFLD were randomly divided into treatment and control groups (2:1 ratio). Both group were advised to take healthy diet and exercise. The treatment group also received herbal capsules containing 400 mg of the mixture of Anethum graveolens, Citrus aurantium, Cynara scolymus, Portulaca oleracea, and Silybum marianum (2 capsules, thrice daily, for two months). The liver ultrasound and biochemical markers including the serum lipids, liver enzymes, and glucose were evaluated before starting the study and at the end of the treatment. Thirty patients in the treatment group and sixteen patients in the control group completed the study. The herbal compound significantly decreased the serum level of alanine transaminase (ALT), aspartate transaminase (AST), and total cholesterol. Treatment with the herbal compound significantly improved the grade of the fatty liver, but no significant change was found in the control group. In conclusion, the formulated herbal compound appeared to be effective in biochemical improvement and decreasing the grade of the fatty liver in the patients with NAFLD.


Subject(s)
Humans , Male , Female , Plants, Medicinal/metabolism , Liver/abnormalities , Patients , Capsules , Cholesterol/pharmacology , Citrus/metabolism , Anethum graveolens/metabolism , Cynara scolymus/metabolism , Alanine Transaminase/adverse effects , Non-alcoholic Fatty Liver Disease , Diet, Healthy/instrumentation , Antioxidants/classification
7.
PLoS One ; 16(3): e0248662, 2021.
Article in English | MEDLINE | ID: mdl-33765084

ABSTRACT

In controlled environments, crop models that incorporate environmental factors can be developed to optimize growth and development as well as conduct cost and/or resource use benefit analyses. The overall objective of this study was to model growth and development of dill 'Bouquet' (Anethum graveolens), parsley 'Giant of Italy' (Petroselinum crispum), and watercress (Nasturtium officinale) in response to photosynthetic daily light integral (DLI) and mean daily temperature (MDT). Plants were grown hydroponically in five greenhouse compartments with MDTs ranging from 9.7 to 27.2 °C under 0%, 30%, or 50% shade cloth to create DLIs ranging from 6.2 to 16.9 mol·m‒2·d‒1. MDT and DLI interacted to influence dill fresh mass and height, and watercress maximum quantum yield of dark adapted leaves (Fv/Fm), height, and branch number while only MDT affected dill leaf number and watercress fresh mass and branch length. Besides dry matter concentration (DMC), parsley was influenced by MDT and not DLI. Increasing MDT from ≈10 to 22.4 °C (parsley) or 27.2 °C (dill and watercress), linearly or near-linearly increased fresh mass. For dill, increasing DLI decreased fresh mass when MDT was low (9.7 to 13.9 °C) and increased fresh mass when MDT was high (18.4 to 27.2 °C). DMC of dill, parsley, and watercress increased as MDT decreased or DLI increased, indicating a higher proportion of plant fresh mass is water at higher MDTs or lower DLIs. With these data we have created growth and development models for culinary herbs to aid in predicting responses to DLI and MDT.


Subject(s)
Anethum graveolens , Hydroponics/methods , Petroselinum , Photoperiod , Temperature , Anethum graveolens/growth & development , Anethum graveolens/metabolism , Petroselinum/metabolism , Photosynthesis , Plant Leaves/growth & development
8.
Food Chem ; 344: 128714, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33272762

ABSTRACT

Using dill (Anethum graveolens L.) as a model herb, we reveal novel associations between metabolite profile and sensory quality, by integrating non-target metabolomics with sensory data. Low night temperatures and exposure to UV-enriched light was used to modulate plant metabolism, thereby improving sensory quality. Plant age is a crucial factor associated with accumulation of dill ether and α-phellandrene, volatile compounds associated with dill flavour. However, sensory analysis showed that neither of these compounds has any strong association with dill taste. Rather, amino acids alanine, phenylalanine, glutamic acid, valine, and leucine increased in samples exposed to eustress and were positively associated with dill and sour taste. Increases in amino acids and organic acids changed the taste from lemon/grass to a more bitter/pungent dill-related taste. Our procedure reveals a novel approach to establish links between effects of eustressors on sensory quality and may be applicable to a broad range of crops.


Subject(s)
Anethum graveolens/metabolism , Metabolomics/methods , Taste , Vegetables/metabolism
9.
Mycorrhiza ; 26(2): 123-31, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26070450

ABSTRACT

Research on the role of arbuscular mycorrhizal fungi (AMF) in the synthesis of essential oils (EOs) by aromatic plants has seldom been conducted in field-relevant conditions, and then, only limited spectra of EO constituents have been analyzed. The effect was investigated of inoculation with AMF on the synthesis of a wide range of EO in two aromatic species, coriander (Coriandrum sativum) and dill (Anethum graveolens), in a garden experiment under outdoor conditions. Plants were grown in 4-l pots filled with soil, which was either γ-irradiated (eliminating native AMF) or left non-sterile (containing native AMF), and inoculated or not with an isolate of Rhizophagus irregularis. AMF inoculation significantly stimulated EO synthesis in both plant species. EO synthesis (total EO and several individual constituents) was increased in dill in all mycorrhizal treatments (containing native and/or inoculated AMF) compared to non-mycorrhizal plants. In contrast, EO concentrations in coriander (total EO and most constituents) were increased only in the treatment combining both inoculated and native AMF. A clear positive effect of AMF on EO synthesis was found for both aromatic plants, which was, however, specific for each plant species and modified by the pool of AMF present in the soil.


Subject(s)
Anethum graveolens/metabolism , Anethum graveolens/microbiology , Coriandrum/metabolism , Coriandrum/microbiology , Mycorrhizae/growth & development , Oils, Volatile/metabolism
10.
J Pept Sci ; 22(1): 59-66, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26680443

ABSTRACT

A novel lipid transfer protein, designated as Ag-LTP, was isolated from aerial parts of the dill Anethum graveolens L. Structural, antimicrobial, and lipid binding properties of the protein were studied. Complete amino acid sequence of Ag-LTP was determined. The protein has molecular mass of 9524.4 Da, consists of 93 amino acid residues including eight cysteines forming four disulfide bonds. The recombinant Ag-LTP was overexpressed in Escherichia coli and purified. NMR investigation shows that the Ag-LTP spatial structure contains four α-helices, forming the internal hydrophobic cavity, and a long C-terminal tail. The measured volume of the Ag-LTP hydrophobic cavity is equal to ~800 A(3), which is much larger than those of other plant LTP1s. Ag-LTP has weak antifungal activity and unpronounced lipid binding specificity but effectively binds plant hormone jasmonic acid. Our results afford further molecular insight into biological functions of LTP in plants.


Subject(s)
Anethum graveolens/chemistry , Carrier Proteins/chemistry , Plant Proteins/chemistry , Amino Acid Sequence , Anethum graveolens/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cloning, Molecular , Cyclopentanes/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Molecular Sequence Data , Molecular Weight , Oxylipins/chemistry , Plant Components, Aerial/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment
11.
Appl Biochem Biotechnol ; 173(8): 2267-78, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24974170

ABSTRACT

An improved procedure has been developed for efficient somatic embryogenesis in Anethum graveolens. Green friable embryogenic callus was obtained from hypocotyl segments on medium augmented with 2,4-dichlorophenoxyacetic acid (2,4-D). The highest embryogenic callus induction frequency of 87 % was obtained on Murashige and Skoog (MS) medium containing 1.13 µM 2,4-D. At lower concentration of 2,4-D (0.34 µM) callus turned dark in color and slow growing. Embryogenic cultures (76 %) responded with a mean number of 43 globular and 18 heart stage embryos. Somatic embryo maturation and subsequent conversion into plantlets took place on MS lacking growth regulators. Maximum number of somatic embryos developed on MS medium was 128.3 (per flask) and a plantlet conversion of 82 % was observed. Calcium alginate beads were produced by encapsulating somatic embryos. Highest percent germination (83 %) was observed on 0.8 % agar solidified MS medium with the plantlets acquiring an average length of 2.1 cm. Encapsulated somatic embryos could be stored at 4 °C up to 60 days with a conversion frequency of 49.3 %. Highest protein and proline content has been observed in embryogenic callus with small globular embryos. During morphological differentiation of the somatic embryos, changes in the antioxidant enzymatic system were observed. Superoxide dismutase (SOD) activity increased during initial stages and decreased catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX) activities were detected.


Subject(s)
Anethum graveolens/embryology , Cell Culture Techniques/methods , Plants, Medicinal/embryology , Alginates/chemistry , Anethum graveolens/chemistry , Anethum graveolens/metabolism , Cell Culture Techniques/instrumentation , Culture Media/chemistry , Culture Media/metabolism , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Plants, Medicinal/chemistry , Plants, Medicinal/metabolism
12.
Food Chem Toxicol ; 59: 96-103, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23764360

ABSTRACT

Inhibitory effect of the n-hexane, dichloromethane, ethyl acetate, and ethanol extracts from Anethum graveolens L. (dill) cultivated under organic (AG-O) and conventional (AG-C) conditions was tested against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and tyrosinase at 200 µg mL⁻¹. Their antioxidant activity was determined using 2,2-diphenyl-1-picrylhydrazyl (DPPH), N,N-dimethyl-p-phenylendiamine (DMPD), and nitric oxide (NO) radical scavenging assays as well as ferric ion-chelation capacity, ferric-(FRAP), and phosphomolybdenum-reducing antioxidant power (PRAP). The phytochemical analyses have been performed on both of the plant samples. GC-MS analysis pointed out that α-phellandrene was the main component in both of the essential oils in varying amounts (47.75% for AG-O and 27.94% for AG-C), while oleic acid was the dominant in the fruit oils of two samples (36.39% for AG-O and 53.87% for AG-C). HPLC analysis showed that both of the extracts contained rosmarinic acid as the major phenolic acid. The extracts inhibited BChE at moderate level, while the ethanol extracts exerted remarkable NO scavenging effect. The results emphasize that cultivation conditions may have effect on bioactivity and phytochemical content on plant samples.


Subject(s)
Anethum graveolens/chemistry , Antioxidants/pharmacology , Drug Discovery , Enzyme Inhibitors/pharmacology , Food, Organic/analysis , Oils, Volatile/pharmacology , Plant Extracts/pharmacology , Acetylcholinesterase/chemistry , Acetylcholinesterase/metabolism , Anethum graveolens/growth & development , Anethum graveolens/metabolism , Animals , Antioxidants/analysis , Antioxidants/isolation & purification , Antioxidants/metabolism , Butyrylcholinesterase/chemistry , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/analysis , Cholinesterase Inhibitors/isolation & purification , Cholinesterase Inhibitors/metabolism , Cholinesterase Inhibitors/pharmacology , Cinnamates/analysis , Cinnamates/metabolism , Cyclohexane Monoterpenes , Depsides/analysis , Depsides/metabolism , Electrophorus , Enzyme Inhibitors/analysis , Enzyme Inhibitors/isolation & purification , Enzyme Inhibitors/metabolism , Fish Proteins/antagonists & inhibitors , Fish Proteins/metabolism , Fruit/chemistry , Fruit/growth & development , Fruit/metabolism , Fungal Proteins/antagonists & inhibitors , Fungal Proteins/metabolism , Horses , Iron Chelating Agents/analysis , Iron Chelating Agents/isolation & purification , Iron Chelating Agents/metabolism , Iron Chelating Agents/pharmacology , Monophenol Monooxygenase/antagonists & inhibitors , Monophenol Monooxygenase/metabolism , Monoterpenes/analysis , Monoterpenes/metabolism , Nitric Oxide/antagonists & inhibitors , Oils, Volatile/chemistry , Oils, Volatile/isolation & purification , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Solvents/chemistry , Rosmarinic Acid
13.
Biotechnol Lett ; 31(6): 897-903, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19205895

ABSTRACT

Two oxygen-containing monoterpene substrates, menthol or geraniol (25 mg l(-1)), were added to Anethum graveolens hairy root cultures to evaluate the influence of the biotransformation capacity on growth and production of volatile compounds. Growth was assessed by the dissimilation method and by fresh and dry weight measurement. The volatiles were analyzed by GC and GC-MS. The total constitutive volatile component was composed, in more than 50%, by falcarinol (17-52%), apiole (11-24%), palmitic acid (7-16%), linoleic acid (4-9%), myristicin (4-8%) and n-octanal (2-5%). Substrate addition had no negative influence on growth. The relative amount of menthol quickly decreased 48 h after addition, and the biotransformation product menthyl acetate was concomitantly formed. Likewise, the added geraniol quickly decreased over 48 h alongside with the production of the biotransformation products. The added geraniol was biotransformed in 10 new products, the alcohols linalool, alpha-terpineol and citronellol, the aldehydes neral and geranial, the esters citronellyl, neryl and geranyl acetates and linalool and nerol oxides.


Subject(s)
Anethum graveolens/metabolism , Menthol/metabolism , Terpenes/metabolism , Acyclic Monoterpenes , Anethum graveolens/chemistry , Anethum graveolens/growth & development , Biomass , Biotransformation , Gas Chromatography-Mass Spectrometry , Oils, Volatile/metabolism , Plant Roots/growth & development , Plant Roots/metabolism
14.
Exp Dermatol ; 15(8): 574-81, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16842595

ABSTRACT

The lysyl oxidases lysyl oxidase (LOX) and lysyl oxidase-like (LOXL) are responsible for elastin cross-linking. It was shown recently that LOXL is essential for the elastic fibres homeostasis and for their maintenance at adult age. We first determined whether or not elastin, LOX and LOXL are less expressed during adulthood. The LOX and LOXL mRNA level, quantified by real-time reverse transcriptase-polymerase chain reaction decreased in adult skin fibroblasts compared with fibroblasts from children. In contrast, the elastin mRNA level remains stable at all ages. The goal of this study was to induce elastogenesis at the adult age. Therefore, both enzymes, and in particular LOXL, of which expression is the most affected by age, could be targeted to induce elastogenesis in adult skin. We screened a library of about 1000 active ingredients to find activators capable to stimulate specifically the LOXL gene expression in adult dermal fibroblasts. The positive effect of selected active ingredients was confirmed on fibroblasts grown on monolayers and on dermal and skin equivalent cultures. One extract, obtained from dill (LYS'LASTINE V, Engelhard, Lyon, France), stimulates the LOXL gene expression in dermal equivalents (+64% increase in the LOXL mRNA level when compared with control). At the same time, the elastin detection is increased in dermal equivalents and under the dermal-epidermal junction of skin equivalents, without increase of the elastin mRNA. In conclusion, LOXL can be considered as a new target to reinduce elastogenesis. Its stimulation by a dill extract is correlated with increased elastin detection, suggesting an increase in elastogenesis efficiency.


Subject(s)
Amino Acid Oxidoreductases/metabolism , Anethum graveolens/metabolism , Elastin/chemistry , Gene Expression Regulation, Enzymologic , Protein-Lysine 6-Oxidase/metabolism , Skin/enzymology , Adult , Aged , Child , Fibroblasts/enzymology , Humans , Middle Aged , Models, Biological , Plant Extracts , RNA, Messenger/metabolism
15.
Environ Pollut ; 131(2): 187-95, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15234085

ABSTRACT

Two experiments were conducted to evaluate the effect of compost addition to soil on fractionation and bioavailability of Cu, Mn, and Zn to four crops. Soils growing Swiss chard (Beta vulgaris var. cicla L.) and basil (Ocimum basilicum L.) were amended (by volume) with 0, 20, 40, and 60% Source-Separated Municipal Solid Waste (SS-MSW) compost, and dill (Anethum graveolens L.) and peppermint (Mentha X piperita L.) were amended with 0, 20, 40, and 60% of high-Cu manure compost (by volume). The SS-MSW compost applications increased the concentration of Cu and Zn in all fractions, increased Mn in acid extractable (ACID), iron and manganese oxides (FeMnOX), and organic matter (OM) fractions, but decreased slightly exchangeable-Mn. Addition of 60% high-Cu manure compost to the soil increased Cu EXCH, ACID, FeMnOX, and OM fractions, but decreased EXCH-Mn, and did not change EXCH-Zn. Addition of both composts to soil reduced bioavailability and transfer factors for Cu and Zn. Our results suggest that mature SS-MSW and manure composts with excess Cu and Zn could be safely used as soil conditioners for agricultural crops.


Subject(s)
Metals, Heavy/analysis , Soil Pollutants/analysis , Vegetables/metabolism , Anethum graveolens/metabolism , Beta vulgaris/metabolism , Biological Availability , Copper/analysis , Copper/pharmacokinetics , Linear Models , Manganese/analysis , Manganese/pharmacokinetics , Manure , Mentha piperita/metabolism , Metals, Heavy/pharmacokinetics , Ocimum basilicum/metabolism , Soil Pollutants/pharmacokinetics , Zinc/analysis , Zinc/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL