Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.600
Filter
1.
Biochim Biophys Acta Gen Subj ; 1868(10): 130684, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39084330

ABSTRACT

It is well-established that dysfunction of megalin-mediated albumin endocytosis by proximal tubule epithelial cells (PTECs) and the activation of the Renin-Angiotensin System (RAS) play significant roles in the development of Diabetic Kidney Disease (DKD). However, the precise correlation between these factors still requires further investigation. In this study, we aimed to elucidate the potential role of angiotensin II (Ang II), a known effector of RAS, as the mediator of albumin endocytosis dysfunction induced by high glucose (HG) in PTECs. To achieve this, we utilized LLC-PK1 and HK-2 cells, which are well-established in vitro models of PTECs. Using albumin-FITC or DQ-albumin as tracers, we observed that incubation of LLC-PK1 and HK-2 cells with HG (25 mM for 48 h) significantly reduced canonical receptor-mediated albumin endocytosis, primarily due to the decrease in megalin expression. HG increased the concentration of Ang II in the LLC-PK1 cell supernatant, a phenomenon associated with an increase in angiotensin-converting enzyme (ACE) expression and a decrease in prolyl carboxypeptidase (PRCP) expression. ACE type 2 (ACE2) expression remained unchanged. To investigate the potential impact of Ang II on HG effects, the cells were co-incubated with angiotensin receptor inhibitors. Only co-incubation with 10-7 M losartan (an antagonist for type 1 angiotensin receptor, AT1R) attenuated the inhibitory effect of HG on albumin endocytosis, as well as megalin expression. Our findings contribute to understanding the genesis of tubular albuminuria observed in the early stages of DKD, which involves the activation of the Ang II/AT1R axis by HG.


Subject(s)
Albumins , Angiotensin II , Endocytosis , Epithelial Cells , Glucose , Kidney Tubules, Proximal , Receptor, Angiotensin, Type 1 , Endocytosis/drug effects , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Kidney Tubules, Proximal/drug effects , Angiotensin II/pharmacology , Glucose/metabolism , Glucose/pharmacology , Receptor, Angiotensin, Type 1/metabolism , Animals , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Epithelial Cells/pathology , Humans , Albumins/metabolism , Swine , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Low Density Lipoprotein Receptor-Related Protein-2/metabolism , Renin-Angiotensin System/drug effects , Signal Transduction/drug effects , Cell Line , Losartan/pharmacology
2.
J Med Life ; 17(3): 309-313, 2024 Mar.
Article in English | MEDLINE | ID: mdl-39044930

ABSTRACT

Experimental glomerulonephritis results in hypertension that is sensitive to salt. Nevertheless, salt retention alone cannot explain the increase in blood pressure. Angiotensin antagonistic therapy reduces hypertension caused by puromycin amino nucleosides (PAN). We investigated the hypothesis that PAN modifies renal vascular reactivity through processes dependent on angiotensin. Long-Evans rats were given an intraperitoneal injection of either puromycin (150 mg/kg) or saline (controls). Group 1 was fed a normal sodium diet (NSD, n = 9). Group 2 was given 30 mg/L of quinapril (Q) in addition to NSD (NSD + Q; n = 6). Group 3 received a high sodium diet (HSD, n = 7), and Group 4 received HSD + Q (n = 7). Systolic blood pressure (SBP), plasma creatinine, proteinuria, and sodium balance were monitored for 12 days. On day 15, renal vascular reactivity was assessed by administering increasing doses of angiotensin II, acetylcholine (ACh), and sodium nitroprusside (SNP) directly into the renal artery. SBP progressively increased in all PAN groups. This increase in SBP was greater in the HSD groups and was not significantly altered by Q treatment. SBP increased by 22 ± 4% (NSD), 51 ± 5% (NSD + Q), 81 ± 10% (HSD), and 65 ± 8% (HSD + Q). The renal blood flow of PAN rats did not return to baseline despite their normal renal vasoconstrictor responses to angiotensin II. Additionally, they showed reduced renal vasodilator responses to SNP and Ach. The vasodilator responses to both vasodilators were surprisingly unaffected by the inhibition of the angiotensin-converting enzyme (ACE). Renal vasodilator responses to both endothelium-dependent and independent variables were reduced in early PAN-induced hypertension. We found that the angiotensin-mediated mechanism is not responsible for this altered renal vasoreactivity.


Subject(s)
Angiotensin II , Kidney , Animals , Angiotensin II/pharmacology , Rats , Kidney/blood supply , Kidney/drug effects , Male , Rats, Long-Evans , Blood Pressure/drug effects , Puromycin/pharmacology , Nitroprusside/pharmacology , Puromycin Aminonucleoside , Acetylcholine/pharmacology , Kidney Diseases/chemically induced
3.
Hipertens Riesgo Vasc ; 41(3): 145-153, 2024.
Article in English | MEDLINE | ID: mdl-38871574

ABSTRACT

BACKGROUND: The COVID-19 pandemic has highlighted the vulnerability of particular patient groups to SARS-CoV-2 infection, including those with cardiovascular diseases, hypertension, and intestinal dysbiosis. COVID-19 affects the gut, suggesting diet and vitamin D3 supplementation may affect disease progression. AIMS: To evaluate levels of Ang II and Ang-(1-7), cytokine profile, and gut microbiota status in patients hospitalized for mild COVID-19 with a history of cardiovascular disease and treated with daily doses of vitamin D3. METHODS: We recruited 50 adult patients. We screened 50 adult patients and accessed pathophysiology study 22, randomized to daily oral doses of 10,000IU vitamin D3 (n=11) or placebo (n=11). Plasma levels of Ang II and Ang-(1-7) were determined by radioimmunoassay, TMA and TMAO were measured by liquid chromatography and interleukins (ILs) 6, 8, 10 and TNF-α by ELISA. RESULTS: The Ang-(1-7)/Ang II ratio, as an indirect measure of ACE2 enzymatic activity, increased in the vitamin D3 group (24±5pg/mL vs. 4.66±2pg/mL, p<0.01). Also, in the vitamin D3-treated, there was a significant decline in inflammatory ILs and an increase in protective markers, such as a substantial reduction in TMAO (5±2µmoles/dL vs. 60±10µmoles/dL, p<0.01). In addition, treated patients experienced less severity of infection, required less intensive care, had fewer days of hospitalization, and a reduced mortality rate. Additionally, improvements in markers of cardiovascular function were seen in the vitamin D3 group, including a tendency for reductions in blood pressure in hypertensive patients. CONCLUSIONS: Vitamin D3 supplementation in patients with COVID-19 and specific conditions is associated with a more favourable prognosis, suggesting therapeutic potential in patients with comorbidities such as cardiovascular disease and gut dysbiosis.


Subject(s)
COVID-19 , Cardiovascular Diseases , Cholecalciferol , Dietary Supplements , Dysbiosis , Gastrointestinal Microbiome , Peptide Fragments , Humans , Cholecalciferol/administration & dosage , Male , Female , Cardiovascular Diseases/prevention & control , Cardiovascular Diseases/etiology , Cardiovascular Diseases/epidemiology , Middle Aged , COVID-19/complications , Peptide Fragments/blood , Aged , Angiotensin I/blood , Angiotensin II/blood , COVID-19 Drug Treatment , Vitamins/administration & dosage , Methylamines/blood , Cytokines/blood , Angiotensin-Converting Enzyme 2/metabolism , SARS-CoV-2 , Double-Blind Method
4.
Mol Biol Rep ; 51(1): 775, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38904729

ABSTRACT

Acute leukemias (ALs) are the most common cancers in pediatric population. There are two types of ALs: acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). Some studies suggest that the Renin Angiotensin System (RAS) has a role in ALs. RAS signaling modulates, directly and indirectly, cellular activity in different cancers, affecting tumor cells and angiogenesis. Our review aimed to summarize the role of RAS in ALs and to explore future perspectives for the treatment of these hematological malignancies by modulating RAS molecules. The database including Pubmed, Scopus, Cochrane Library, and Scielo were searched to find articles about RAS molecules in ALL and in pediatric patients. The search terms were "RAS", "Acute Leukemia", "ALL", "Angiotensin-(1-7)", "Pediatric", "Cancer", "Angiotensin II", "AML". In the bone marrow, RAS has been found to play a key role in blood cell formation, affecting several processes including apoptosis, cell proliferation, mobilization, intracellular signaling, angiogenesis, fibrosis, and inflammation. Local tissue RAS modulates tumor growth and metastasis through autocrine and paracrine actions. RAS mainly acts via two molecules, Angiotensin II (Ang II) and Angiotensin (1-7) [Ang-(1-7)]. While Ang II promotes tumor cell growth and stimulates angiogenesis, Ang-(1-7) inhibits the proliferation of neoplastic cells and the angiogenesis, suggesting a potential therapeutic role of this molecule in ALL. The interaction between ALs and RAS reveals a complex network of molecules that can affect the hematopoiesis and the development of hematological cancers. Understanding these interactions could pave the way for innovative therapeutic approaches targeting RAS components.


Subject(s)
Angiotensin II , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Renin-Angiotensin System , Humans , Renin-Angiotensin System/physiology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Angiotensin II/metabolism , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Signal Transduction , Angiotensin I/metabolism , Neovascularization, Pathologic/metabolism , Animals , Peptide Fragments/metabolism
5.
Arch Virol ; 169(6): 121, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753119

ABSTRACT

Previous studies have demonstrated the relevance of several soluble molecules in the pathogenesis of dengue. In this regard, a possible role for angiotensin II (Ang II) in the pathophysiology of dengue has been suggested by the observation of a blockade of Ang II in patients with dengue, increased expression of molecules related to Ang II production in the plasma of dengue patients, increased expression of circulating cytokines and soluble molecules related to the action of Ang II, and an apparent relationship between DENV, Ang II effects, and miRNAs. In addition, in ex vivo experiments, the blockade of Ang II AT1 receptor and ACE-1 (angiotensin converting enzyme 1), both of which are involved in Ang II production and its function, inhibits infection of macrophages by DENV, suggesting a role of Ang II in viral entry or in intracellular viral replication of the virus. Here, we discuss the possible mechanisms of Ang II in the entry and replication of DENV. Ang II has the functions of increasing the expression of DENV entry receptors, creation of clathrin-coated vesicles, and increasing phagocytosis, all of which are involved in DENV entry. This hormone also modulates the expression of the Rab5 and Rab7 proteins, which are important in the endosomal processing of DENV during viral replication. This review summarizes the data related to the possible involvement of Ang II in the entry of DENV into cells and its replication.


Subject(s)
Angiotensin II , Dengue Virus , Virus Internalization , Virus Replication , Angiotensin II/metabolism , Humans , Dengue Virus/physiology , Dengue Virus/genetics , Animals , Dengue/virology , Dengue/metabolism
6.
Am J Physiol Cell Physiol ; 326(4): C1203-C1211, 2024 04 01.
Article in English | MEDLINE | ID: mdl-38581656

ABSTRACT

Cardiometabolic diseases are often associated with heightened levels of angiotensin II (Ang II), which accounts for the observed oxidative stress, inflammation, and fibrosis. Accumulating evidence indicates a parallel upregulation of dipeptidyl dipeptidase 4 (DPP4) activity in cardiometabolic diseases, with its inhibition shown to mitigate oxidative stress, inflammation, and fibrosis. These findings highlight an overlap between the pathophysiological mechanisms used by Ang II and DPP4. Recent evidence demonstrates that targeted inhibition of DPP4 prevents the rise in Ang II and its associated molecules in experimental models of cardiometabolic diseases. Similarly, inhibitors of the angiotensin I-converting enzyme (ACE) or Ang II type 1 receptor (AT1R) blockers downregulate DPP4 activity, establishing a bidirectional relationship between DPP4 and Ang II. Here, we discuss the current evidence supporting the cross talk between Ang II and DPP4, along with the potential mechanisms promoting this cross regulation. A comprehensive analysis of this bidirectional relationship across tissues will advance our understanding of how DPP4 and Ang II collectively promote the development and progression of cardiometabolic diseases.


Subject(s)
Angiotensin II , Cardiovascular Diseases , Humans , Dipeptidyl Peptidase 4 , Peptidyl-Dipeptidase A , Receptor, Angiotensin, Type 1 , Inflammation , Fibrosis , Angiotensin I
7.
Arch Endocrinol Metab ; 68: e230292, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38652701

ABSTRACT

Diabetic retinopathy (DR) is a complication of diabetes with a complex pathophysiology and multiple factors involved. Recently, it has been found that the upregulation of the renin-angiotensin-aldosterone system (RAAS) leads to overexpression of angiotensin II (Ang II), which induces oxidative stress, inflammation, and angiogenesis in the retina. Therefore, RAAS may be a promising therapeutic target in DR. Notably, RAAS inhibitors are often used in the treatment of hypertension. Still, the potential role and mechanism of DR must be further studied. In this review, we discuss and summarize the pathology and potential therapeutic goals of RAAS in DR.


Subject(s)
Diabetic Retinopathy , Renin-Angiotensin System , Humans , Diabetic Retinopathy/drug therapy , Diabetic Retinopathy/physiopathology , Renin-Angiotensin System/physiology , Renin-Angiotensin System/drug effects , Oxidative Stress/drug effects , Oxidative Stress/physiology , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Angiotensin II/physiology , Animals
8.
An Acad Bras Cienc ; 96(1): e20230971, 2024.
Article in English | MEDLINE | ID: mdl-38597493

ABSTRACT

Paraquat (1,1'-dimethyl-4,4'-bipyridyl dichloride) is an herbicide widely used worldwide and officially banned in Brazil in 2020. Kidney lesions frequently occur, leading to acute kidney injury (AKI) due to exacerbated reactive O2 species (ROS) production. However, the consequences of ROS exposure on ionic transport and the regulator local renin-angiotensin-aldosterone system (RAAS) still need to be elucidated at a molecular level. This study evaluated how ROS acutely influences Na+-transporting ATPases and the renal RAAS. Adult male Wistar rats received paraquat (20 mg/kg; ip). After 24 h, we observed body weight loss and elevation of urinary flow and serum creatinine. In the renal cortex, paraquat increased ROS levels, NADPH oxidase and (Na++K+)ATPase activities, angiotensin II-type 1 receptors, tumor necrosis factor-α (TNF-α), and interleukin-6. In the medulla, paraquat increased ROS levels and NADPH oxidase activity but inhibited (Na++K+)ATPase. Paraquat induced opposite effects on the ouabain-resistant Na+-ATPase in the cortex (decrease) and medulla (increase). These alterations, except for increased serum creatinine and renal levels of TNF-α and interleukin-6, were prevented by 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (tempol; 1 mmol/L in drinking water), a stable antioxidant. In summary, after paraquat poisoning, ROS production culminated with impaired medullary function, urinary fluid loss, and disruption of Na+-transporting ATPases and angiotensin II signaling.


Subject(s)
Paraquat , Renin-Angiotensin System , Rats , Animals , Male , Reactive Oxygen Species/metabolism , Paraquat/metabolism , Paraquat/pharmacology , Angiotensin II/metabolism , Angiotensin II/pharmacology , Creatinine/metabolism , Creatinine/urine , Interleukin-6 , Tumor Necrosis Factor-alpha/metabolism , Rats, Wistar , Kidney , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/pharmacology , Sodium/metabolism , Sodium/pharmacology , NADPH Oxidases/metabolism , NADPH Oxidases/pharmacology
9.
Eur J Neurosci ; 59(10): 2450-2464, 2024 May.
Article in English | MEDLINE | ID: mdl-38480476

ABSTRACT

Amphetamine (AMPH) exposure induces behavioural and neurochemical sensitization observed in rodents as hyperlocomotion and increased dopamine release in response to a subsequent dose. Brain Angiotensin II modulates dopaminergic neurotransmission through its AT1 receptors (AT1-R), positively regulating striatal dopamine synthesis and release. This work aims to evaluate the AT1-R role in the development and maintenance of AMPH-induced sensitization. Also, the AT1-R involvement in striatal dopamine reuptake was analysed. The sensitization protocol consisted of daily AMPH administration for 5 days and tested 21 days after withdrawal. An AT1-R antagonist, candesartan, was administered before or after AMPH exposure to evaluate the participation of AT1-R in the development and maintenance of sensitization, respectively. Sensitization was evaluated by locomotor activity and c-Fos immunostaining. Changes in dopamine reuptake kinetics were evaluated 1 day after AT1-R blockade withdrawal treatment, with or without the addition of AMPH in vitro. The social interaction test was performed as another behavioural output. Repeated AMPH exposure induced behavioural and neurochemical sensitization, which was prevented and reversed by candesartan. The AT1-R blockade increased the dopamine reuptake kinetics. Neither the AMPH administration nor the AT1-R blockade altered the performance of social interaction. Our results highlight the AT1-R's crucial role in AMPH sensitization. The enhancement of dopamine reuptake kinetics induced by the AT1-R blockade might attenuate the neuroadaptive changes that lead to AMPH sensitization and its self-perpetuation. Therefore, AT1-R is a prominent candidate as a target for pharmacological treatment of pathologies related to dopamine imbalance, including drug addiction and schizophrenia.


Subject(s)
Amphetamine , Angiotensin II Type 1 Receptor Blockers , Angiotensin II , Benzimidazoles , Biphenyl Compounds , Corpus Striatum , Dopamine , Animals , Amphetamine/pharmacology , Male , Dopamine/metabolism , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Angiotensin II/pharmacology , Biphenyl Compounds/pharmacology , Benzimidazoles/pharmacology , Angiotensin II Type 1 Receptor Blockers/pharmacology , Rats, Wistar , Rats , Receptor, Angiotensin, Type 1/metabolism , Tetrazoles/pharmacology , Central Nervous System Stimulants/pharmacology , Social Interaction/drug effects , Motor Activity/drug effects , Proto-Oncogene Proteins c-fos/metabolism
10.
P R Health Sci J ; 43(1): 39-45, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38512760

ABSTRACT

OBJECTIVE: Hypertension is one of the cardiovascular diseases that causes the most mortality, and 95% of the causes are unknown. The aim of the study was to examine the possible correlation of nesfatin-1 levels, adropin levels, claudin-2 immunoreactivity (claudin-2 expression in the renal proximal tubule), and renalase immunoreactivity (renalase expression in the renal proximal tubule) with arterial blood pressure, kidney function, and kidney damage. METHODS: Adult male Sprague Dawley rats were divided into control and hypertension groups (8 per group). Angiotensin II vehicle was given to the control group and angiotensin II (0.7 mg/kg/day) to the hypertension group, both via an osmotic mini pump for 7 days. The animals blood pressures were measured by tail cuff plethysmography on days 1, 3, 5, and 7. On day 7, 24-hour urine, blood, and tissues were collected from the rats. RESULTS: In the hypertension group compared with the control group, there was an increase in systolic blood pressure levels after day 1. While claudin-2 immunoreactivity was reduced in the kidneys, renalase immunoreactivity was increased. There was a decrease in creatinine clearance and an increase in fractional potassium excretion (P < .05). CONCLUSION: Our results showed that claudin-2 and renalase are associated with renal glomerular and tubular dysfunction and may play discrete roles in the pathogenesis of hypertension. We believe that these potential roles warrant further investigation.


Subject(s)
Blood Proteins , Claudin-2 , Hypertension , Kidney Glomerulus , Kidney Tubules , Monoamine Oxidase , Peptides , Animals , Male , Rats , Angiotensin II/pharmacology , Blood Pressure , Claudin-2/metabolism , Hypertension/physiopathology , Monoamine Oxidase/metabolism , Rats, Sprague-Dawley , Blood Proteins/metabolism , Peptides/metabolism , Kidney Glomerulus/physiopathology , Kidney Tubules/physiopathology , Disease Models, Animal
11.
Arch Med Res ; 55(3): 102986, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38492325

ABSTRACT

Fatty liver is a multifactorial disease characterized by excessive accumulation of lipids in hepatocytes (steatosis), insulin resistance, oxidative stress, and inflammation. This disease has a major public health impact because it is the first stage of a chronic and degenerative process in the liver that can lead to steatohepatitis, cirrhosis, and liver cancer. Although this disease is mainly diagnosed in patients with obesity, type 2 diabetes mellitus, and dyslipidemia, recent evidence indicates that vasoactive hormones such as angiotensin II (ANGII) not only promote endothelial dysfunction (ED) and hypertension, but also cause fatty liver, increase adipose tissue, and develop a pro-steatotic environment characterized by a low-grade systemic pro-inflammatory and pro-oxidant state, with elevated blood lipid levels. The role of ANGII in lipid accumulation has been little studied, so this review aims to summarize existing reports on the possible mechanism of action of ANGII in inducing lipid accumulation in hepatocytes.


Subject(s)
Diabetes Mellitus, Type 2 , Non-alcoholic Fatty Liver Disease , Humans , Angiotensin II , Diabetes Mellitus, Type 2/complications , Lipids , Liver , Non-alcoholic Fatty Liver Disease/etiology
12.
Sci Rep ; 14(1): 4682, 2024 02 26.
Article in English | MEDLINE | ID: mdl-38409185

ABSTRACT

Malaria can have severe long-term effects. Even after treatment with antimalarial drugs eliminates the parasite, survivors of cerebral malaria may suffer from irreversible brain damage, leading to cognitive deficits. Angiotensin II, a natural human peptide hormone that regulates blood pressure, has been shown to be active against Plasmodium spp., the etiologic agent of malaria. Here, we tested two Ang II derivatives that do not elicit vasoconstriction in mice: VIPF, a linear tetrapeptide, which constitutes part of the hydrophobic portion of Ang II; and Ang II-SS, a disulfide-bridged derivative. The antiplasmodial potential of both peptides was evaluated with two mouse models: an experimental cerebral malaria model and a mouse model of non-cerebral malaria. The latter consisted of BALB/c mice infected with Plasmodium berghei ANKA. The peptides had no effect on mean blood pressure and significantly reduced parasitemia in both mouse models. Both peptides reduced the SHIRPA score, an assay used to assess murine health and behavior. However, only the constrained derivative (Ang II-SS), which was also resistant to proteolytic degradation, significantly increased mouse survival. Here, we show that synthetic peptides derived from Ang II are capable of conferring protection against severe manifestations of malaria in mouse models while overcoming the vasoconstrictive side effects of the parent peptide.


Subject(s)
Antimalarials , Malaria, Cerebral , Animals , Mice , Humans , Malaria, Cerebral/drug therapy , Malaria, Cerebral/prevention & control , Malaria, Cerebral/parasitology , Angiotensin II/pharmacology , Angiotensin II/therapeutic use , Disease Models, Animal , Antimalarials/pharmacology , Antimalarials/therapeutic use , Peptides/pharmacology , Peptides/therapeutic use , Plasmodium berghei/physiology , Mice, Inbred C57BL
13.
Hypertension ; 81(5): 977-990, 2024 May.
Article in English | MEDLINE | ID: mdl-38372140

ABSTRACT

To celebrate 100 years of American Heart Association-supported cardiovascular disease research, this review article highlights milestone papers that have significantly contributed to the current understanding of the signaling mechanisms driving hypertension and associated cardiovascular disorders. This article also includes a few of the future research directions arising from these critical findings. To accomplish this important mission, 4 principal investigators gathered their efforts to cover distinct yet intricately related areas of signaling mechanisms pertaining to the pathogenesis of hypertension. The renin-angiotensin system, canonical and novel contractile and vasodilatory pathways in the resistance vasculature, vascular smooth muscle regulation by membrane channels, and noncanonical regulation of blood pressure and vascular function will be described and discussed as major subjects.


Subject(s)
Cardiovascular System , Hypertension , Humans , Signal Transduction , Blood Pressure , Renin-Angiotensin System/physiology , Angiotensin II/metabolism
14.
Clin Exp Nephrol ; 28(5): 359-374, 2024 May.
Article in English | MEDLINE | ID: mdl-38170299

ABSTRACT

BACKGROUND: Post-streptococcal glomerulonephritis (PSGN) is a consequence of the infection by group A beta-hemolytic streptococcus. During this infection, various immunological processes generated by streptococcal antigens are triggered, such as the induction of antibodies and immune complexes. This activation of the immune system involves both innate and acquired immunity. The immunological events that occur at the renal level lead to kidney damage with chronic renal failure as well as resolution of the pathological process (in most cases). Angiotensin II (Ang II) is a molecule with vasopressor and pro-inflammatory capacities, being an important factor in various inflammatory processes. During PSGN some events are defined that make Ang II conceivable as a molecule involved in the inflammatory processes during the disease. CONCLUSION: This review is focused on defining which reported events would be related to the presence of this hormone in PSGN.


Subject(s)
Angiotensin II , Glomerulonephritis , Streptococcal Infections , Streptococcus pyogenes , Humans , Glomerulonephritis/immunology , Glomerulonephritis/microbiology , Glomerulonephritis/etiology , Streptococcal Infections/immunology , Streptococcal Infections/complications , Streptococcal Infections/microbiology , Streptococcus pyogenes/immunology , Animals , Kidney/immunology , Kidney/pathology
15.
Am J Med Sci ; 367(2): 128-134, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37984736

ABSTRACT

Cardiovascular diseases (CVD) are the main causes of death in hemodialysis patients, representing a public health challenge. We investigated the effect of different antihypertensive treatments on circulating levels of renin-angiotensin system (RAS) components in end-stage renal disease (ESRD) patients on hemodialysis. ESRD patients were grouped following the prescribed antihypertensive drugs: ß-blocker, ß-blocker+ACEi and ß-blocker+AT1R blocker. ESDR patients under no antihypertensive drug treatment were used as controls. Blood samples were collected before hemodialysis sessions. Enzymatic activities of the angiotensin-converting enzymes ACE and ACE2 were measured through fluorescence assays and plasma concentrations of the peptides Angiotensin II (Ang II) and Angiotensin-(1-7) [Ang-(1-7)] were quantified using mass spectrometry (LC-MS/MS). ACE activity was decreased only in the ß-blocker+ACEi group compared to the ß-blocker+AT1R, while ACE2 activity did not change according to the antihypertensive treatment. Both Ang II and Ang-(1-7) levels also did not change according to the antihypertensive treatment. We concluded that the treatment of ESRD patients on hemodialysis with different antihypertensive drugs do not alter the circulating levels of RAS components.


Subject(s)
Antihypertensive Agents , Kidney Failure, Chronic , Humans , Antihypertensive Agents/pharmacology , Antihypertensive Agents/therapeutic use , Angiotensin-Converting Enzyme 2/pharmacology , Chromatography, Liquid , Tandem Mass Spectrometry , Renin-Angiotensin System , Peptidyl-Dipeptidase A/metabolism , Peptides/pharmacology , Kidney Failure, Chronic/drug therapy , Angiotensin II/pharmacology , Peptide Fragments/metabolism , Renal Dialysis
16.
Biomed Pharmacother ; 170: 116015, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38113629

ABSTRACT

Development of therapeutic agents that have fewer adverse effects and have higher efficacy for diseases, such as cancer, metabolic disorders, neurological diseases, infections, cardiovascular diseases, and respiratory diseases, are required. Recent studies have focused on identifying novel sources for pharmaceutical molecules to develop therapies against these diseases. Among the sources for potentially new therapies, animal venom-derived molecules have generated much interest. Various animal venom-derived proteins and peptides have been isolated, identified, synthesized, and tested to develop drugs. Venom-derived peptides have several biomedical properties, such as proapoptotic, cell migration, and autophagy regulation activities in cancer cell models; induction of vasodilation by nitric oxide and regulation of angiotensin II; modification of insulin response by controlling calcium and potassium channels; regulation of pain receptor activity; modulation of immune cell activity; alteration of motor neuron activity; degradation or inhibition of ß-amyloid plaque formation; antibacterial, antifungal, antiviral, and antiprotozoal activities; increase in sperm motility and potentiation of erectile function; reduction of intraocular pressure; anticoagulation, fibrinolytic, and antithrombotic activities; etc. This systematic review compiles these biomedical properties and potential biomedical applications of synthesized animal venom-derived peptides reported in the latest research. In addition, the limitations and areas of opportunity in this research field are discussed so that new studies can be developed based on the data presented.


Subject(s)
Sperm Motility , Venoms , Animals , Male , Peptides/pharmacology , Angiotensin II
17.
Nutrients ; 15(21)2023 Nov 04.
Article in English | MEDLINE | ID: mdl-37960332

ABSTRACT

BACKGROUND: Endothelial dysfunction (ED) is a marker of vascular damage and a precursor of cardiovascular diseases such as hypertension, which involve inflammation and organ damage. Nitric oxide (NO), produced by eNOS, which is induced by pAKT, plays a crucial role in the function of a healthy endothelium. METHODS: A combination of subfractions SF1 and SF3 (C4) of the aqueous fraction from Cucumis sativus (Cs-Aq) was evaluated to control endothelial dysfunction in vivo and on HMEC-1 cells to assess the involvement of pAkt in vitro. C57BL/6J mice were injected daily with angiotensin II (Ang-II) for 10 weeks. Once hypertension was established, either Cs-AqC4 or losartan was orally administered along with Ang-II for a further 10 weeks. Blood pressure (BP) was measured at weeks 0, 5, 10, 15, and 20. In addition, serum creatinine, inflammatory status (in the kidney), tissue damage, and vascular remodeling (in the liver and aorta) were evaluated. Cs-AqC4 was also tested in vitro on HMEC-1 cells stimulated by Ang-II to assess the involvement of Akt phosphorylation. RESULTS: Cs-AqC4 decreased systolic and diastolic BP, reversed vascular remodeling, decreased IL-1ß and TGF-ß, increased IL-10, and decreased kidney and liver damage. In HMEC-1 cells, AKT phosphorylation and NO production were increased. CONCLUSIONS: Cs-AqC4 controlled inflammation and vascular remodeling, alleviating hypertension; it also improved tissue damage associated with ED, probably via Akt activation.


Subject(s)
Cucumis sativus , Hypertension , Peptide Hormones , Mice , Animals , Proto-Oncogene Proteins c-akt , Angiotensin II/pharmacology , Vascular Remodeling , Mice, Inbred C57BL , Hypertension/chemically induced , Hypertension/drug therapy , Blood Pressure , Inflammation , Plant Components, Aerial
18.
Can J Physiol Pharmacol ; 101(12): 620-629, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37747059

ABSTRACT

The purpose of this study was to characterize the role of ß1-AR signaling and its cross-talk between cardiac renin-angiotensin system and thyroid-hormone-induced cardiac hypertrophy. T3 was administered at 0.5 mg·kg-1·day-1 for 10 days in ß1-KOT3 and WTT3 groups, while control groups received vehicle alone. Echocardiography and myocardial histology was performed; cardiac and serum ANGI/ANGII and ANP and cardiac levels of p-PKA, p-ERK1/2, p-p38-MAPK, p-AKT, p-4EBP1, and ACE were measured. WTT3 showed decreased IVSTd and increased LVEDD versus WTsal (p < 0.05). ß1-KOT3 exhibited lower LVEDD and higher relative IVSTd versus ß1-KOsal, the lowest levels of ejection fraction, and the highest levels of cardiomyocyte diameter (p < 0.05). Cardiac ANP levels decreased in WTT3 versus ß1-KOT3 (p < 0.05). Cardiac ACE expression was increased in T3-treated groups (p < 0.05). Phosphorylated-p38 MAPK levels were higher in WTT3 versus WTsal or ß1-KOT3, p-4EBP1 was elevated in ß1-KO animals, and p-ERK1/2 was up-regulated in ß1-KOT3. These findings suggest that ß1-AR signaling is crucial for TiCH.


Subject(s)
Cardiomyopathy, Restrictive , Mice , Animals , Cardiomyopathy, Restrictive/metabolism , Cardiomyopathy, Restrictive/pathology , Mice, Knockout , Myocardium/metabolism , Thyroid Hormones , Receptors, Adrenergic/metabolism , Angiotensin II/pharmacology
19.
J Neuroendocrinol ; 35(11): e13334, 2023 11.
Article in English | MEDLINE | ID: mdl-37667574

ABSTRACT

In addition to being recognised for involvement in cardiovascular control and hydromineral balance, the renin-angiotensin system (RAS) has also been associated with the neuroendocrine control of energy balance. One of the main brain sites for angiotensin II (ANG II)/type 1 receptor (AT1 R) signalling is the subfornical organ (SFO), a circumventricular organ related to the control of autonomic functions, motivated behaviours and energy metabolism. Thus, we hypothesised that circulating ANG II may act on the SFO AT1 R receptors to integrate metabolic and hydromineral balance. We evaluated whether food deprivation can modulate systemic RAS activity and Agrt1a brain expression, and if ANG II/AT1 R signalling influences the hypothalamic expression of mRNAs encoding neuropeptides and food and water ingestion in fed and fasted Wistar rats. We found a significant increase in both ANG I and ANG II plasma levels after 24 and 48 h of fasting. Expression of Agrt1a mRNA in the SFO and paraventricular nucleus (PVN) also increased after food deprivation for 48 h. Treatment of fasted rats with low doses of losartan in drinking water attenuated the decrease in glycemia and meal-associated water intake without changing the expression in PVN or arcuate nucleus of mRNAs encoding selected neuropeptides related to energy homeostasis control. These findings point to a possible role of peripheral ANG II/SFO-AT1 R signalling in the control of refeeding-induced thirst. On the other hand, intracerebroventricular losartan treatment decreased food and water intake over dark time in fed but not in fasted rats.


Subject(s)
Fasting , Subfornical Organ , Animals , Male , Rats , Angiotensin II/pharmacology , Brain/metabolism , Fasting/metabolism , Losartan/pharmacology , Paraventricular Hypothalamic Nucleus/metabolism , Rats, Wistar , Receptor, Angiotensin, Type 1/metabolism , Subfornical Organ/metabolism
20.
Clin Sci (Lond) ; 137(16): 1249-1263, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37527493

ABSTRACT

BACKGROUND: An unbalance in the renin-angiotensin (Ang) system (RAS) between the Ang II/AT1 and Ang-(1-7)/Mas axis appears to be involved in preeclampsia (PE), in which a reduction in Ang-(1-7) was observed. Here, we tested whether the reduction in the activity of the Ang-(1-7)/Mas axis could be a contributing factor for the development of PE, using Mas-deficient (Mas-/-) mice. METHODS AND RESULTS: Cardiovascular parameters were evaluated by telemetry before, during pregnancy and 4 days postpartum in 20-week-old Mas-/- and wild-type (WT) female mice. Mas-/- mice presented reduced arterial blood pressure (BP) at baseline (91.3 ± 0.8 in Mas-/- vs. 94.0 ± 0.9 mmHg in WT, Diastolic, P<0.05). However, after the 13th day of gestation, BP in Mas-/- mice started to increase, time-dependently, and at day 19 of pregnancy, these animals presented a higher BP in comparison with WT group (90.5 ± 0.7 in Mas-/- vs. 80.3 ± 3.5 mmHg in WT, Diastolic D19, P<0.0001). Moreover, pregnant Mas-/- mice presented fetal growth restriction, increase in urinary protein excretion as compared with nonpregnant Mas-/-, oliguria, increase in cytokines, endothelial dysfunction and reduced ACE, AT1R, ACE2, ET-1A, and eNOS placental mRNA, similar to some of the clinical manifestations found in the development of PE. CONCLUSIONS: These results show that Mas-deletion produces a PE-like state in FVB/N mice.


Subject(s)
Peptidyl-Dipeptidase A , Pre-Eclampsia , Pregnancy , Female , Mice , Animals , Humans , Peptidyl-Dipeptidase A/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Mas , Pre-Eclampsia/genetics , Pre-Eclampsia/metabolism , Placenta/metabolism , Renin-Angiotensin System , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Angiotensin II/metabolism , Phenotype , Angiotensin I/metabolism , Peptide Fragments/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL