Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 149
Filter
1.
Am J Physiol Regul Integr Comp Physiol ; 327(5): R479-R485, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39250544

ABSTRACT

To maintain internal ion balance in marine environments, teleost fishes leverage seawater (SW)-type ionocytes to actively secrete Na+ and Cl- into the environment. It is well established that SW-type ionocytes use apically expressed cystic fibrosis transmembrane conductance regulator 1 (Cftr1) as a conduit for Cl- to exit the gill. Here, we investigated whether the Ca2+-activated Cl- channel, anoctamin 1 (Ano1), provides an additional path for Cl--secretion in euryhaline mummichogs (Fundulus heteroclitus). Two ano1 gene isoforms, denoted ano1.1a and -1.1b, exhibited higher expression in the gill and opercular epithelium of mummichogs long-term acclimated to SW versus fresh water (FW). Branchial ano1.1b and cftr1 expression was increased in mummichogs sampled 24 h after transfer from FW to SW; ano1.1a and -1.1b were upregulated in the gill and opercular epithelium following transfer from SW to hypersaline SW. Alternatively, the expression of ano1.1a, -1.1b, and cftr1 in the gill and opercular epithelium was markedly decreased after transfer from SW to FW. Given its role in attenuating ion secretion, we probed whether prolactin downregulates ano1 isoforms. In addition to attenuating cftr1 expression, a prolactin injection reduced branchial ano1.1a and -1.1b levels. Given how Ano1 mediates Cl- secretion by mammalian epithelial cells, the salinity- and prolactin-sensitive nature of ano1 expression reported here indicates that Ano1 may constitute a novel Cl--secretion pathway in ionocytes. This study encourages a wider evaluation of this putative Cl--secretion pathway and its regulation by hormones in teleost fishes.NEW & NOTEWORTHY In this study, we provide evidence in a teleost fish that the Ca2+-activated Cl- channel, anoctamin 1 may provide an additional path for Cl- secretion by seawater-type ionocytes. Not only is this the first report of a Cftr-independent Cl--secreting pathway conferring survival in seawater but also the first description of its regulation by the pituitary hormone prolactin.


Subject(s)
Anoctamin-1 , Fundulidae , Gills , Prolactin , Salinity , Animals , Fundulidae/metabolism , Prolactin/metabolism , Gills/metabolism , Anoctamin-1/metabolism , Anoctamin-1/genetics , Fish Proteins/metabolism , Fish Proteins/genetics , Seawater , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Acclimatization , Chlorides/metabolism , Fundulus heteroclitus
2.
Stem Cells ; 42(10): 902-913, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39097775

ABSTRACT

It has been documented that caspase 3 activity is necessary for skeletal muscle regeneration, but how its activity is regulated is largely unknown. Our previous report shows that intracellular TMEM16A, a calcium activated chloride channel, significantly regulates caspase 3 activity in myoblasts during skeletal muscle development. By using a mouse line with satellite cell (SC)-specific deletion of TMEM16A, we examined the role of TMEM16A in regulating caspase 3 activity in SC (or SC-derived myoblast) as well as skeletal muscle regeneration. The mutant animals displayed apparently impaired regeneration capacity in adult muscle along with enhanced ER stress and elevated caspase 3 activity in Tmem16a-/- SC derived myoblasts. Blockade of either excessive ER stress or caspase 3 activity by small molecules significantly restored the inhibited myogenic differentiation of Tmem16a-/- SCs, indicating that excessive caspase 3 activity resulted from TMEM16A deletion contributes to the impaired muscle regeneration and the upstream regulator of caspase 3 was ER stress. Our results revealed an essential role of TMEM16A in satellite cell-mediated skeletal muscle regeneration by ensuring a moderate level of caspase 3 activity.


Subject(s)
Anoctamin-1 , Caspase 3 , Chloride Channels , Endoplasmic Reticulum Stress , Muscle, Skeletal , Regeneration , Satellite Cells, Skeletal Muscle , Animals , Satellite Cells, Skeletal Muscle/metabolism , Regeneration/physiology , Caspase 3/metabolism , Muscle, Skeletal/metabolism , Mice , Anoctamin-1/metabolism , Anoctamin-1/genetics , Chloride Channels/metabolism , Chloride Channels/genetics , Mice, Knockout , Cell Differentiation
3.
Zhonghua Nan Ke Xue ; 30(1): 18-25, 2024 Jan.
Article in Chinese | MEDLINE | ID: mdl-39046409

ABSTRACT

OBJECTIVE: To explore the expressions of zinc homeostasis-related proteins, G protein-coupled receptor 39 (GPR39) and ANO1 mRNA in the sperm of patients with asthenozoospermia (AS), and analyze their correlation with sperm motility. METHODS: We collected semen samples from 82 male subjects with PR+NP < 40%, PR < 32% and sperm concentration > 15×106/ml (the AS group, n = 40) or PR+NP ≥ 40%, PR ≥ 32% and sperm concentration > 15×106/ml (the normal control group, n = 42). We analyzed the routine semen parameters and measured the zinc content in the seminal plasma using the computer-assisted sperm analysis system, detected the expressions of zinc transporters (ZIP13, ZIP8 and ZNT10), metallothioneins (MT1G, MT1 and MTF), GPR39, and calcium-dependent chloride channel protein (ANO1) in the sperm by real-time quantitative PCR (RT qPCR), examined free zinc distribution in the sperm by laser confocal microscopy, and determined the expressions of GPR39 and MT1 proteins in the sperm by immunofluorescence staining, followed by Spearman rank correlation analysis of their correlation with semen parameters. RESULTS: There was no statistically significant difference in the zinc concentration in the seminal plasma between the AS and normal control groups (P>0.05). Compared with the controls, the AS patients showed a significantly reduced free zinc level (P<0.05), relative expressions of MT1G, MTF, ZIP13, GPR39 and ANO1 mRNA (P<0.05), and that of the GPR39 protein in the AS group (P<0.05). No statistically significant differences were observed in the relative expression levels of ZIP8, ZNT10 and MT1 mRNA between the two groups (P>0.05). The relative expression levels of GPR39, ANO1, MT1G and MTF mRNA were positively correlated with sperm motility and the percentage of progressively motile sperm (P<0.05). CONCLUSION: The expressions of zinc homeostasis proteins (MT1G, MTF and ZIP13), GPR39 and ANO1 mRNA are downregulated in the sperm of asthenozoospermia patients, and positively correlated with sperm motility.


Subject(s)
Anoctamin-1 , Asthenozoospermia , Cation Transport Proteins , RNA, Messenger , Receptors, G-Protein-Coupled , Sperm Motility , Spermatozoa , Zinc , Humans , Male , Asthenozoospermia/metabolism , Asthenozoospermia/genetics , Anoctamin-1/metabolism , Anoctamin-1/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Zinc/metabolism , Spermatozoa/metabolism , Cation Transport Proteins/metabolism , Cation Transport Proteins/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Metallothionein/metabolism , Metallothionein/genetics , Homeostasis , Adult , Semen Analysis , Clinical Relevance , Neoplasm Proteins
4.
Elife ; 132024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963781

ABSTRACT

Reports indicate that an interaction between TRPV4 and anoctamin 1 (ANO1) could be widely involved in water efflux of exocrine glands, suggesting that the interaction could play a role in perspiration. In secretory cells of sweat glands present in mouse foot pads, TRPV4 clearly colocalized with cytokeratin 8, ANO1, and aquaporin-5 (AQP5). Mouse sweat glands showed TRPV4-dependent cytosolic Ca2+ increases that were inhibited by menthol. Acetylcholine-stimulated sweating in foot pads was temperature-dependent in wild-type, but not in TRPV4-deficient mice and was inhibited by menthol both in wild-type and TRPM8KO mice. The basal sweating without acetylcholine stimulation was inhibited by an ANO1 inhibitor. Sweating could be important for maintaining friction forces in mouse foot pads, and this possibility is supported by the finding that wild-type mice climbed up a slippery slope more easily than TRPV4-deficient mice. Furthermore, TRPV4 expression was significantly higher in controls and normohidrotic skin from patients with acquired idiopathic generalized anhidrosis (AIGA) compared to anhidrotic skin from patients with AIGA. Collectively, TRPV4 is likely involved in temperature-dependent perspiration via interactions with ANO1, and TRPV4 itself or the TRPV4/ANO 1 complex would be targeted to develop agents that regulate perspiration.


Stress, spicy foods and elevated temperatures can all trigger specialized gland cells to move water to the skin ­ in other words, they can make us sweat. This process is one of the most important ways by which our bodies regulate their temperature and avoid life-threatening conditions such as heatstroke. Disorders in which this function is impaired, such as AIGA (acquired idiopathic generalized anhidrosis), pose significant health risks. Finding treatments for sweat-related diseases requires a detailed understanding of the molecular mechanisms behind sweating, which has yet to be achieved. Recent research has highlighted the role of two ion channels, TRPV4 and ANO1, in regulating fluid secretion in glands that produce tears and saliva. These gate-like proteins control how certain ions move in or out of cells, which also influences water movement. Once activated by external stimuli, TRPV4 allows calcium ions to enter the cell, causing ANO1 to open and chloride ions to leave. This results in water also exiting the cell through dedicated channels, before being collected in ducts connected to the outside of the body. TRPV4, which is activated by heat, is also present in human sweat gland cells. This prompted Kashio et al. to examine the role of these channels in sweat production, focusing on mice as well as AIGA patients. Probing TRPV4, ANO1 and AQP5 (a type of water channel) levels using fluorescent antibodies confirmed that these channels are all found in the same sweat gland cells in the foot pads of mice. Further experiments highlighted that TRPV4 mediates sweat production in these animals via ANO1 activation. As rodents do not regulate their body temperature by sweating, Kashio et al. explored the biological benefits of having sweaty paws. Mice lacking TRPV4 had reduced sweating and were less able to climb a slippery slope, suggesting that a layer of sweat helps improve traction. Finally, Kashio et al. compared samples obtained from healthy volunteers with those from AIGA patients and found that TRPV4 levels are lower in individuals affected by the disease. Overall, these findings reveal new insights into the underlying mechanisms of sweating, with TRPV4 a potential therapeutic target for conditions like AIGA. The results also suggest that sweating could be controlled by local changes in temperature detected by heat-sensing channels such as TRPV4. This would depart from our current understanding that sweating is solely controlled by the autonomic nervous system, which regulates involuntary bodily functions such as saliva and tear production.


Subject(s)
Sweating , TRPV Cation Channels , Temperature , Animals , TRPV Cation Channels/metabolism , TRPV Cation Channels/genetics , Mice , Sweating/physiology , Mice, Knockout , Anoctamin-1/metabolism , Anoctamin-1/genetics , Sweat Glands/metabolism , Humans , Male
5.
J Biol Chem ; 300(7): 107432, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38825009

ABSTRACT

The Ca2+-activated Cl- channel regulator CLCA1 potentiates the activity of the Ca2+-activated Cl- channel (CaCC) TMEM16A by directly engaging the channel at the cell surface, inhibiting its reinternalization and increasing Ca2+-dependent Cl- current (ICaCC) density. We now present evidence of functional pairing between two other CLCA and TMEM16 protein family members, namely CLCA4 and the CaCC TMEM16B. Similar to CLCA1, (i) CLCA4 is a self-cleaving metalloprotease, and the N-terminal portion (N-CLCA4) is secreted; (ii) the von Willebrand factor type A (VWA) domain in N-CLCA4 is sufficient to potentiate ICaCC in HEK293T cells; and (iii) this is mediated by the metal ion-dependent adhesion site motif within VWA. The results indicate that, despite the conserved regulatory mechanism and homology between CLCA1 and CLCA4, CLCA4-dependent ICaCC are carried by TMEM16B, rather than TMEM16A. Our findings show specificity in CLCA/TMEM16 interactions and suggest broad physiological and pathophysiological links between these two protein families.


Subject(s)
Anoctamins , Chloride Channels , Humans , Anoctamin-1/metabolism , Anoctamin-1/genetics , Anoctamins/metabolism , Anoctamins/genetics , Anoctamins/chemistry , Calcium/metabolism , Chloride Channels/metabolism , Chloride Channels/genetics , Chlorides/metabolism , HEK293 Cells , Neoplasm Proteins/metabolism , Neoplasm Proteins/genetics , Protein Domains
6.
J Physiol ; 602(14): 3351-3373, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38704841

ABSTRACT

Ca2+ signalling plays a crucial role in determining lymphatic muscle cell excitability and contractility through its interaction with the Ca2+-activated Cl- channel anoctamin 1 (ANO1). In contrast, the large-conductance (BK) Ca2+-activated K+ channel (KCa) and other KCa channels have prominent vasodilatory actions by hyperpolarizing vascular smooth muscle cells. Here, we assessed the expression and contribution of the KCa family to mouse and rat lymphatic collecting vessel contractile function. The BK channel was the only KCa channel consistently expressed in fluorescence-activated cell sorting-purified mouse lymphatic muscle cell lymphatic muscle cells. We used a pharmacological inhibitor of BK channels, iberiotoxin, and small-conductance Ca2+-activated K+ channels, apamin, to inhibit KCa channels acutely in ex vivo isobaric myography experiments and intracellular membrane potential recordings. In basal conditions, BK channel inhibition had little to no effect on either mouse inguinal-axillary lymphatic vessel (MIALV) or rat mesenteric lymphatic vessel contractions or action potentials (APs). We also tested BK channel inhibition under loss of ANO1 either by genetic ablation (Myh11CreERT2-Ano1 fl/fl, Ano1ismKO) or by pharmacological inhibition with Ani9. In both Ano1ismKO MIALVs and Ani9-pretreated MIALVs, inhibition of BK channels increased contraction amplitude, increased peak AP and broadened the peak of the AP spike. In rat mesenteric lymphatic vessels, BK channel inhibition also abolished the characteristic post-spike notch, which was exaggerated with ANO1 inhibition, and significantly increased the peak potential and broadened the AP spike. We conclude that BK channels are present and functional on mouse and rat lymphatic muscle cells but are otherwise masked by the dominance of ANO1. KEY POINTS: Mouse and rat lymphatic muscle cells express functional BK channels. BK channels make little contribution to either rat or mouse lymphatic collecting vessel contractile function in basal conditions across a physiological pressure range. ANO1 limits the peak membrane potential achieved in the action potential and sets a plateau potential limiting the voltage-dependent activation of BK. BK channels are activated when ANO1 is absent or blocked and slightly impair contractile strength by reducing the peak membrane potential achieved in the action potential spike and accelerating the post-spike repolarization.


Subject(s)
Action Potentials , Anoctamin-1 , Large-Conductance Calcium-Activated Potassium Channels , Lymphatic Vessels , Animals , Anoctamin-1/metabolism , Anoctamin-1/genetics , Large-Conductance Calcium-Activated Potassium Channels/metabolism , Large-Conductance Calcium-Activated Potassium Channels/physiology , Mice , Rats , Action Potentials/physiology , Male , Lymphatic Vessels/physiology , Lymphatic Vessels/metabolism , Mice, Inbred C57BL , Mice, Knockout , Muscle Contraction/physiology , Rats, Sprague-Dawley , Female , Myocytes, Smooth Muscle/physiology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects
7.
Sci Rep ; 14(1): 11595, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773164

ABSTRACT

Despite growing evidence implicating the calcium-activated chloride channel anoctamin1 (ANO1) in cancer metastasis, its direct impact on the metastatic potential of prostate cancer and the possible significance of epigenetic alteration in this process are not fully understood. Here, we show that ANO1 is minimally expressed in LNCap and DU145 prostate cancer cell lines with low metastatic potential but overexpressed in high metastatic PC3 prostate cancer cell line. The treatment of LNCap and DU145 cells with DNMT inhibitor 5-aza-2'-deoxycytidine (5-Aza-CdR) potentiates ANO1 expression, suggesting that DNA methylation is one of the mechanisms controlling ANO1 expression. Consistent with this notion, hypermethylation was detected at the CpG island of ANO1 promoter region in LNCap and DU145 cells, and 5-Aza-CdR treatment resulted in a drastic demethylation at promoter CpG methylation sites. Upon 5-Aza-CdR treatment, metastatic indexes, such as cell motility, invasion, and metastasis-related gene expression, were significantly altered in LNCap and DU145 cells. These 5-Aza-CdR-induced metastatic hallmarks were, however, almost completely ablated by stable knockdown of ANO1. These in vitro discoveries were further supported by our in vivo observation that ANO1 expression in xenograft mouse models enhances the metastatic dissemination of prostate cancer cells into tibial bone and the development of osteolytic lesions. Collectively, our results help elucidate the critical role of ANO1 expression in prostate cancer bone metastases, which is epigenetically modulated by promoter CpG methylation.


Subject(s)
Anoctamin-1 , Bone Neoplasms , DNA Methylation , Gene Expression Regulation, Neoplastic , Neoplasm Proteins , Promoter Regions, Genetic , Prostatic Neoplasms , Male , Anoctamin-1/metabolism , Anoctamin-1/genetics , Humans , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Animals , Cell Line, Tumor , Bone Neoplasms/secondary , Bone Neoplasms/genetics , Bone Neoplasms/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Mice , CpG Islands , Decitabine/pharmacology , Cell Movement/genetics , Epigenesis, Genetic , Azacitidine/pharmacology
8.
J Gen Physiol ; 156(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38814250

ABSTRACT

The TMEM16A calcium-activated chloride channel is a promising therapeutic target for various diseases. Niclosamide, an anthelmintic medication, has been considered a TMEM16A inhibitor for treating asthma and chronic obstructive pulmonary disease (COPD) but was recently found to possess broad-spectrum off-target effects. Here, we show that, under physiological Ca2+ (200-500 nM) and voltages, niclosamide acutely potentiates TMEM16A. Our computational and functional characterizations pinpoint a putative niclosamide binding site on the extracellular side of TMEM16A. Mutations in this site attenuate the potentiation. Moreover, niclosamide potentiates endogenous TMEM16A in vascular smooth muscle cells, triggers intracellular calcium increase, and constricts the murine mesenteric artery. Our findings advise caution when considering clinical applications of niclosamide as a TMEM16A inhibitor. The identification of the putative niclosamide binding site provides insights into the mechanism of TMEM16A pharmacological modulation and provides insights into developing specific TMEM16A modulators to treat human diseases.


Subject(s)
Anoctamin-1 , Niclosamide , Vasoconstriction , Niclosamide/pharmacology , Anoctamin-1/metabolism , Anoctamin-1/genetics , Animals , Mice , Humans , Vasoconstriction/drug effects , HEK293 Cells , Binding Sites , Calcium/metabolism , Mesenteric Arteries/drug effects , Mesenteric Arteries/metabolism , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Male
9.
J Cell Mol Med ; 28(9): e18320, 2024 May.
Article in English | MEDLINE | ID: mdl-38685684

ABSTRACT

Liver diseases include all types of viral hepatitis, alcoholic liver disease (ALD), nonalcoholic fatty liver disease (NAFLD), cirrhosis, liver failure (LF) and hepatocellular carcinoma (HCC). Liver disease is now one of the leading causes of disease and death worldwide, which compels us to better understand the mechanisms involved in the development of liver diseases. Anoctamin 1 (ANO1), a calcium-activated chloride channel (CaCC), plays an important role in epithelial cell secretion, proliferation and migration. ANO1 plays a key role in transcriptional regulation as well as in many signalling pathways. It is involved in the genesis, development, progression and/or metastasis of several tumours and other diseases including liver diseases. This paper reviews the role and molecular mechanisms of ANO1 in the development of various liver diseases, aiming to provide a reference for further research on the role of ANO1 in liver diseases and to contribute to the improvement of therapeutic strategies for liver diseases by regulating ANO1.


Subject(s)
Anoctamin-1 , Liver Diseases , Humans , Anoctamin-1/metabolism , Anoctamin-1/genetics , Liver Diseases/metabolism , Liver Diseases/pathology , Liver Diseases/genetics , Animals , Signal Transduction , Neoplasm Proteins/metabolism , Neoplasm Proteins/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Gene Expression Regulation
10.
Discov Med ; 36(183): 753-764, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38665024

ABSTRACT

BACKGROUND: Dental fluorosis is a discoloration of the teeth caused by the excessive consumption of fluoride. It represents a distinct manifestation of chronic fluorosis in dental tissues, exerting adverse effects on the human body, particularly on teeth. The transmembrane protein 16a (TMEM16A) is expressed at the junction of the endoplasmic reticulum and the plasma membrane. Alterations in its channel activity can disrupt endoplasmic reticulum calcium homeostasis and intracellular calcium ion concentration, thereby inducing endoplasmic reticulum stress (ERS). This study aims to investigate the influence of calcium supplements and TMEM16A on ERS in dental fluorosis. METHODS: C57BL/6 mice exhibiting dental fluorosis were subjected to an eight-week treatment with varying calcium concentrations: low (0.071%), medium (0.79%), and high (6.61%). Various assays, including Hematoxylin and Eosin (HE) staining, immunohistochemistry, real-time fluorescence quantitative polymerase chain reaction (qPCR), and Western blot, were employed to assess the impact of calcium supplements on fluoride content, ameloblast morphology, TMEM16A expression, and endoplasmic reticulum stress-related proteins (calreticulin (CRT), glucose-regulated protein 78 (GRP78), inositol requiring kinase 1α (IRE1α), PKR-like ER kinase (PERK), activating transcription factor 6 (ATF6)) in the incisors of mice affected by dental fluorosis. Furthermore, mice with dental fluorosis were treated with the TMEM16A inhibitor T16Ainh-A01 along with a medium-dose calcium to investigate the influence of TMEM16A on fluoride content, ameloblast morphology, and endoplasmic reticulum stress-related proteins in the context of mouse incisor fluorosis. RESULTS: In comparison to the model mice, the fluoride content in incisors significantly decreased following calcium supplements (p < 0.01). Moreover, the expression of TMEM16A, CRT, GRP78, IRE1α, PERK, and ATF6 were also exhibited a substantial reduction (p < 0.01), with the most pronounced effect observed in the medium-dose calcium group. Additionally, the fluoride content (p < 0.05) and the expression of CRT, GRP78, IRE1α, PERK, and ATF6 (p < 0.01) were further diminished following concurrent treatment with the TMEM16A inhibitor T16Ainh-A01 and a medium dose of calcium. CONCLUSIONS: The supplementation of calcium or the inhibition of TMEM16A expression appears to mitigate the detrimental effects of fluorosis by suppressing endoplasmic reticulum stress. These findings hold implications for identifying potential therapeutic targets in addressing dental fluorosis.


Subject(s)
Calcium , Dietary Supplements , Fluorosis, Dental , Animals , Male , Mice , Activating Transcription Factor 6/metabolism , Adenine/analogs & derivatives , Ameloblasts/metabolism , Ameloblasts/pathology , Ameloblasts/drug effects , Anoctamin-1/metabolism , Anoctamin-1/antagonists & inhibitors , Anoctamin-1/genetics , Calcium/metabolism , Disease Models, Animal , eIF-2 Kinase/metabolism , eIF-2 Kinase/genetics , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress/drug effects , Endoribonucleases/metabolism , Fluorides/toxicity , Fluorides/adverse effects , Fluorosis, Dental/pathology , Fluorosis, Dental/metabolism , Fluorosis, Dental/etiology , Indoles , Mice, Inbred C57BL , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/antagonists & inhibitors
11.
Carcinogenesis ; 45(8): 569-581, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-38470063

ABSTRACT

Previous studies have indicated that transmembrane protein 16A (TMEM16A) plays a crucial role in the pathogenesis and progression of various tumors by influencing multiple signaling pathways. However, the role of TMEM16A in regulating autophagy via the mammalian target of rapamycin (mTOR) pathway and its impact on the development of hypopharyngeal squamous cell carcinoma (HSCC) remain unclear. Immunohistochemistry and western blotting were used to assess the expression of TMEM16A in HSCC tissues and metastatic lymph nodes. Manipulation of TMEM16A expression levels was achieved in the FaDu cell line through overexpression or knockdown, followed by assessment of its biological effects using cell colony formation, wound healing, transwell and invasion assays. Additionally, apoptosis and autophagy-related proteins, as well as autophagosome formation, were evaluated through western blotting, transmission electron microscopy and immunofluorescence following TMEM16A knockdown or overexpression in FaDu cells. Our study revealed significantly elevated levels of TMEM16A in both HSCC tissues and metastatic lymph nodes compared with normal tissues. In vitro experiments demonstrated that silencing TMEM16A led to a notable suppression of HSCC cell proliferation, invasion and migration. Furthermore, TMEM16A silencing effectively inhibited tumor growth in xenografted mice. Subsequent investigations indicated that knockdown of TMEM16A in HSCC cells could suppress mTOR activation, thereby triggering autophagic cell death by upregulating sequestosome-1 (SQSTM1/P62) and microtubule-associated protein light chain 3 II (LC3II). This study highlights the crucial role of TMEM16A in modulating autophagy in HSCC, suggesting its potential as a therapeutic target for the treatment of this malignancy.


Subject(s)
Anoctamin-1 , Autophagy , Cell Movement , Cell Proliferation , Hypopharyngeal Neoplasms , Neoplasm Invasiveness , Neoplasm Proteins , Signal Transduction , TOR Serine-Threonine Kinases , Humans , TOR Serine-Threonine Kinases/metabolism , Hypopharyngeal Neoplasms/pathology , Hypopharyngeal Neoplasms/genetics , Hypopharyngeal Neoplasms/metabolism , Animals , Mice , Anoctamin-1/metabolism , Anoctamin-1/genetics , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Cell Line, Tumor , Male , Apoptosis , Gene Expression Regulation, Neoplastic , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/genetics , Female , Mice, Nude , Xenograft Model Antitumor Assays , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/genetics
12.
BMC Cancer ; 24(1): 233, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38373988

ABSTRACT

Head and neck squamous cell carcinoma (HNSCC) constitutes one of the most common types of human cancers and often metastasizes to lymph nodes. Platinum-based chemotherapeutic drugs are commonly used for treatment of a wide range of cancers, including HNSCC. Its mode of action relies on its ability to impede DNA repair mechanisms, inducing apoptosis in cancer cells. However, due to acquired resistance and toxic side-effects, researchers have been focusing on developing novel combinational therapeutic strategies to overcome cisplatin resistance. In the current study, we identified p90RSK, an ERK1/2 downstream target, as a key mediator and a targetable signaling node against cisplatin resistance. Our results strongly support the role of p90RSK in cisplatin resistance and identify the combination of p90RSK inhibitor, BI-D1870, with cisplatin as a novel therapeutic strategy to overcome cisplatin resistance. In addition, we have identified TMEM16A expression as a potential upstream regulator of p90RSK through the ERK pathway and a biomarker of response to p90RSK targeted therapy in the context of cisplatin resistance.


Subject(s)
Antineoplastic Agents , Head and Neck Neoplasms , Ribosomal Protein S6 Kinases, 90-kDa , Squamous Cell Carcinoma of Head and Neck , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis , Cell Line, Tumor , Cisplatin/pharmacology , Cisplatin/therapeutic use , Drug Resistance, Neoplasm/genetics , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/genetics , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/genetics , Ribosomal Protein S6 Kinases, 90-kDa/antagonists & inhibitors , Anoctamin-1/genetics , Anoctamin-1/metabolism
13.
Front Immunol ; 15: 1341209, 2024.
Article in English | MEDLINE | ID: mdl-38352864

ABSTRACT

Background: Aminooctylamine (ANO1) plays an oncogenic role in various cancers. However. its role in pancreatic cancer (PC) has rarely been studied. This study investigated the prognostic value of ANO1 and its correlation with the tumor microenvironment (TME) in PC. Methods: Consecutive patients with PC (n = 119) were enrolled. The expression of ANO1 in cancer cells, the expression of fibroblast activation protein (FAP) and alpha smooth muscle actin in cancer-associated fibroblasts (CAFs), and the numbers of CD8- and FOXP3-positive tumor-infiltrating lymphocytes (TILs) were evaluated using immunohistochemistry. The prognostic value of ANO1 and its correlation with CAF subgroups and TILs were analyzed. The possible mechanism of ANO1 in the TME of PC was predicted using the the Cancer Genome Atlas (TCGA) dataset. Results: The expression of AN01 was correlated with overall survival (OS) and disease-free survival. Multi-factor analysis showed that high ANO1 expression was an independent adverse prognostic factor for OS (hazard ratio, 4.137; P = 0.001). ANO1 expression was positively correlated with the expression of FAP in CAFs (P < 0.001) and negatively correlated with the number of CD8-positive TILs (P = 0.005), which was also validated by bioinformatics analysis in the TCGA dataset. Moreover, bioinformatic analysis of the TCGA dataset revealed that ANO1 may induce an immunosuppressive tumor microenvironment in pancreatic cancer in a paracrine manner. Conclusion: ANO1 is a prognostic factor in patients with PC after radical resection. ANO1 may induce an immunosuppressive tumor microenvironment in PC in a paracrine manner, suggesting that ANO1 may be a novel therapeutic target.


Subject(s)
Pancreatic Neoplasms , Tumor Microenvironment , Humans , Prognosis , Pancreatic Neoplasms/pathology , Lymphocytes, Tumor-Infiltrating/metabolism , Proportional Hazards Models , Anoctamin-1/genetics , Anoctamin-1/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism
14.
J Am Chem Soc ; 146(7): 4665-4679, 2024 02 21.
Article in English | MEDLINE | ID: mdl-38319142

ABSTRACT

The dysfunction and defects of ion channels are associated with many human diseases, especially for loss-of-function mutations in ion channels such as cystic fibrosis transmembrane conductance regulator mutations in cystic fibrosis. Understanding ion channels is of great current importance for both medical and fundamental purposes. Such an understanding should include the ability to predict mutational effects and describe functional and mechanistic effects. In this work, we introduce an approach to predict mutational effects based on kinetic information (including reaction barriers and transition state locations) obtained by studying the working mechanism of target proteins. Specifically, we take the Ca2+-activated chloride channel TMEM16A as an example and utilize the computational biology model to predict the mutational effects of key residues. Encouragingly, we verified our predictions through electrophysiological experiments, demonstrating a 94% prediction accuracy regarding mutational directions. The mutational strength assessed by Pearson's correlation coefficient is -0.80 between our calculations and the experimental results. These findings suggest that the proposed methodology is reliable and can provide valuable guidance for revealing functional mechanisms and identifying key residues of the TMEM16A channel. The proposed approach can be extended to a broad scope of biophysical systems.


Subject(s)
Chloride Channels , Chlorides , Humans , Chlorides/metabolism , Anoctamin-1/genetics , Anoctamin-1/metabolism , Chloride Channels/genetics , Chloride Channels/chemistry , Chloride Channels/metabolism , Mutation , Signal Transduction , Calcium/metabolism
15.
Sci Rep ; 14(1): 246, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38168913

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is the 3rd leading cause of death worldwide. Cigarette smoke which has approximately 2-3 µg of Cadmium (Cd) per cigarette contributes to the environmental exposure and development and severity of COPD. With the lack of a cadmium elimination mechanism in humans, the contribution of cadmium induced stress to lung epithelial cells remains unclear. Studies on cadmium responsive miRNAs suggest regulation of target genes with an emphasis on the critical role of miRNA-mRNA interaction for cellular homeostasis. Mir-381, the target miRNA in this study is negatively regulated by cadmium in airway epithelial cells. miR-381 is reported to also regulate ANO1 (Anoctamin 1) expression negatively and in this study low dose cadmium exposure to airway epithelial cells was observed to upregulate ANO1 mRNA expression via mir-381 inhibition. ANO1 which is a Ca2+-activated chloride channel has multiple effects on cellular functions such as proliferation, mucus hypersecretion and fibroblast differentiation in inflamed airways in chronic respiratory diseases. In vitro studies with cadmium at a high concentration range of 100-500 µM is reported to activate chloride channel, ANO1. The secretory epithelial cells are regulated by chloride channels like CFTR, ANO1 and SLC26A9. We examined "ever" smokers with COPD (n = 13) lung tissue sections compared to "never" smoker without COPD (n = 9). We found that "ever" smokers with COPD had higher ANO1 expression. Using mir-381 mimic to inhibit ANO1, we demonstrate here that ANO1 expression is significantly (p < 0.001) downregulated in COPD derived airway epithelial cells exposed to cadmium. Exposure to environmental cadmium contributes significantly to ANO1 expression.


Subject(s)
MicroRNAs , Pulmonary Disease, Chronic Obstructive , Humans , Cadmium/metabolism , Anoctamin-1/genetics , Anoctamin-1/metabolism , Epithelial Cells/metabolism , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/metabolism , Chloride Channels/genetics , Chloride Channels/metabolism , MicroRNAs/metabolism , RNA, Messenger/genetics , Neoplasm Proteins/metabolism , Sulfate Transporters/metabolism , Antiporters/metabolism
17.
EMBO J ; 42(24): e115030, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37984335

ABSTRACT

Agonist binding in ligand-gated ion channels is coupled to structural rearrangements around the binding site, followed by the opening of the channel pore. In this process, agonist efficacy describes the equilibrium between open and closed conformations in a fully ligand-bound state. Calcium-activated chloride channels in the TMEM16 family are important sensors of intracellular calcium signals and are targets for pharmacological modulators, yet a mechanistic understanding of agonist efficacy has remained elusive. Using a combination of cryo-electron microscopy, electrophysiology, and autocorrelation analysis, we now show that agonist efficacy in the ligand-gated channel TMEM16A is dictated by the conformation of the pore-lining helix α6 around the Ca2+ -binding site. The closure of the binding site, which involves the formation of a π-helix below a hinge region in α6, appears to be coupled to the opening of the inner pore gate, thereby governing the channel's open probability and conductance. Our results provide a mechanism for agonist binding and efficacy and a structural basis for the design of potentiators and partial agonists in the TMEM16 family.


Subject(s)
Chloride Channels , Ion Channel Gating , Chloride Channels/genetics , Chloride Channels/metabolism , Anoctamin-1/genetics , Anoctamin-1/chemistry , Anoctamin-1/metabolism , Ligands , Cryoelectron Microscopy , Binding Sites , Calcium/metabolism
18.
Sci Signal ; 16(811): eadk5661, 2023 11 14.
Article in English | MEDLINE | ID: mdl-37963193

ABSTRACT

The TMEM16A channel represents a key depolarizing mechanism in arterial smooth muscle and contractile pericytes, where it is activated by several endogenous contractile agonists. In this issue of Science Signaling, Mata-Daboin et al. demonstrate a previously unidentified role for TMEM16A in endothelial cells for acetylcholine-mediated vasorelaxation. Collectively, TMEM16A serves as a transducer of vasoactive stimuli to enable fine modulation of vessel tone.


Subject(s)
Chloride Channels , Endothelial Cells , Chloride Channels/genetics , Muscle, Smooth , Arteries , Anions , Anoctamin-1/genetics
19.
Cancer Res ; 83(11): 1759-1761, 2023 06 02.
Article in English | MEDLINE | ID: mdl-37264829

ABSTRACT

Metastasis is a key contributor to mortality in patients with cancer. While many regulators of metastasis have been identified, critical targets to prevent and inhibit metastatic tumor growth remain elusive. A recent study in this issue of Cancer Research by Deng and colleagues compared gene expression signatures between primary esophageal squamous cell carcinoma tumors and metastatic tumors and combined the analysis with genes induced in metastatic cancer cell lines, which identified anoctamin 1 (ANO1) as a key driver of metastasis. ANO1 caused cholesterol accumulation by inhibiting LXR signaling and decreased cholesterol hydroxylation by downregulating the expression of cholesterol hydroxylase CYP27A1. ANO1 also regulated tumor cell-fibroblast cross-talk that contributed to inflammatory cytokine signaling (IL1ß) and metastasis. Through in silico analysis, the study identified a novel small-molecule inhibitor of ANO1 that decreased tumor burden at a metastatic site. These studies provide novel insights into the role of ANO1 in cellular cholesterol metabolism and associated signaling in mediating metastasis. See related article by Deng et al., p. 1851.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Anoctamin-1/genetics , Anoctamin-1/metabolism , Tumor Microenvironment , Cholesterol , Neoplasm Proteins/metabolism
20.
Brain ; 146(9): 3616-3623, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37253099

ABSTRACT

Moyamoya disease, a cerebrovascular disease leading to strokes in children and young adults, is characterized by progressive occlusion of the distal internal carotid arteries and the formation of collateral vessels. Altered genes play a prominent role in the aetiology of moyamoya disease, but a causative gene is not identified in the majority of cases. Exome sequencing data from 151 individuals from 84 unsolved families were analysed to identify further genes for moyamoya disease, then candidate genes assessed in additional cases (150 probands). Two families had the same rare variant in ANO1, which encodes a calcium-activated chloride channel, anoctamin-1. Haplotype analyses found the families were related, and ANO1 p.Met658Val segregated with moyamoya disease in the family with an LOD score of 3.3. Six additional ANO1 rare variants were identified in moyamoya disease families. The ANO1 rare variants were assessed using patch-clamp recordings, and the majority of variants, including ANO1 p.Met658Val, displayed increased sensitivity to intracellular Ca2+. Patients harbouring these gain-of-function ANO1 variants had classic features of moyamoya disease, but also had aneurysm, stenosis and/or occlusion in the posterior circulation. Our studies support that ANO1 gain-of-function pathogenic variants predispose to moyamoya disease and are associated with unique involvement of the posterior circulation.


Subject(s)
Anoctamin-1 , Moyamoya Disease , Child , Humans , Young Adult , Anoctamin-1/genetics , Chloride Channels/genetics , Moyamoya Disease/genetics , Neoplasm Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL