Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 16.422
Filter
1.
J Vector Ecol ; 49(2): R50-R60, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39315961

ABSTRACT

The Capivari-Monos Environmental Protection Area (EPA) is located in the southern part of the São Paulo city Green Belt. Since the 1950s, this region has been affected by uncontrolled urban sprawl, resulting in a change in the ecological habits of some vector mosquitoes. Over the last two decades, cases of autochthonous bromeliad malaria associated with the presence of anopheline mosquitoes in the EPA have been recorded. Anopheles cruzii, the primary vector of plasmodia in the region, is abundant and found naturally infected with both Plasmodium vivax and Plasmodium malariae. In light of this, the present study sought to update the catalog of mosquito fauna in this EPA, analyze mosquito diversity among sites with different degrees of conservation and compare species using different collection techniques. Field collections were carried out from March, 2015 to April, 2017. A total of 20,755 specimens were collected, distributed in 106 different taxa representing 16 genera. Analysis of the diversity among the sites based on the Shannon and Simpson indices showed that the most preserved of them had the lowest indices because of the dominance of An. cruzii. The results highlight the increase in the number of different taxa collected as different mosquito collection techniques were included, confirming the importance of using several strategies to ensure adequate sampling of a local mosquito fauna when exploring a greater number of ecotopes. Furthermore, the survey produced the most recent and complete list of mosquito species in the Capivari-Monos EPA, a refuge and shelter for native and introduced mosquito species where new biocenoses, including pathogens, vertebrate hosts, and vectors can form, allowing zoonotic outbreaks in the local human population to occur.


Subject(s)
Biodiversity , Culicidae , Mosquito Vectors , Animals , Brazil , Culicidae/classification , Mosquito Vectors/parasitology , Mosquito Vectors/classification , Anopheles/classification , Anopheles/physiology , Anopheles/parasitology
2.
Parasit Vectors ; 17(1): 408, 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39342300

ABSTRACT

BACKGROUND: The efficacy of vector control tools depends on the behavior of the vector species. Many studies have sought to determine the feeding behavior of Anopheles mosquitoes in different settings of Ethiopia. We have performed a systematic review aimed to generate pooled evidence on the overall and species-specific blood meal sources of Anopheles mosquitoes in Ethiopia. METHODS: A search for relevant articles was performed in two electronic databases (PubMed and Science Direct) and three search engines (Google Scholar, Research Gate and Google) between 11 March and 2 April 2024. Following the initial identification of articles, we used EndNote X8 software and removed duplicate articles and screened the remaining articles by careful reading of their titles and abstracts. The full text of articles that passed this screening phase was retrieved, read and evaluated against predetermined selection criteria. The final decision for inclusion in the systematic review was made after a methodological quality check using the JBI critical appraisal checklist. All relevant data were extracted from tables, figures and texts of the included articles using a premade template in Excel, and the data were analyzed using Stata version 14 software. RESULTS: Of the 2431 studies identified, 27 met the inclusion criteria; all were published between 1997 and 2024. At 215 data points (frequency of tests of each Anopheles species by location and method of mosquito collections), 18,771 Anopheles mosquitoes belonging to 23 species or species complexes were tested for blood meal sources. The commonest sources of blood meals for Anopheles mosquitoes were bovine (36.0%, n = 6758) and human (29.4%, n = 5520). Among the tested anophelines, Anopheles (An.) arabiensis accounted for 67.9% (n = 12,741), followed by An. pharoensis, An. demeilloni and An. stephensi at 10.0%, 5.6% and 4.4%, respectively. Overall, there was no difference in the mean proportion of An. arabiensis detected with domestic animal blood (33.4%, 95% confidence interval [CI] 32.4-34.4%) and those detected with human blood (31.8%, 95% CI 30.9-32.8%). However, a greater proportion of the outdoor collected An. arabiensis were found to feed on bovines (47.9%, 95% CI 35.3-60.6) compared to humans (12.9%, 95% CI 0.8-24.9, P < 0.01). The foraging ratio (FR), which accounts for host availability, was greater for bovines (FR = 0.7) than for humans (FR = 0.2) for An. arabiensis, indicating preferential feeding on bovine hosts. This host preference was supported by the host preference index (human:bovine = 0.4). Anopheles pharoensis was detected with a slightly higher human blood index (53.5%, n = 1005) compared to bovine blood index (45.2%, n = 849). In contrast, An. demeilloni, An. coustani and An. marshalli were detected with a higher bovine blood index. Recently invaded urban malaria vector, An. stephensi was found with a higher ovine blood index. CONCLUSIONS: Bovine and human hosts are common sources of a blood meal for Anopheles mosquitoes. In terms of host availability, An. arabiensis showed preferential feeding on bovines/cattle. Targeting domestic animals, bovines and ovines with endectocides could supplement current vector control interventions. STUDY REGISTRATION: The protocol of this study was registered on the International Prospective Register of Systematic Reviews, registration no. CRD42024515725.


Subject(s)
Anopheles , Feeding Behavior , Mosquito Vectors , Animals , Anopheles/physiology , Ethiopia , Mosquito Vectors/physiology , Humans , Cattle , Malaria/transmission , Malaria/prevention & control
3.
Parasitol Res ; 123(9): 333, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39331165

ABSTRACT

Urban areas in malaria-endemic countries in East Africa are experiencing a significant increase in malaria cases, with the establishment of an "exotic" urban malaria vector, Anopheles stephensi, increasing the risk of urban malaria. To this end, the present study aimed to investigate the emergence of this species in Arba Minch, Ethiopia. Following the detection of An. stephensi in other parts of Ethiopia, 76 artificial containers (55 discarded tyres, 18 concrete water storage, and three plastic containers) were sampled in 21 locations in Arba Minch town, for immature Anopheles mosquito stages, using the standard dipping technique. Larvae were reared into adults which were morphologically identified at the species level 2-3 days after emergence. Morphological identification results were confirmed by species-specific polymerase chain reaction. Of the examined containers, 67 (88%) had at least one Anopheles larva. Thirty-two of the adults emerged were morphologically identified as An. stephensi, with 26 (81%) confirmed by molecular analysis. This is the first study to report An. stephensi from Arba Minch, one of South Ethiopia's largest towns, highlighting the need for increased vigilance. The planned and ongoing study in and around Arba Minch will contribute to understanding the bionomics and role of An. stephensi in malaria parasite transmission, helping develop a strategy to address the impending risk of urban malaria in Ethiopia.


Subject(s)
Anopheles , Larva , Malaria , Mosquito Vectors , Animals , Anopheles/parasitology , Anopheles/classification , Anopheles/physiology , Anopheles/growth & development , Ethiopia , Malaria/transmission , Malaria/epidemiology , Mosquito Vectors/parasitology , Mosquito Vectors/physiology , Mosquito Vectors/growth & development , Mosquito Vectors/classification , Larva/growth & development , Polymerase Chain Reaction
4.
Sci Rep ; 14(1): 20677, 2024 09 05.
Article in English | MEDLINE | ID: mdl-39237741

ABSTRACT

Mosquito-borne diseases, such as malaria, dengue, and Zika, pose major public health challenges globally, affecting millions of people. The growing resistance of mosquito populations to synthetic insecticides underscores the critical need for effective and environmentally friendly larvicides. Although chemical pesticides can initially be effective, they often lead to negative environmental consequences and health hazards for non-target species, including humans. This study aimed to evaluate the larvicidal effects of Trachyspermum ammi essential oil and Delphinium speciosum extract on the larvae of three major mosquito species: Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus. Mosquito larvae of Ae. aegypti, An. stephensi, and Cx. quinquefasciatus were reared under controlled laboratory conditions. The larvicidal activity of T. ammi essential oil and D. speciosum extract was evaluated through standard bioassays, using various concentrations of essential oils (10, 20, 40, 80, and 160 ppm) and extracts (160, 320, 640, 1280, and 2560 ppm) to determine the lethal concentration (LC50) values after 24 h of exposure. Fresh plant materials were collected, with the essential oil extracted via hydro-distillation, and the extract prepared using methanol solvent extraction. The chemical composition of T. ammi essential oil was examined using gas chromatography-mass spectrometry (GC-MS). Additionally, the preliminary analysis of the chemical compounds in D. speciosum extract was carried out using thin layer chromatography (TLC) and nuclear magnetic resonance spectroscopy (NMR) techniques. The results indicated that the essential oil of T. ammi exhibited more effective larvicidal activity compared to the D. speciosum extract. Specifically, the essential oil demonstrated LC50 values of 18 ppm for Cx. quinquefasciatus and 19 ppm for Ae. aegypti. In contrast, the D. speciosum extract showed the strongest larvicidal effect against An. stephensi, with an LC50 of 517 ppm. Concentrations of 40 ppm of the essential oil and 1280 ppm of the extract resulted in 100% mortality across all three species. Both the essential oil of T. ammi and the D. speciosum extract exhibited concentration-dependent larvicidal activity, and these results were statistically significant (p < 0.001) compared to the no-treatment group. GC-MS analysis revealed thymol (88.95%), o-cymen-5-ol (4.11%), and γ-terpinene (2.10%) as the major constituents of the T. ammi essential oil. Additionally, TLC verified the presence of alkaloids in both chloroform and methanolic extracts. Proton NMR identified a diterpene structure for these alkaloids. These findings suggest that T. ammi essential oil is a promising candidate for natural mosquito control strategies. Given its efficacy, further research is warranted to explore its potential in integrated vector management programs.


Subject(s)
Delphinium , Insecticides , Larva , Mosquito Vectors , Oils, Volatile , Plant Extracts , Animals , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Larva/drug effects , Mosquito Vectors/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Insecticides/pharmacology , Insecticides/chemistry , Delphinium/chemistry , Aedes/drug effects , Dengue , Malaria/prevention & control , Anopheles/drug effects , Filariasis , Culex/drug effects , Mosquito Control/methods
5.
Commun Biol ; 7(1): 1115, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39256556

ABSTRACT

The two main Afrotropical malaria vectors - Anopheles coluzzii and An. gambiae - are genetically distinct and reproductively isolated across West Africa. However, populations at the western extreme of their range are assigned as "intermediate" between the two species by whole genome sequence (WGS) data, and as hybrid forms by conventional molecular diagnostics. By exploiting WGS data from 1190 specimens collected across west Africa via the Anopheles gambiae 1000 Genomes network, we identified a putative taxon in the far-west (provisionally named Bissau molecular form), which did not arise by admixture but rather may have originated at the same time as the split between An. coluzzii and An. gambiae. Intriguingly, this taxon lacks insecticide resistance mechanisms commonly observed in the two main species. These findings lead to a change of perspective on malaria vector species in the far-west region with potential for epidemiological implications, and a new challenge for genetic-based mosquito control approaches.


Subject(s)
Anopheles , Mosquito Vectors , Anopheles/genetics , Anopheles/classification , Animals , Mosquito Vectors/genetics , Mosquito Vectors/classification , Africa, Western , Insecticide Resistance/genetics , Malaria/transmission , Genome, Insect , Whole Genome Sequencing , Phylogeny
6.
Proc Biol Sci ; 291(2031): 20241142, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39288798

ABSTRACT

Malaria control relies on insecticides targeting the mosquito vector, but this is increasingly compromised by insecticide resistance, which can be achieved by elevated expression of detoxifying enzymes that metabolize the insecticide. In diploid organisms, gene expression is regulated both in cis, by regulatory sequences on the same chromosome, and by trans acting factors, affecting both alleles equally. Differing levels of transcription can be caused by mutations in cis-regulatory modules (CRM), but few of these have been identified in mosquitoes. We crossed bendiocarb-resistant and susceptible Anopheles gambiae strains to identify cis-regulated genes that might be responsible for the resistant phenotype using RNAseq, and CRM sequences controlling gene expression in insecticide resistance relevant tissues were predicted using machine learning. We found 115 genes showing allele-specific expression (ASE) in hybrids of insecticide susceptible and resistant strains, suggesting cis-regulation is an important mechanism of gene expression regulation in A. gambiae. The genes showing ASE included a higher proportion of Anopheles-specific genes on average younger than genes with balanced allelic expression.


Subject(s)
Alleles , Anopheles , Gene Expression Regulation , Insecticide Resistance , Anopheles/genetics , Anopheles/metabolism , Animals , Insecticide Resistance/genetics , Mosquito Vectors/genetics , Mosquito Vectors/metabolism , Insecticides/pharmacology
7.
Nat Commun ; 15(1): 8194, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39294191

ABSTRACT

The evolution of hematophagy involves a series of adaptations that allow blood-feeding insects to access and consume blood efficiently while managing and circumventing the host's hemostatic and immune responses. Mosquito, and other insects, utilize salivary proteins to regulate these responses at the bite site during and after blood feeding. We investigated the function of Anopheles gambiae salivary apyrase (AgApyrase) in regulating hemostasis in the mosquito blood meal and in Plasmodium transmission. Our results demonstrate that salivary apyrase, a known inhibitor of platelet aggregation, interacts with and activates tissue plasminogen activator, facilitating the conversion of plasminogen to plasmin, a human protease that degrades fibrin and facilitates Plasmodium transmission. We show that mosquitoes ingest a substantial amount of apyrase during blood feeding, which reduces coagulation in the blood meal by enhancing fibrin degradation and inhibiting platelet aggregation. AgApyrase significantly enhanced Plasmodium infection in the mosquito midgut, whereas AgApyrase immunization inhibited Plasmodium mosquito infection and sporozoite transmission. This study highlights a pivotal role for mosquito salivary apyrase for regulation of hemostasis in the mosquito blood meal and for Plasmodium transmission to mosquitoes and to the mammalian host, underscoring the potential for strategies to prevent malaria transmission.


Subject(s)
Anopheles , Apyrase , Hemostasis , Malaria , Animals , Apyrase/metabolism , Anopheles/parasitology , Hemostasis/drug effects , Malaria/transmission , Malaria/parasitology , Platelet Aggregation/drug effects , Humans , Tissue Plasminogen Activator/metabolism , Insect Proteins/metabolism , Female , Mice , Fibrinolysin/metabolism , Saliva/parasitology , Fibrin/metabolism , Sporozoites
8.
PLoS Comput Biol ; 20(9): e1011609, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39269993

ABSTRACT

In recent decades, field and semi-field studies of malaria transmission have gathered geographic-specific information about mosquito ecology, behaviour and their sensitivity to interventions. Mathematical models of malaria transmission can incorporate such data to infer the likely impact of vector control interventions and hence guide malaria control strategies in various geographies. To facilitate this process and make model predictions of intervention impact available for different geographical regions, we developed AnophelesModel. AnophelesModel is an online, open-access R package that quantifies the impact of vector control interventions depending on mosquito species and location-specific characteristics. In addition, it includes a previously published, comprehensive, curated database of field entomological data from over 50 Anopheles species, field data on mosquito and human behaviour, and estimates of vector control effectiveness. Using the input data, the package parameterizes a discrete-time, state transition model of the mosquito oviposition cycle and infers species-specific impacts of various interventions on vectorial capacity. In addition, it offers formatted outputs ready to use in downstream analyses and by other models of malaria transmission for accurate representation of the vector-specific components. Using AnophelesModel, we show how the key implications for intervention impact change for various vectors and locations. The package facilitates quantitative comparisons of likely intervention impacts in different geographical settings varying in vector compositions, and can thus guide towards more robust and efficient malaria control recommendations. The AnophelesModel R package is available under a GPL-3.0 license at https://github.com/SwissTPH/AnophelesModel.


Subject(s)
Anopheles , Malaria , Mosquito Control , Mosquito Vectors , Software , Animals , Humans , Malaria/transmission , Malaria/prevention & control , Anopheles/physiology , Mosquito Vectors/physiology , Mosquito Control/methods , Computational Biology , Models, Biological
9.
Parasit Vectors ; 17(1): 401, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39304934

ABSTRACT

BACKGROUND: Malaria is a mosquito-transmitted disease that kills more than half a million people annually. The lack of effective malaria vaccines and recently increasing malaria cases urge innovative approaches to prevent malaria. Previously, we reported that the extract from the soil-dwelling fungus Purpureocillium lilacinum, a common fungus from the soil, reduced Plasmodium falciparum oocysts in Anopheles gambiae midguts after mosquitoes contacted the treated surface before feeding. METHODS: We used liquid chromatography to fraction fungal crude extract and tract the active fraction using a contact-wise approach and standard membrane feeding assays. The purified small molecules were analyzed using precise mass spectrometry and tandem mass spectrometry. RESULTS: We isolated four active small molecules from P. lilacinum and determined them as leucinostatin A, B, A2, and B2. Pre-exposure of mosquitoes via contact with very low-concentration leucinostatin A significantly reduced the number of oocysts. The half-maximal response or inhibition concentration (EC50) via pre-exposure was 0.7 mg/m2, similar to atovaquone but lower than other known antimalarials. The inhibitory effect of leucinostatin A against P. falciparum during intraerythrocytic development, gametogenesis, sporogonic development, and ookinete formation, with the exception of oocyst development, suggests that leucinostatins play a part during parasite invasion of new cells. CONCLUSIONS: Leucinostatins, secondary metabolites from P. lilacinum disrupt malaria development, particular transmission to mosquitoes by contact. The contact-wise malaria control as a nonconventional approach is highly needed in malaria-endemic areas.


Subject(s)
Anopheles , Plasmodium falciparum , Animals , Anopheles/drug effects , Anopheles/parasitology , Anopheles/microbiology , Plasmodium falciparum/drug effects , Mosquito Vectors/drug effects , Mosquito Vectors/parasitology , Mosquito Vectors/microbiology , Hypocreales/chemistry , Hypocreales/drug effects , Antimalarials/pharmacology , Antimalarials/chemistry , Oocysts/drug effects , Malaria, Falciparum/transmission , Malaria, Falciparum/prevention & control , Malaria, Falciparum/parasitology , Chromatography, Liquid , Female , Antimicrobial Cationic Peptides
10.
Malar J ; 23(1): 281, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39289705

ABSTRACT

BACKGROUND: The core vector control tools used to reduce malaria prevalence are currently long-lasting insecticidal nets (LLINs), and indoor residual spraying (IRS). These interventions are hindered by insecticide resistance and behavioural adaptation by malaria vectors. Thus, for effective interruption of malaria transmission, there is a need to develop novel vector control interventions and technologies to address the above challenges. Larviciding using drones was experimented as an innovative tool that could complement existing indoor interventions to control malaria. METHODS: A non-randomized larviciding trial was carried out in irrigated rice fields in sub-urban Kigali, Rwanda. Potential mosquito larval habitats in study sites were mapped and subsequently sprayed using multirotor drones. Application of Bacillus thuringiensis var. israelensis (Bti) (Vectobac® WDG) was followed by entomological surveys that were performed every two weeks over a ten-month period. Sampling of mosquito larvae was done with dippers while adult mosquitoes were collected using CDC miniature light traps (CDC-LT) and pyrethrum spraying collection (PSC) methods. Malaria cases were routinely monitored through community health workers in villages surrounding the study sites. RESULTS: The abundance of all-species mosquito larvae, Anopheles larvae and all-species pupae declined by 68.1%, 74.6% and 99.6%, respectively. Larval density was reduced by 93.3% for total larvae, 95.3% for the Anopheles larvae and 61.9% for pupae. The total adult mosquitoes and Anopheles gambiae sensu lato collected using CDC-Light trap declined by 60.6% and 80% respectively. Malaria incidence also declined significantly between intervention and control sites (U = 20, z = - 2.268, p = 0.023). CONCLUSIONS: The larviciding using drone technology implemented in Rwanda demonstrated a substantial reduction in abundance and density of mosquito larvae and, concomitant decline in adult mosquito populations and malaria incidences in villages contingent to the treatment sites. The scaling up of larval source management (LSM) has to be integrated in malaria programmes in targeted areas of malaria transmission in order to enhance the gains in malaria control.


Subject(s)
Anopheles , Bacillus thuringiensis , Larva , Malaria , Mosquito Control , Mosquito Vectors , Animals , Mosquito Control/methods , Larva/drug effects , Larva/growth & development , Anopheles/drug effects , Malaria/prevention & control , Malaria/transmission , Rwanda , Mosquito Vectors/drug effects , Insecticides/pharmacology , Humans , Female , Oryza , Pest Control, Biological/methods , Male
11.
Sci Rep ; 14(1): 21782, 2024 09 18.
Article in English | MEDLINE | ID: mdl-39294180

ABSTRACT

The Democratic Republic of Congo (DRC) suffers from one of the highest malaria burdens worldwide, but information on its Anopheles vector populations is relatively limited. Preventative malaria control in DRC is reliant on pyrethroid-treated nets, raising concerns over the potential impacts of insecticide resistance. We sampled Anopheles gambiae from three geographically distinct populations (Kimpese, Kapolowe and Mikalayi) in southern DRC, collecting from three sub-sites per population and characterising mosquito collections from each for resistance to pyrethroids using WHO tube bioassays. Resistance to each of three different pyrethroids was generally high in An. gambiae with < 92% mortality in all tests, but varied between collections, with mosquitoes from Kimpese being the most resistant. Whole genome sequencing of 165 An. gambiae revealed evidence for genetic differentiation between Kimpese and Kapolowe/Mikalayi, but not between the latter two sample sites despite separation of approximately 800 km. Surprisingly, there was evidence of population structure at a small spatial scale between collection subsites in Kimpese, despite separation of just tens of kilometres. Intra-population (H12) and inter-population (FST) genome scans identified multiple peaks corresponding to genes associated with insecticide resistance such as the voltage gated sodium channel (Vgsc) target site on chromosome 2L, a Cyp6 cytochrome P450 cluster on chromosome arm 2R, and the Cyp9k1 P450 gene on chromosome X. In addition, in the Kimpese subsites, the P450 redox partner gene Cpr showed evidence for contemporary selection (H12) and population differentiation (FST) meriting further exploration as a potential resistance associated marker.


Subject(s)
Anopheles , Insecticide Resistance , Insecticides , Mosquito Vectors , Pyrethrins , Animals , Anopheles/genetics , Anopheles/drug effects , Insecticide Resistance/genetics , Democratic Republic of the Congo , Pyrethrins/pharmacology , Insecticides/pharmacology , Mosquito Vectors/genetics , Mosquito Vectors/drug effects , Malaria/transmission
12.
Parasit Vectors ; 17(1): 396, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39294791

ABSTRACT

BACKGROUND: Anopheles melas is an understudied malaria vector with a potential role in malaria transmission on the Bijagós Archipelago of Guinea-Bissau. This study presents the first whole-genome sequencing and population genetic analysis for this species from the Bijagós. To our knowledge, this also represents the largest population genetic analysis using WGS data from non-pooled An. melas mosquitoes. METHODS: WGS was conducted for 30 individual An. melas collected during the peak malaria transmission season in 2019 from six different islands on the Bijagós Archipelago. Bioinformatics tools were used to investigate the population structure and prevalence of insecticide resistance markers in this mosquito population. RESULTS: Insecticide resistance mutations associated with pyrethroid resistance in Anopheles gambiae s.s. from the Bijagós were absent in the An. melas population, and no signatures of selective sweeps were identified in insecticide resistance-associated genes. Analysis of structural variants identified a large duplication encompassing the cytochrome-P450 gene cyp9k1. Phylogenetic analysis using publicly available mitochondrial genomes indicated that An. melas from the Bijagós split into two phylogenetic groups because of differentiation on the mitochondrial genome attributed to the cytochrome C oxidase subunits COX I and COX II and the NADH dehydrogenase subunits 1, 4, 4L and 5. CONCLUSIONS: This study identified an absence of insecticide-resistant SNPs common to An. gambiae in the An. melas population, but did identify structural variation over insecticide resistance-associated genes. Furthermore, this study presents novel insights into the population structure of this malaria vector using WGS analysis. Additional studies are required to further understand the role of this vector in malaria transmission.


Subject(s)
Anopheles , Insecticide Resistance , Malaria , Mosquito Vectors , Phylogeny , Whole Genome Sequencing , Animals , Insecticide Resistance/genetics , Anopheles/genetics , Anopheles/drug effects , Guinea-Bissau/epidemiology , Mosquito Vectors/genetics , Mosquito Vectors/drug effects , Malaria/transmission , Malaria/epidemiology , Insecticides/pharmacology , Pyrethrins/pharmacology , Genome, Mitochondrial/genetics , Female
13.
Parasit Vectors ; 17(1): 383, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39256778

ABSTRACT

BACKGROUND: Antananarivo, the capital city of Madagascar, is experiencing a steady increase in population growth. Due to the abundance of mosquito vectors in this locality, the population exposed to mosquito-borne diseases is therefore also increasing, as is the risk of epidemic episodes. The aim of the present study was to assess, in a resource-limited setting, the information on mosquito population dynamics and disease transmission risk that can be provided through a longitudinal entomological study carried out in a multi-host single site. METHODS: Mosquitoes were collected every 15 days over 16 months (from January 2017 to April 2018) using six CDC-light traps in a peri-urban area of Antananarivo. Multivariable generalised linear models were developed using indoor and outdoor densities of the predominant mosquito species as response variables and moon illumination, environmental data and climatic data as the explanatory variables. RESULTS: Overall, 46,737 mosquitoes belonging to at least 20 species were collected, of which Culex antennatus (68.9%), Culex quinquefasciatus (19.8%), Culex poicilipes (3.7%) and Anopheles gambiae sensu lato (2.3%) were the most abundant species. Mosquito densities were observed to be driven by moon illumination and climatic factors interacting at different lag periods. The outdoor models demonstrated biweekly and seasonal patterns of mosquito densities, while the indoor models demonstrated only a seasonal pattern. CONCLUSIONS: An important diversity of mosquitoes exists in the peri-urban area of Antananarivo. Some well-known vector species, such as Cx. antennatus, a major vector of West Nile virus (WNV) and Rift-Valley fever virus (RVFV), Cx. quinquefasciatus, a major vector of WNV, Cx. poicilipes, a candidate vector of RVFV and An. gambiae sensu lato, a major vector of Plasmodium spp., are abundant. Importantly, these four mosquito species are present all year round, even though their abundance declines during the cold dry season, with the exception of Cx. quinquefasciatus. The main drivers of their abundance were found to be temperature, relative humidity and precipitation, as well as-for outdoor abundance only-moon illumination. Identifying these drivers is a first step towards the development of pathogen transmission models (R0 models), which are key to inform public health stakeholders on the periods of most risk for vector-borne diseases.


Subject(s)
Culex , Mosquito Vectors , Population Dynamics , Animals , Madagascar/epidemiology , Mosquito Vectors/virology , Mosquito Vectors/physiology , Longitudinal Studies , Culex/virology , Culex/physiology , Culex/classification , Seasons , Culicidae/virology , Culicidae/physiology , Culicidae/classification , Anopheles/physiology , Anopheles/virology , Anopheles/classification , Humans , Population Density , West Nile virus , Female
14.
Malar J ; 23(1): 275, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39256807

ABSTRACT

BACKGROUND: Human serum is a major component of Plasmodium falciparum culture medium, and can be replaced with AlbuMAX™ II, a lipid-rich bovine serum albumin, for asexual cultures. However, gametocytes produced without serum are poorly infective to mosquitoes. Serum suffers from high cost, limited availability, and variability in quality. METHODS: Several commercially-available media supplements were tested for their ability to support parasite growth and production of P. falciparum (3D7) gametocytes in standard RPMI1640 medium containing 0.5% AlbuMAX. The impact on asexual growth and gametocyte production with each supplement was assessed and compared to standard RPMI1640 medium containing 10% human serum, as well as to medium containing 0.5% AlbuMAX alone. The infectivity of gametocytes produced with one supplement to Anopheles gambiae sensu stricto was assessed by standard membrane feeding assay and measuring both prevalence of infection and oocyst intensity. RESULTS: Supplementation of medium containing 0.5% AlbuMAX with five supplements did not affect asexual growth of P. falciparum, and four of the five supplements supported early gametocyte production. The supplement producing the highest number of gametocytes, ITS-X, was further investigated and was found to support the production of mature gametocytes. Infection prevalence and oocyst intensity did not differ significantly between mosquitoes given a membrane feed containing gametocytes grown in medium with 0.5% AlbuMAX + ITS-X and those grown in medium with 10% human serum. Infection prevalence and oocyst intensity was significantly higher in case of ITS-X supplementation when compared to AlbuMAX alone. Infectious gametocytes were also produced from two field clones using ITS-X supplementation. CONCLUSIONS: Serum-free medium supplemented with ITS-X was able to support the growth of gametocytes of P. falciparum that were as infectious to An. gambiae as those grown in medium with 10% serum. This is the first fully serum-free culture system able to produce highly infectious gametocytes, thereby removing the requirement for access to serum for transmission assays.


Subject(s)
Anopheles , Plasmodium falciparum , Plasmodium falciparum/physiology , Plasmodium falciparum/drug effects , Plasmodium falciparum/growth & development , Animals , Anopheles/parasitology , Culture Media, Serum-Free , Humans , Malaria, Falciparum/parasitology , Malaria, Falciparum/prevention & control
15.
Parasitol Res ; 123(9): 325, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39287819

ABSTRACT

This study investigates anopheline species diversity in the Andaman and Nicobar Islands, employing morphological and molecular methods, focusing on the D3 domain of 28S rRNA (D3) and second internal spacer (ITS2). Ten Anopheline species were identified morphologically and confirmed with molecular markers. While the D3 region demonstrated low level of inter- and intra-specific genetic distance in all the species, ITS2 revealed clear barcoding gap. Among the ten species, A. barbirostris exhibited significant diversity when compared with the sequences from other countries available in GenBank. Further analyses of additional samples of A. barbirostris were carried out using ITS2 and cytochrome oxidase I (COI) markers. Limited variations among the sequences from the islands were observed, suggesting a prevalent single molecular form. However, when compared with the GenBank sequences, our samples formed a separate cluster closely related to the A3 species. The genetic distance between our samples and the A3 cluster was 0.02 for COI but very high (0.104) for ITS2, suggesting a potentially new molecular form or species in the island region. This warrants a more comprehensive and detailed analysis of A. barbirostris in these islands at both genetic and morphometric levels. Overall, these observations added-up the new knowledge in the understanding of anopheline diversity in the Andaman and Nicobar archipelago and highlight the necessity for continuous molecular investigations to unravel complexities within mosquito population dynamics.


Subject(s)
Anopheles , DNA, Ribosomal Spacer , Electron Transport Complex IV , Genetic Variation , Phylogeny , RNA, Ribosomal, 28S , Animals , Anopheles/genetics , Anopheles/classification , RNA, Ribosomal, 28S/genetics , DNA, Ribosomal Spacer/genetics , Electron Transport Complex IV/genetics , Biodiversity , Sequence Analysis, DNA , Cluster Analysis , Molecular Sequence Data , DNA, Ribosomal/genetics , Islands
16.
Parasitol Res ; 123(9): 315, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39227462

ABSTRACT

Mosquito-borne diseases, such as malaria, dengue fever, and the Zika virus, pose significant global health challenges, affecting millions annually. Due to increasing insecticide resistance, there is a growing interest in natural alternatives for mosquito control. Lemongrass essential oil, derived from Cymbopogon citratus, has shown promising repellent and larvicidal properties against various mosquito species. In this study, we investigated the larvicidal effect of lemongrass oil and its major compounds on Anopheles sinensis, the primary malaria vector in China. GC-MS analysis identified the major compounds of lemongrass oil as ( +)-citronellal (35.60%), geraniol (21.84%), and citronellol (13.88%). Lemongrass oil showed larvicidal activity against An. sinensis larvae, with an LC50 value of 119.20 ± 3.81 mg/L. Among the major components, citronellol had the lowest LC50 value of 42.76 ± 3.18 mg/L. Moreover, citronellol demonstrated inhibitory effects on acetylcholinesterase (AChE) activity in An. sinensis larvae, assessed by homogenizing larvae at different time points following treatment. Molecular docking studies further elucidated the interaction between citronellol and AChE, revealing the formation of hydrogen bonds and Pi-Sigma bonds. Aromatic amino acid residues such as Tyr71, Trp83, Tyr370, and Tyr374 played a pivotal role in these interactions. These findings may contribute to understanding lemongrass oil's larvicidal activity against An. sinensis and the mechanisms underlying these effects.


Subject(s)
Acyclic Monoterpenes , Anopheles , Cholinesterase Inhibitors , Insecticides , Larva , Oils, Volatile , Plant Oils , Animals , Anopheles/drug effects , Anopheles/enzymology , Larva/drug effects , Insecticides/pharmacology , Insecticides/chemistry , Acyclic Monoterpenes/pharmacology , Plant Oils/pharmacology , Plant Oils/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Cymbopogon/chemistry , Molecular Docking Simulation , Terpenes/pharmacology , Terpenes/chemistry , Gas Chromatography-Mass Spectrometry , China , Acetylcholinesterase/metabolism , Mosquito Vectors/drug effects , Monoterpenes/pharmacology , Monoterpenes/chemistry , Aldehydes/pharmacology , Aldehydes/chemistry
17.
Mol Biol Rep ; 51(1): 970, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39249121

ABSTRACT

BACKGROUND: Fibrinogen-related protein 1 (frep1) is a member of the pattern-recognizing receptor family (PRR) which generates an innate immune response after recognizing the pattern associated molecular pattern (PAMP) that occurs on the surface of microorganisms. The main objective of this study is to characterize frep1 and its in-silico analysis in Anopheles stephensi. METHODS AND RESULT: The DNA was extracted from female Anopheles stephensi. PCR was performed for complete analysis of frep1 using specific primers. The gene sequence of frep1 was identified by Sanger sequencing. The bioinformatics structure analysis approach revealed the presence of 3 exons and 4 introns in the frep1. The sequence of frep1 was submitted to NCBI GeneBank with accession number ON817187.1. Quantitative real-time PCR was performed to analyze frep1 expression. At the developmental stage, frep1 is highly expressed in the L1 stage, egg, and adult female mosquito. In addition, frep1 is highly expressed in the tissue fat body, midgut, and salivary gland. After blood-fed, an upregulation of frep1 at 48 h in the midgut, and downregulation in fat body were observed at different time intervals. CONCLUSION: The genomic data of frep1 is encoded by 12,443 bp. The frep1 has a significant role in the early metamorphosis. Its expression in fat body and midgut suggests it could be important for fat metabolism and post-blood digestion. The conserved domain could be targeted for vector control. Further study is required to elucidate its function against malaria parasites to confirm its agonist role in malaria transmission.


Subject(s)
Anopheles , Insect Proteins , Malaria , Mosquito Vectors , Anopheles/genetics , Anopheles/metabolism , Animals , Mosquito Vectors/genetics , Female , Insect Proteins/genetics , Insect Proteins/metabolism , Malaria/parasitology , Computer Simulation , Fibrinogen/metabolism , Fibrinogen/genetics , Phylogeny , Immunity, Innate/genetics , Amino Acid Sequence
18.
Sci Rep ; 14(1): 20625, 2024 09 04.
Article in English | MEDLINE | ID: mdl-39232051

ABSTRACT

Improved understanding of mosquito-plant feeding interactions can reveal insights into the ecological dynamics of pathogen transmission. In wild malaria vectors Anopheles gambiae s.l. and An. funestus group surveyed in selected dryland ecosystems of Kenya, we found a low level of plant feeding (2.8%) using biochemical cold anthrone test but uncovered 14-fold (41%) higher rate via DNA barcoding targeting the chloroplast rbcL gene. Plasmodium falciparum positivity was associated with either reduced or increased total sugar levels and varied by mosquito species. Gut analysis revealed the mosquitoes to frequently feed on acacia plants (~ 89%) (mainly Vachellia tortilis) in the family Fabaceae. Chemical analysis revealed 1-octen-3-ol (29.9%) as the dominant mosquito attractant, and the sugars glucose, sucrose, fructose, talose and inositol enriched in the vegetative parts, of acacia plants. Nutritional analysis of An. longipalpis C with high plant feeding rates detected fewer sugars (glucose, talose, fructose) compared to acacia plants. These results demonstrate (i) the sensitivity of DNA barcoding to detect plant feeding in malaria vectors, (ii) Plasmodium infection status affects energetic reserves of wild anopheline vectors and (iii) nutrient content and olfactory cues likely represent potent correlates of acacia preferred as a host plant by diverse malaria vectors. The results have relevance in the development of odor-bait control strategies including attractive targeted sugar-baits.


Subject(s)
Anopheles , DNA Barcoding, Taxonomic , Ecosystem , Mosquito Vectors , Plasmodium falciparum , Animals , Mosquito Vectors/parasitology , Mosquito Vectors/genetics , Anopheles/parasitology , Anopheles/genetics , Anopheles/metabolism , Kenya , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , Malaria/transmission , Malaria/parasitology , Acacia/metabolism , Acacia/parasitology , Acacia/genetics , Feeding Behavior/physiology , Ribulose-Bisphosphate Carboxylase/metabolism , Ribulose-Bisphosphate Carboxylase/genetics
19.
PLoS One ; 19(9): e0309058, 2024.
Article in English | MEDLINE | ID: mdl-39226299

ABSTRACT

BACKGROUND: Endemic African malaria vectors are poorly adapted to typical urban ecologies. However, Anopheles stephensi, an urban malaria vector formerly confined to South Asia and the Persian Gulf, was recently detected in Africa and may change the epidemiology of malaria across the continent. Little is known about the public health implications of An. stephensi in Africa. This study is designed to assess the relative importance of household exposure to An. stephensi and endemic malaria vectors for malaria risk in urban Sudan and Ethiopia. METHODS: Case-control studies will be conducted in 3 urban settings (2 in Sudan, 1 in Ethiopia) to assess the association between presence of An. stephensi in and around households and malaria. Cases, defined as individuals positive for Plasmodium falciparum and/or P. vivax by microscopy/rapid diagnostic test (RDT), and controls, defined as age-matched individuals negative for P. falciparum and/or P. vivax by microscopy/RDT, will be recruited from public health facilities. Both household surveys and entomological surveillance for adult and immature mosquitoes will be conducted at participant homes within 48 hours of enrolment. Adult and immature mosquitoes will be identified by polymerase chain reaction (PCR). Conditional logistic regression will be used to estimate the association between presence of An. stephensi and malaria status, adjusted for co-occurrence of other malaria vectors and participant gender. CONCLUSIONS: Findings from this study will provide evidence of the relative importance of An. stephensi for malaria burden in urban African settings, shedding light on the need for future intervention planning and policy development.


Subject(s)
Anopheles , Mosquito Vectors , Anopheles/parasitology , Ethiopia/epidemiology , Sudan/epidemiology , Animals , Humans , Case-Control Studies , Mosquito Vectors/parasitology , Family Characteristics , Malaria/epidemiology , Malaria/transmission , Malaria, Falciparum/epidemiology , Malaria, Falciparum/transmission , Plasmodium falciparum/isolation & purification , Female , Male
20.
Genome Biol Evol ; 16(9)2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39226386

ABSTRACT

Mitochondrial DNA has been a popular marker in phylogeography, phylogeny, and molecular ecology, but its complex evolution is increasingly recognized. Here, we investigated mitochondrial DNA variation in Anopheles gambiae and Anopheles coluzzii, in relation to other species in the Anopheles gambiae complex, by assembling the mitogenomes of 1,219 mosquitoes across Africa. The mitochondrial DNA phylogeny of the Anopheles gambiae complex was consistent with previously reported highly reticulated evolutionary history, revealing important discordances with the species tree. The three most widespread species (An. gambiae, An. coluzzii, and Anopheles arabiensis), known for extensive historical introgression, could not be discriminated based on mitogenomes. Furthermore, a monophyletic clustering of the three saltwater-tolerant species (Anopheles merus, Anopheles melas, and Anopheles bwambae) in the Anopheles gambiae complex also suggested that introgression and possibly selection shaped mitochondrial DNA evolution. Mitochondrial DNA variation in An. gambiae and An. coluzzii across Africa revealed significant partitioning among populations and species. A peculiar mitochondrial DNA lineage found predominantly in An. coluzzii and in the hybrid taxon of the African "far-west" exhibited divergence comparable to the interspecies divergence in the Anopheles gambiae complex, with a geographic distribution matching closely An. coluzzii's geographic range. This phylogeographic relict of the An. coluzzii and An. gambiae split was associated with population and species structure, but not with the rare Wolbachia occurrence. The lineage was significantly associated with single nucleotide polymorphisms in the nuclear genome, particularly in genes associated with pathogen and insecticide resistance. These findings underline potential mitonuclear coevolution history and the role played by mitochondria in shaping metabolic responses to pathogens and insecticides in Anopheles.


Subject(s)
Anopheles , DNA, Mitochondrial , Insecticide Resistance , Phylogeny , Phylogeography , Animals , Anopheles/genetics , DNA, Mitochondrial/genetics , Insecticide Resistance/genetics , Genome, Mitochondrial , Evolution, Molecular , Genetic Variation , Insecticides/pharmacology , Mitochondria/genetics , Africa
SELECTION OF CITATIONS
SEARCH DETAIL