Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.000
Filter
1.
Am J Sports Med ; 52(8): 1960-1969, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38819001

ABSTRACT

BACKGROUND: Injuries to the deep medial collateral ligament (dMCL) and partial superficial MCL (psMCL) can cause anteromedial rotatory instability; however, the contribution of each these injuries in restraining anteromedial rotatory instability and the effect on the anterior cruciate ligament (ACL) load remain unknown. PURPOSE: To investigate the contributions of the different MCL structures in restraining tibiofemoral motion and to evaluate the load through the ACL after MCL injury, especially after combined dMCL/psMCL injury. STUDY DESIGN: Controlled laboratory study. METHODS: Sixteen fresh-frozen human cadaveric knees were tested using a 6 degrees of freedom robotic simulator. Tibiofemoral kinematic parameters were recorded at 0°, 30°, 60°, and 90° of knee flexion for the following measurements: 8-N·m valgus rotation, 4-N·m external tibial rotation (ER), 4-N·m internal tibial rotation, and a combined 89-N anterior tibial translation and 4-N·m ER for both anteromedial rotation (AMR) and anteromedial translation (AMT). The kinematic parameters of the 3 different MCL injuries (dMCL; dMCL/psMCL; dMCL/superficial MCL (sMCL)) were recorded and reapplied either in an ACL-deficient joint (load sharing) or before and after cutting the ACL (ACL load). The loads were calculated by applying the principle of superposition. RESULTS: The dMCL had the largest effect on reducing the force/torque during ER, AMR, and AMT in extension and the psMCL injury at 30° to 90° of knee flexion (P < .05). In a comparison of the load through the ACL when the MCL was intact, the ACL load increased by 46% and 127% after dMCL injury and combined dMCL/psMCL injury, respectively, at 30° of knee flexion during ER. In valgus rotation, a significant increase in ACL load was seen only at 90° of knee flexion. CONCLUSION: The psMCL injury made the largest contribution to the reduction of net force/torque during AMR/AMT at 30° to 90° of flexion. Concomitant dMCL/psMCL injury increased the ACL load, mainly during ER. CLINICAL RELEVANCE: If a surgical procedure is being considered to treat anteromedial rotatory instability, then the procedure should focus on restoring sMCL function, as injury to this structure causes a major loss of the knee joint's capacity to restrain AMR/AMT.


Subject(s)
Anterior Cruciate Ligament , Medial Collateral Ligament, Knee , Weight-Bearing , Humans , Medial Collateral Ligament, Knee/injuries , Medial Collateral Ligament, Knee/physiopathology , Biomechanical Phenomena , Weight-Bearing/physiology , Middle Aged , Anterior Cruciate Ligament/physiopathology , Anterior Cruciate Ligament/physiology , Male , Cadaver , Female , Joint Instability/physiopathology , Aged , Anterior Cruciate Ligament Injuries/physiopathology , Anterior Cruciate Ligament Injuries/surgery , Rotation , Knee Joint/physiology , Knee Joint/physiopathology , Knee Injuries/physiopathology , Adult , Range of Motion, Articular/physiology
2.
J Sports Sci ; 42(7): 599-610, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38734986

ABSTRACT

Unanticipated trunk perturbation is commonly observed when anterior cruciate ligament (ACL) injuries occur during direction-changing manoeuvres. This study aimed to quantify the effect of mid-flight medial-lateral external trunk perturbation directions/locations on ACL loading variables during sidestep cuttings. Thirty-two recreational athletes performed sidestep cuttings under combinations of three perturbation directions (no-perturbation, ipsilateral-perturbation, and contralateral-perturbation relative to the cutting leg) and two perturbation locations (upper-trunk versus lower-trunk). The pushing perturbation was created by customised devices releasing a slam ball to contact participants near maximum jump height prior to cutting. Perturbation generally resulted in greater peak vertical ground reaction force and slower cutting velocity. Upper-trunk contralateral perturbation showed the greatest lateral trunk bending away from the travel direction, greatest peak knee flexion and abduction angles, and greatest peak internal knee adduction moments compared to other conditions. Such increased ACL loading variables were likely due to the increased lateral trunk bending and whole-body horizontal velocity away from the cutting direction caused by the contralateral perturbation act at the upper trunk. The findings may help understand the mechanisms of indirect contact ACL injuries and develop effective cutting techniques for ACL injury prevention.


Subject(s)
Anterior Cruciate Ligament Injuries , Torso , Humans , Torso/physiology , Biomechanical Phenomena , Anterior Cruciate Ligament Injuries/physiopathology , Anterior Cruciate Ligament Injuries/prevention & control , Male , Young Adult , Female , Anterior Cruciate Ligament/physiology , Movement/physiology , Knee/physiology , Adult
3.
J Orthop Surg Res ; 19(1): 280, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711149

ABSTRACT

INTRODUCTION: The escalating incidence of anterior cruciate ligament (ACL) injuries, particularly among adolescents, is a pressing concern. The study of ACL biomechanics in this demographic presents challenges due to the scarcity of cadaveric specimens. This research endeavors to validate the adolescent porcine stifle joint as a fitting model for ACL studies. METHODS: We conducted experiments on 30 fresh porcine stifle knee joints. (Breed: Yorkshire, Weight: avg 90 lbs, Age Range: 2-4 months). They were stored at - 22 °C and a subsequent 24-h thaw at room temperature before being prepared for the experiment. These joints were randomly assigned to three groups. The first group served as a control and underwent only the load-to-failure test. The remaining two groups were subjected to 100 cycles, with forces of 300N and 520N, respectively. The load values of 300N and 520N correspond to three and five times the body weight (BW) of our juvenile porcine, respectively. RESULT: The 520N force demonstrated a higher strain than the 300N, indicating a direct correlation between ACL strain and augmented loads. A significant difference in load-to-failure (p = 0.014) was observed between non-cyclically loaded ACLs and those subjected to 100 cycles at 520N. Three of the ten samples in the 520N group failed before completing 100 cycles. The ruptured ACLs from these tests closely resembled adolescent ACL injuries in detachment patterns. ACL stiffness was also measured post-cyclical loading by applying force and pulling the ACL at a rate of 1 mm per sec. Moreover, ACL stiffness measurements decreased from 152.46 N/mm in the control group to 129.42 N/mm after 100 cycles at 300N and a more significant drop to 86.90 N/mm after 100 cycles at 520N. A one-way analysis of variance (ANOVA) and t-test were chosen for statistical analysis. CONCLUSIONS: The porcine stifle joint is an appropriate model for understanding ACL biomechanics in the skeletally immature demographic. The results emphasize the ligament's susceptibility to injury under high-impact loads pertinent to sports activities. The study advocates for further research into different loading scenarios and the protective role of muscle co-activation in ACL injury prevention.


Subject(s)
Anterior Cruciate Ligament , Stifle , Weight-Bearing , Animals , Swine , Anterior Cruciate Ligament/physiology , Anterior Cruciate Ligament/physiopathology , Stifle/physiology , Stifle/physiopathology , Weight-Bearing/physiology , Biomechanical Phenomena , Anterior Cruciate Ligament Injuries/physiopathology , Stress, Mechanical , In Vitro Techniques
4.
BMC Musculoskelet Disord ; 25(1): 318, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654258

ABSTRACT

BACKGROUND: Non-contact anterior cruciate ligament (ACL) injuries are a major concern in sport-related activities due to dynamic knee movements. There is a paucity of finite element (FE) studies that have accurately replicated the knee geometry, kinematics, and muscle forces during dynamic activities. The objective of this study was to develop and validate a knee FE model and use it to quantify the relationships between sagittal plane knee kinematics, kinetics and the resulting ACL strain. METHODS: 3D images of a cadaver knee specimen were segmented (bones, cartilage, and meniscus) and meshed to develop the FE model. Knee ligament insertion sites were defined in the FE model via experimental digitization of the specimen's ligaments. The response of the model was validated against multiple physiological knee movements using published experimental data. Single-leg jump landing motions were then simulated on the validated model with muscle forces and kinematic inputs derived from motion capture and rigid body modelling of ten participants. RESULTS: The maximum ACL strain measured with the model during jump landing was 3.5 ± 2.2%, comparable to published experimental results. Bivariate analysis showed no significant correlation between body weight, ground reaction force and sagittal plane parameters (such as joint flexion angles, joint moments, muscle forces, and joint velocity) and ACL strain. Multivariate regression analysis showed increasing trunk, hip and ankle flexion angles decreases ACL strain (R2 = 90.04%, p < 0.05). CONCLUSIONS: Soft landing decreases ACL strain and the relationship could be presented through an empirical equation. The model and the empirical relation developed in this study could be used to better predict ACL injury risk and prevention strategies during dynamic activities.


Subject(s)
Anterior Cruciate Ligament Injuries , Anterior Cruciate Ligament , Humans , Anterior Cruciate Ligament/physiology , Biomechanical Phenomena/physiology , Male , Anterior Cruciate Ligament Injuries/physiopathology , Anterior Cruciate Ligament Injuries/prevention & control , Anterior Cruciate Ligament Injuries/etiology , Knee Joint/physiology , Cadaver , Computer Simulation , Finite Element Analysis , Adult , Female , Movement/physiology , Young Adult , Middle Aged , Stress, Mechanical , Muscle, Skeletal/physiology , Models, Biological
5.
J Biomech ; 167: 112030, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38583375

ABSTRACT

Young female athletes participating in sports requiring rapid changes of direction are at heightened risk of suffering traumatic knee injury, especially noncontact rupture of the anterior cruciate ligament (ACL). Clinical studies have revealed that geometric features of the tibiofemoral joint are associated with increased risk of suffering noncontact ACL injury. However, the relationship between three-dimensional (3D) tibiofemoral geometry and knee mechanics in young female athletes is not well understood. We developed a statistically augmented computational modeling workflow to determine relationships between 3D geometry of the knee and tibiofemoral kinematics and ACL force in response to an applied loading sequence of compression, valgus, and anterior force, which is known to load the ACL. This workflow included 3D characterization of tibiofemoral bony geometry via principal component analysis and multibody dynamics models incorporating subject-specific knee geometries. A combination of geometric features of both the tibia and the femur that spanned all three anatomical planes was related to increased ACL force and to increased kinematic coupling (i.e., anterior, medial, and distal tibial translations and internal tibial rotation) in response to the applied loads. In contrast, a uniplanar measure of tibiofemoral geometry that is associated with ACL injury risk, sagittal plane slope of the lateral tibial plateau subchondral bone, was not related to ACL force. Thus, our workflow may aid in developing mechanics-based ACL injury screening tools for young, active females based on a unique combination of bony geometric features that are related to increased ACL loading.


Subject(s)
Anterior Cruciate Ligament Injuries , Humans , Female , Anterior Cruciate Ligament Injuries/complications , Knee Joint/physiology , Anterior Cruciate Ligament/physiology , Tibia/physiology , Athletes , Computer Simulation , Biomechanical Phenomena
6.
J Biomech Eng ; 146(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38019183

ABSTRACT

We compared the ability of seven machine learning algorithms to use wearable inertial measurement unit (IMU) data to identify the severe knee loading cycles known to induce microdamage associated with anterior cruciate ligament rupture. Sixteen cadaveric knee specimens, dissected free of skin and muscle, were mounted in a rig simulating standardized jump landings. One IMU was located above and the other below the knee, the applied three-dimensional action and reaction loads were measured via six-axis load cells, and the three-dimensional knee kinematics were also recorded by a laboratory motion capture system. Machine learning algorithms were used to predict the knee moments and the tibial and femur vertical forces; 13 knees were utilized for training each model, while three were used for testing its accuracy (i.e., normalized root-mean-square error) and reliability (Bland-Altman limits of agreement). The results showed the models predicted force and knee moment values with acceptable levels of error and, although several models exhibited some form of bias, acceptable reliability. Further research will be needed to determine whether these types of models can be modified to attenuate the inevitable in vivo soft tissue motion artifact associated with highly dynamic activities like jump landings.


Subject(s)
Anterior Cruciate Ligament Injuries , Anterior Cruciate Ligament , Humans , Anterior Cruciate Ligament/physiology , Leg , Reproducibility of Results , Knee Joint/physiology , Biomechanical Phenomena , Rotation , Cadaver
7.
J Orthop Res ; 42(2): 267-276, 2024 02.
Article in English | MEDLINE | ID: mdl-37602554

ABSTRACT

Anterior cruciate ligament (ACL) injuries are historically thought to be a result of a single acute overload or traumatic event. However, recent studies suggest that ACL failure may be a consequence of fatigue damage. Additionally, the remodeling response of ACLs to fatigue loading is unknown. Therefore, the objective of this study was to investigate the remodeling response of ACLs to cyclic loading. Furthermore, given that women have an increased rate of ACL rupture, we investigated whether this remodeling response is sex specific. ACLs were harvested from male and female New Zealand white rabbits and cyclically loaded in a tensile bioreactor mimicking the full range of physiological loading (2, 4, and 8 MPa). Expression of markers for anabolic and catabolic tissue remodeling, as well as inflammatory cytokines, was quantified using quantitative reverse transcription polymerase chain reaction. We found that the expression of markers for tissue remodeling of the ACL is dependent on the magnitude of loading and is sex specific. Male ACLs activated an anabolic response to cyclic loading at 4 MPa but turned off remodeling at 8 MPa. These data support the hypothesis that noncontact ACL injury may be a consequence of failed tissue remodeling and inadequate repair of microtrauma resulting from elevated loading. Compared to males, female ACLs failed to increase anabolic gene expression with loading and exhibited higher expression of catabolic genes at all loading levels, which may explain the increased rate of ACL tears in women. Together, these data provide insight into load-induced ACL remodeling and potential causes of tissue rupture.


Subject(s)
Anterior Cruciate Ligament Injuries , Anterior Cruciate Ligament , Female , Male , Humans , Animals , Rabbits , Anterior Cruciate Ligament/physiology , Anterior Cruciate Ligament Injuries/metabolism , Rupture , Fatigue , Gene Expression
8.
J Biomech Eng ; 146(1)2024 01 01.
Article in English | MEDLINE | ID: mdl-37831117

ABSTRACT

Female adolescent athletes are at a higher risk of tearing their anterior cruciate ligament (ACL) than male counterparts. While most work related to hormones has focused on the effects of estrogen to understand the increased risk of ACL injury, there are other understudied factors, including testosterone. The purpose of this study was to determine how surgical castration in the male porcine model influences ACL size and function across skeletal growth. Thirty-six male Yorkshire crossbreed pigs were raised to 3 (juvenile), 4.5 (early adolescent), and 6 months (adolescent) of age. Animals were either castrated (barrows) within 2 weeks after birth or were left intact (boars). Posteuthanasia, joint and ACL size were assessed via MRI, and biomechanics were assessed via a robotic testing system. Joint size increased throughout age, yet barrows had smaller joints than boars. ACL cross-sectional area (CSA), length, volume, and in situ stiffness increased with age, as did the percent contribution of the ACL anteromedial (AM) bundle to resisting loads. Boar ACL, AM bundle, and PL bundle volumes were 19%, 25%, and 15% larger than barrows across ages. However, ACL CSA, in situ stiffness, and bundle contribution were similar between boars and barrows. The barrows had smaller temporal increases in AM bundle function than boars, but these data were highly variable. Early and sustained loss in testosterone leads to subtle differences in ACL morphology but may not influence measures associated with increased injury risk, such as CSA or bundle forces in response to applied loads.


Subject(s)
Anterior Cruciate Ligament Injuries , Knee Injuries , Humans , Adolescent , Male , Animals , Swine , Female , Anterior Cruciate Ligament/physiology , Anterior Cruciate Ligament/surgery , Castration , Testosterone , Knee Joint/physiology
9.
Int J Sports Physiol Perform ; 18(11): 1336-1344, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37673416

ABSTRACT

PURPOSE: After anterior cruciate ligament reconstruction (ACL-R), knee muscle strength symmetry is used as part of the return-to-sport criteria. However, little is known about the changes in the force-velocity (F-V) relationship, which could affect athletic performance. This study investigated the F-V relationship of knee muscles at 4 and 8 months after ACL-R, using the 2-point method tested by isokinetic dynamometry. METHODS: A total of 103 physically trained individuals (24.6 [9.3] y, 59.2% male) who underwent primary ACL-R were included. Demographic information and surgery characteristics were collected at 6 weeks postoperatively. Isokinetic knee flexors' and extensors' peak torques were measured at 60° and 240° per second in the concentric mode at 4 and 8 months postoperative. Peak torques and angular velocities were converted to force and linear velocity for calculating maximum isometric force (F0) and the slope of the regression line (F-V slope). RESULTS: At 4 and 8 months postoperative, F0 was significantly lower and F-V slope was significantly less steep (less negative) on the operated leg compared with the nonoperated leg for knee extensors (P < .001) and flexors (P < .001-.002). The limb symmetry index calculated using F0 was lower than the limb symmetry indexes assessed at 60° and 240° per second, especially for knee flexors (P < .001). The use of patellar tendon grafts was associated with lower F0 and a less steep F-V slope compared with hamstring tendon grafts (P < .010). CONCLUSION: The isokinetic 2-point model assessing the F-V relationship provides additional and relevant insight for evaluating knee muscle strength after ACL-R.


Subject(s)
Anterior Cruciate Ligament Injuries , Anterior Cruciate Ligament Reconstruction , Male , Humans , Female , Anterior Cruciate Ligament/physiology , Anterior Cruciate Ligament/surgery , Anterior Cruciate Ligament Injuries/surgery , Knee Joint/physiology , Quadriceps Muscle/physiology
10.
Am J Sports Med ; 51(13): 3473-3479, 2023 11.
Article in English | MEDLINE | ID: mdl-37724758

ABSTRACT

BACKGROUND: Knee laxity increases with medial meniscectomy in anterior cruciate ligament (ACL)-reconstructed knees; however, the biomechanical effect of an additional lateral extra-articular tenodesis (LET) is unknown. PURPOSE/HYPOTHESIS: The purpose of this study was to determine the kinematic effect of a LET in knees that underwent combined ACL reconstruction (ACL-R) and partial medial meniscus posterior horn (MMPH) meniscectomy. It was hypothesized that the addition of LET would reduce laxity in the ACL-reconstructed knee. STUDY DESIGN: Controlled laboratory study. METHODS: Ten fresh-frozen human cadaveric knees (mean age, 41.5 years) were tested using a robotic system under 3 loads: (1) 89.0 N of anterior tibial (AT) load, (2) 5 N·m of internal rotation (IR) tibial torque, and (3) a simulated pivot shift-a combined valgus of 7 N·m and IR torque of 5 N·m-at 0°, 15°, 30°, 45°, 60°, and 90° of knee flexion. Kinematic data were acquired in 4 states: (1) intact, (2) ACL-R, (3) ACL-R + partial MMPH meniscectomy (MMPH), and (4) ACL-R + partial MMPH meniscectomy + LET (MMPH+LET). RESULTS: In response to AT loading, there was a significant increase seen in AT translation (ATT) in the MMPH state at all knee flexion angles compared with the ACL-R state, with the highest increase at 90° of knee flexion (mean difference, 3.1 mm) (P < .001). Although there was a significant decrease in ATT at 15° of knee flexion with MMPH+LET (P = .022), no significant differences were found at other knee flexion angles (P > .05). In MMPH with IR torque, a significant increase was observed in IR at all knee flexion angles except 90° compared with the ACL-R state (range, 2.8°-4.9°), and this increase was significantly decreased at all flexion angles with the addition of LET (range, 0.7°-1.6°) (P < .05). CONCLUSION: Performing a partial MMPH meniscectomy increased ATT and IR in response to AT and IR loads compared with the isolated ACL-R state in a cadaveric model. However, when the LET procedure was performed after partial MMPH meniscectomy, a significant decrease was seen at all knee flexion angles except 90° in response to IR and torque, and a significant decrease was seen at 15° of knee flexion in response to AT load. CLINICAL RELEVANCE: LET may be a useful adjunct procedure after ACL-R with partial MMPH meniscectomy to reduce knee laxity.


Subject(s)
Anterior Cruciate Ligament Injuries , Joint Instability , Tenodesis , Humans , Adult , Anterior Cruciate Ligament/surgery , Anterior Cruciate Ligament/physiology , Meniscectomy , Tenodesis/methods , Anterior Cruciate Ligament Injuries/surgery , Joint Instability/surgery , Cadaver , Knee Joint/surgery , Range of Motion, Articular , Biomechanical Phenomena/physiology
11.
J Orthop Res ; 41(10): 2305-2314, 2023 10.
Article in English | MEDLINE | ID: mdl-37408453

ABSTRACT

Externally applied forces, such as those generated through skeletal muscle contraction, are important to embryonic joint formation, and their loss can result in gross morphologic defects including joint fusion. While the absence of muscle contraction in the developing chick embryo leads to dissociation of dense connective tissue structures of the knee and ultimately joint fusion, the central knee joint cavitates whereas the patellofemoral joint does not in murine models lacking skeletal muscle contraction, suggesting a milder phenotype. These differential results suggest that muscle contraction may not have as prominent of a role in the growth and development of dense connective tissues of the knee. To explore this question, we investigated the formation of the menisci, tendon, and ligaments of the developing knee in two murine models that lack muscle contraction. We found that while the knee joint does cavitate, there were multiple abnormalities in the menisci, patellar tendon, and cruciate ligaments. The initial cellular condensation of the menisci was disrupted and dissociation was observed at later embryonic stages. The initial cell condensation of the tendon and ligaments were less affected than the meniscus, but these tissues contained cells with hyper-elongated nuclei and displayed diminished growth. Interestingly, lack of muscle contraction led to the formation of an ectopic ligamentous structure in the anterior region of the joint as well. These results indicate that muscle forces are essential for the continued growth and maturation of these structures during this embryonic period.


Subject(s)
Anterior Cruciate Ligament , Patellar Ligament , Chick Embryo , Animals , Mice , Anterior Cruciate Ligament/physiology , Knee Joint/physiology , Muscle Contraction , Morphogenesis , Muscle, Skeletal
12.
Am J Sports Med ; 50(10): 2688-2697, 2022 08.
Article in English | MEDLINE | ID: mdl-35853157

ABSTRACT

BACKGROUND: Quadriceps loading of the anterior cruciate ligament (ACL) may play a role in the noncontact mechanism of ACL injury. Musculoskeletal modeling techniques are used to estimate the intrinsic force of the quadriceps acting at the knee joint. PURPOSE/HYPOTHESIS: The purpose of this paper was to develop a novel musculoskeletal model of in vivo quadriceps force during dynamic activity. We used the model to estimate quadriceps force in relation to ACL strain during a single-leg jump. We hypothesized that quadriceps loading of the ACL would reach a local maximum before initial ground contact with the knee positioned in extension. STUDY DESIGN: Descriptive laboratory study. METHODS: Six male participants underwent magnetic resonance imaging in addition to high-speed biplanar radiography during a single-leg jump. Three-dimensional models of the knee joint, including the femur, tibia, patellofemoral cartilage surfaces, and attachment-site footprints of the patellar tendon, quadriceps tendon, and ACL, were created from the magnetic resonance imaging scans. The bone models were registered to the biplanar radiographs, thereby reproducing the positions of the knee joint at the time of radiographic imaging. The magnitude of quadriceps force was determined for each knee position based on a 3-dimensional balance of the forces and moments of the patellar tendon and the patellofemoral cartilage contact acting on the patella. Knee kinematics and ACL strain were determined for each knee position. RESULTS: A local maximum in average quadriceps force of approximately 6500 N (8.4× body weight) occurred before initial ground contact. ACL strain increased concurrently with quadriceps force when the knee was positioned in extension. CONCLUSION: This novel participant-specific modeling technique provides estimates of in vivo quadriceps force during physiologic dynamic loading. A local maximum in quadriceps force before initial ground contact may tension the ACL when the knee is positioned in extension. CLINICAL RELEVANCE: These data contribute to understanding noncontact ACL injury mechanisms and the potential role of quadriceps activation in these injuries.


Subject(s)
Anterior Cruciate Ligament Injuries , Anterior Cruciate Ligament , Anterior Cruciate Ligament/physiology , Anterior Cruciate Ligament Injuries/pathology , Biomechanical Phenomena , Humans , Knee Joint/physiology , Male , Multimodal Imaging , Quadriceps Muscle/diagnostic imaging , Quadriceps Muscle/physiology
13.
Pathol Res Pract ; 237: 154036, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35907280

ABSTRACT

The anterior cruciate ligament (ACL) plays a significant role in knee stability, protects the joint under multiple loading conditions and shows complex biomechanics. Beside mechanical stability, the ACL seems to play a crucial role in proprioception, and it is well known, that ACL injuries can cause functional deficits due to decreased proprioception. However, the mechanism of proprioception is not completely understood yet. In this context, primary cilia (PC), which play a significant role in the signaling between the intra- and extracellular space, could be of interest. However, until today, primary cilia are not yet described in human ACL. In total, seven human ACL's underwent transmission electron microscopical examination. Three cadaveric ACL's and four freshly injured ACL's were examined. Single cells of each ACL were examined regarding the presence of axonemes or basal bodies, which represent components of a PC. In total, 276 cells of the cadaveric ACL's and 180 cells of the injured ACL's were examined. Basal bodies could be detected in three of the four specimens of the injured ACL's as well as in one of the three cadaveric ACL's, resulting in a mean positivity of 2.54% in the cadaveric group and 2.78% in the injured group. In case of PC-presence, only one PC per cell could be detected. No statistically significant difference regarding the frequency could be detected between both groups. In this pilot-study, we present for the first time an ultrastructural study of human ACLs with respect to the occurrence of PC and any structural and morphological features of these complex and dynamic cell organelles. PCs are present in almost all non-hematopoietic tissues of the human body. However, there are different reports on the number, incidence, orientation, and morphology of these cell organelles in the respective tissues. Compared to other tissues and ligaments of other species, we found a significantly lower rate of PC positive cells. This observation might represent a tissue-specific characteristic of ACL tissue. However, our observations need to be explored in more detail in further studies.


Subject(s)
Anterior Cruciate Ligament Injuries , Anterior Cruciate Ligament , Humans , Anterior Cruciate Ligament/anatomy & histology , Anterior Cruciate Ligament/physiology , Pilot Projects , Cilia , Knee Joint , Cadaver
14.
J Sci Med Sport ; 25(9): 770-775, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35690557

ABSTRACT

OBJECTIVES: Many studies have investigated the relationship between muscle activation and tensile force of the anterior cruciate ligament. These studies lacked a holistic representation of the muscle status. For instance, they were limited with respect to the peak muscle forces, number of muscles, and possible muscle activation patterns. DESIGN: This study used a knee surrogate including ten muscles with motor-controlled muscle force activation crossing the knee joint, thus providing a fully muscle-supported knee joint. METHODS: Anterior cruciate ligament tensile force is measured in different knee flexion and extension movements to evaluate ratios of quadriceps/hamstring muscle activations in low hip angle setups. RESULTS: Increasing the extension of the leg increased anterior cruciate ligament tension forces. Different quadriceps/hamstring ratios had different effects on anterior cruciate ligament tension forces during unrestricted flexion and extension movements. This was dependent on the direction of movement. Sole hamstring activation increased the anterior cruciate ligament tensile forces in extension movements compared with flexion movements. Sole quadriceps activation provoked greater anterior cruciate ligament tensile forces in flexion than in extension. This was not prominent in the test in which the other muscle groups counteracted the dominant muscle group. CONCLUSIONS: The findings from the present study demonstrate that active hamstring activation can reduce the load on the anterior cruciate ligament, and the dominant quadriceps increase anterior cruciate ligament loads for knee flexions of less than 40°. Moreover, the anterior cruciate ligament is loaded differently in flexion or extension movements with flexion movements, resulting in higher anterior cruciate ligament loads.


Subject(s)
Anterior Cruciate Ligament Injuries , Hamstring Muscles , Anterior Cruciate Ligament/physiology , Biomechanical Phenomena , Humans , Knee Joint/physiology , Leg , Muscle, Skeletal/physiology
15.
J Orthop Surg Res ; 17(1): 250, 2022 May 03.
Article in English | MEDLINE | ID: mdl-35505440

ABSTRACT

BACKGROUND: Anterior cruciate ligament plays a significant role in knee joint stability. It is claimed that the incidence of knee osteoarthritis increases in individuals with anterior cruciate ligament (ACL) rupture. The aim of this study was to evaluate the knee joints reaction force in ACL rupture group compared to normal subjects. METHOD: Fifteen patients with acute ACL rupture and 15 healthy subjects participated in this study. The ground reaction force (GRF) and kinematic data were collected at a sampling rate of 120 Hz during level-ground walking. Spatiotemporal parameters, joint angles, muscle forces and moments, and joint reaction force (JRF) of lower extremity were analyzed by OpenSIM software. RESULTS: The hip, knee and ankle joints reaction force at loading response and push-off intervals of the stance phase during walking was significantly higher in individuals with ACL rupture compared to healthy controls (p value < 0.05). Walking velocity (p value < 0.001), knee (p value = 0.065) and ankle (p value = 0.001) range of motion in the sagittal plane were significantly lower in the patients with ACL rupture compared to healthy subjects. The mean value of vertical GRF in the mid-stance, the peak of the hip adduction moment in loading response and push-off phases, the hip abductor, knee flexor and vastus intermedius part of quadriceps muscle forces were significantly higher compared to healthy subjects (p < 0.05) while vastus medialis and vastus lateralis produced significantly lower force (p < 0.001). CONCLUSIONS: Based on results of this study, lower limb JRF was higher in those with ACL rupture compared to healthy subjects may be due to the compensatory mechanisms used by this group of subjects. An increase in knee JRF in patients with ACL rupture may be the reason for the high incidence of knee OA.


Subject(s)
Anterior Cruciate Ligament Injuries , Anterior Cruciate Ligament , Anterior Cruciate Ligament/physiology , Gait/physiology , Humans , Knee Joint/physiology , Walking/physiology
16.
Sports Med ; 52(8): 1737-1750, 2022 08.
Article in English | MEDLINE | ID: mdl-35437711

ABSTRACT

Anterior cruciate ligament (ACL) injuries are one of the most common knee pathologies sustained during athletic participation and are characterised by long convalescence periods and associated financial burden. Muscles have the ability to increase or decrease the mechanical loads on the ACL, and thus are viable targets for preventative interventions. However, the relationship between muscle forces and ACL loading has been investigated by many different studies, often with differing methods and conclusions. Subsequently, this review aimed to summarise the evidence of the relationship between muscle force and ACL loading. A range of studies were found that investigated muscle and ACL loading during controlled knee flexion, as well as a range of weightbearing tasks such as walking, lunging, sidestep cutting, landing and jumping. The quadriceps and the gastrocnemius were found to increase load on the ACL by inducing anterior shear forces at the tibia, particularly when the knee is extended. The hamstrings and soleus appeared to unload the ACL by generating posterior tibial shear force; however, for the hamstrings, this effect was contingent on the knee being flexed greater than ~ 20° to 30°. The gluteus medius was consistently shown to oppose the knee valgus moment (thus unloading the ACL) to a magnitude greater than any other muscle. Very little evidence was found for other muscle groups with respect to their contribution to the loading or unloading of the ACL. It is recommended that interventions aiming to reduce the risk of ACL injury consider specifically targeting the function of the hamstrings, soleus and gluteus medius.


Subject(s)
Anterior Cruciate Ligament Injuries , Anterior Cruciate Ligament , Anterior Cruciate Ligament/physiology , Anterior Cruciate Ligament Injuries/prevention & control , Biomechanical Phenomena/physiology , Humans , Knee Joint , Muscle, Skeletal/physiology
17.
J Biomech ; 136: 111069, 2022 05.
Article in English | MEDLINE | ID: mdl-35381503

ABSTRACT

Advancements in technology and finite element software have made it possible to develop simulation-based exploration of subject-specific tibiofemoral joint kinematics. In this study, the goal was to develop baseline knee models that accurately predict anterior tibial displacement when undergoing a Lachman and pivot shift test. A total of 22 subject-specific adolescent tibiofemoral joint finite element representations were developed using FEBio. The models were subject to loading conditions established in the literature to simulate the two clinical tests. Anterior tibial translations that were measured through clinical, historical controls were used to validate the proposed models. A 95% confidence interval showed that the simulated Lachman and pivot shift tests of the juvenile knee models were not statistically different from the historical controls and were in accordance with the anterior tibial translations that were measured experimentally. Clinically, simulations are important in advancing the field of knee finite element modeling, particularly in pediatric applications where the surgeon must balance restoring full function in a patient who is skeletally immature and where the growth plate is vulnerable. The methodologies created in developing these foundational models can be utilized to build more anatomically complex finite element representations that can both predict ligament stresses in response to dynamic activities and analyze the effects of different insertion sites.


Subject(s)
Anterior Cruciate Ligament Injuries , Joint Instability , Adolescent , Anterior Cruciate Ligament/physiology , Biomechanical Phenomena/physiology , Cadaver , Child , Humans , Knee Joint/physiology , Range of Motion, Articular/physiology , Rotation
18.
Biomed Mater Eng ; 33(4): 293-302, 2022.
Article in English | MEDLINE | ID: mdl-35213341

ABSTRACT

BACKGROUND: The knee plays an essential role in movement. There are four major ligaments in the knee which all have crucial functionalities for human activities. The anterior cruciate ligament (ACL) is the most commonly injured ligament in the knee, especially in athletes. OBJECTIVE: The aim of this study was to investigate the dynamic tensile response of the porcine ACL at strain rates from 800 to 1500 s-1 for simulations of acute injury from sudden impact or collision. METHODS: Split Hopkinson Tension Bar (SHTB) was utilized to create a dynamic tensile wave on the ACL. Stress-strain curves of strain rates between 800 s-1 to 1500 s-1 were recorded. RESULTS: The results demonstrated that the elastic modulus of the porcine ACL at higher strain rates was six to eight times higher than that of porcine and human specimens at quasi-static strain rate. However, the failure stress was quite similar while the strain was much smaller than that at the lower strain rate. CONCLUSIONS: ACL is highly strain rate sensitive and easier to break with lower failure strain when the strain rates increased to more than 1000 s-1. The stress-strain curves indicated that the sketching crimps at the slack region did not happen but switched to the sliding process of collagen fibers and was accompanied by some ruptures, which can develop into tears when strain and stress were large enough. On the other hand, the viscoelastic properties of the ligament, depending on the proteoglycan matrix and the cross-link, showed a limited value in the studied strain rate range.


Subject(s)
Anterior Cruciate Ligament Injuries , Animals , Anterior Cruciate Ligament/physiology , Biomechanical Phenomena/physiology , Humans , Knee Joint/physiology , Movement , Swine
19.
PLoS One ; 17(1): e0262206, 2022.
Article in English | MEDLINE | ID: mdl-35061786

ABSTRACT

This study aimed to determine the effects of long-term and high-dose administration of glucocorticoids (GCs) on the histological and mechanical properties of the cranial cruciate ligament (CrCL) in healthy beagle dogs. A synthetic corticosteroid at 2 mg/kg every 12 h was administered for 84 days in nine dogs (18 CrCLs) (GC group). Twenty CrCLs from 12 healthy male beagles were used as the normal control (control group). CrCLs were histologically examined (n = 12 in the GC group and n = 14 in the control group) using hematoxylin-eosin, Alcian-Blue, Elastica-Eosin stains, and immunohistological staining of type 1 collagen and elastin. An additional 12 CrCLs were mechanically tested (n = 6 in the GC and n = 6 in the control groups) to determine failure pattern, maximum tensile strength, maximum stress, elastic modulus, and stress and strain at the transition point. The histological examination revealed a significant increase in interfascicular area and fibrillar disorientation at the tibial attachment in both groups. The ratios of mucopolysaccharide-positive area and positive areas of elastic fibers were significantly higher in the control group than in the GC group. The biomechanical examination demonstrated significantly lower stress at the transition point in the GC group than in the control group. The present study results indicate that high-dose corticosteroids may affect metabolism, such as mucopolysaccharides and elastic fibers production, although the effect on type 1 collagen production is small. These changes of the extracellular matrix had a small effect on the strength of the ligament. This study suggested that the ligamentous changes associated with GC are different from the degeneration observed in spontaneous canine CrCL disease.


Subject(s)
Anterior Cruciate Ligament/drug effects , Glucocorticoids/pharmacology , Administration, Oral , Animals , Anterior Cruciate Ligament/metabolism , Anterior Cruciate Ligament/pathology , Anterior Cruciate Ligament/physiology , Collagen Type I/metabolism , Dogs , Elastic Modulus , Glycosaminoglycans/metabolism , Male , Tensile Strength
20.
PLoS One ; 17(1): e0262684, 2022.
Article in English | MEDLINE | ID: mdl-35085320

ABSTRACT

BACKGROUND: The ligaments in the knee are prone to injury especially during dynamic activities. The resulting instability can have a profound impact on a patient's daily activities and functional capacity. Musculoskeletal knee modelling provides a non-invasive tool for investigating ligament force-strain behaviour in various dynamic scenarios, as well as potentially complementing existing pre-planning tools to optimise surgical reconstructions. However, despite the development and validation of many musculoskeletal knee models, the effect of modelling parameters on ligament mechanics has not yet been systematically reviewed. OBJECTIVES: This systematic review aimed to investigate the results of the most recent studies using musculoskeletal modelling techniques to create models of the native knee joint, focusing on ligament mechanics and modelling parameters in various simulated movements. DATA SOURCES: PubMed, ScienceDirect, Google Scholar, and IEEE Xplore. ELIGIBILITY CRITERIA FOR SELECTING STUDIES: Databases were searched for articles containing any numerical ligament strain or force data on the intact, ACL-deficient, PCL-deficient, or lateral extra-articular reconstructed (LER) knee joints. The studies had to derive these results from musculoskeletal modelling methods. The dates of the publications were between 1 January 1995 and 30 November 2021. METHOD: A customised data extraction form was created to extract each selected study's critical musculoskeletal model development parameters. Specific parameters of the musculoskeletal knee model development used in each eligible study were independently extracted, including the (1) musculoskeletal model definition (i.e., software used for modelling, knee type, source of geometry, the inclusion of cartilage and menisci, and articulating joints and joint boundary conditions (i.e., number of degrees of freedom (DoF), subjects, type of activity, collected data and type of simulation)), (2) specifically ligaments modelling techniques (i.e., ligament bundles, attachment points, pathway, wrapping surfaces and ligament material properties such as stiffness and reference length), (3) sensitivity analysis, (4) validation approaches, (5) predicted ligament mechanics (i.e., force, length or strain) and (6) clinical applications if available. The eligible papers were then discussed quantitatively and qualitatively with respect to the above parameters. RESULTS AND DISCUSSION: From the 1004 articles retrieved by the initial electronic search, only 25 met all inclusion criteria. The results obtained by aggregating data reported in the eligible studies indicate that considerable variability in the predicted ligament mechanics is caused by differences in geometry, boundary conditions and ligament modelling parameters. CONCLUSION: This systematic review revealed that there is currently a lack of consensus on knee ligament mechanics. Despite this lack of consensus, some papers highlight the potential of developing translational tools using musculoskeletal modelling. Greater consistency in model design, incorporation of sensitivity assessment of the model outcomes and more rigorous validation methods should lead to better agreement in predictions for ligament mechanics between studies. The resulting confidence in the musculoskeletal model outputs may lead to the development of clinical tools that could be used for patient-specific treatments.


Subject(s)
Anterior Cruciate Ligament/physiology , Knee Joint/physiology , Anterior Cruciate Ligament Injuries/physiopathology , Biomechanical Phenomena/physiology , Computer Simulation , Humans , Mechanical Phenomena
SELECTION OF CITATIONS
SEARCH DETAIL
...