Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.653
Filter
1.
Article in English | MEDLINE | ID: mdl-38963416

ABSTRACT

A Gram-stain-negative, red pigment-producing, aerobic, and rod-shaped bacterial strain (A2-2T) was isolated from a bleached scleractinian coral (Porites lutea). Strain A2-2T grew with 1.0-7.0 % (w/v) NaCl (optimum, 3.0 %), at pH 6.0-11.0 (optimum, pH 8.0), and at 18-41 °C (optimum, 35 °C). Results of phylogenetic analysis based on 16S rRNA gene sequences suggested that strain A2-2T fell within the genus Spartinivicinus and was closely related to Spartinivicinus ruber S2-4-1HT (98.1 % sequence similarity) and Spartinivicinus marinus SM1973T (98.0 % sequence similarity). The predominant cellular fatty acids of strain A2-2T were C16 : 0 (31.0 %), summed feature 3 (29.0 %), summed feature 8 (11.7 %), C12 : 0 3-OH (6.4 %), and C10 : 0 3-OH (5.5 %), while the major respiratory quinone was Q-9. The polar lipids mainly comprised phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, and an unidentified phospholipid. The genome size of strain A2-2T was 6.8 Mb, with a G+C content of 40.2 mol%. The DNA-DNA hybridization value was 24.2 % between A2-2T and S. ruber S2-4-1HT and 36.9 % between A2-2T and S. marinus SM1973T, while the average nucleotide identity values were 80.1 and 88.8 %, respectively. Based on these findings, strain A2-2T could be recognized to represent a novel species of the genus Spartinivicinus, for which the name Spartinivicinus poritis sp. nov. is proposed. The type strain is A2-2T (=MCCC 1K08228T=KCTC 8323T).


Subject(s)
Anthozoa , Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Phylogeny , Pigments, Biological , RNA, Ribosomal, 16S , Sequence Analysis, DNA , RNA, Ribosomal, 16S/genetics , Animals , Anthozoa/microbiology , DNA, Bacterial/genetics , Pigments, Biological/metabolism , Nucleic Acid Hybridization , Phospholipids
2.
Sci Rep ; 14(1): 15484, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38969663

ABSTRACT

The symbiosis between corals and dinoflagellates of the family Symbiodiniaceae is sensitive to environmental stress. The oxidative bleaching hypothesis posits that extreme temperatures lead to accumulation of photobiont-derived reactive oxygen species ROS, which exacerbates the coral environmental stress response (ESR). To understand how photosymbiosis modulates coral ESRs, these responses must be explored in hosts in and out of symbiosis. We leveraged the facultatively symbiotic coral Astrangia poculata, which offers an opportunity to uncouple the ESR across its two symbiotic phenotypes (brown, white). Colonies of both symbiotic phenotypes were exposed to three temperature treatments for 15 days: (i) control (static 18 °C), (ii) heat challenge (increasing from 18 to 30 °C), and (iii) cold challenge (decreasing from 18 to 4 °C) after which host gene expression was profiled. Cold challenged corals elicited widespread differential expression, however, there were no differences between symbiotic phenotypes. In contrast, brown colonies exhibited greater gene expression plasticity under heat challenge, including enrichment of cell cycle pathways involved in controlling photobiont growth. While this plasticity was greater, the genes driving this plasticity were not associated with an amplified environmental stress response (ESR) and instead showed patterns of a dampened ESR under heat challenge. This provides nuance to the oxidative bleaching hypothesis and suggests that, at least during the early onset of bleaching, photobionts reduce the host's ESR under elevated temperatures in A. poculata.


Subject(s)
Anthozoa , Dinoflagellida , Symbiosis , Anthozoa/physiology , Animals , Dinoflagellida/physiology , Stress, Physiological , Heat-Shock Response/physiology , Hot Temperature , Reactive Oxygen Species/metabolism , Photosynthesis
3.
Sci Rep ; 14(1): 14514, 2024 06 24.
Article in English | MEDLINE | ID: mdl-38914624

ABSTRACT

The application of beneficial microorganisms for corals (BMC) decreases the bleaching susceptibility and mortality rate of corals. BMC selection is typically performed via molecular and biochemical assays, followed by genomic screening for BMC traits. Herein, we present a comprehensive in silico framework to explore a set of six putative BMC strains. We extracted high-quality DNA from coral samples collected from the Red Sea and performed PacBio sequencing. We identified BMC traits and mechanisms associated with each strain as well as proposed new traits and mechanisms, such as chemotaxis and the presence of phages and bioactive secondary metabolites. The presence of prophages in two of the six studied BMC strains suggests their possible distribution within beneficial bacteria. We also detected various secondary metabolites, such as terpenes, ectoines, lanthipeptides, and lasso peptides. These metabolites possess antimicrobial, antifungal, antiviral, anti-inflammatory, and antioxidant activities and play key roles in coral health by reducing the effects of heat stress, high salinity, reactive oxygen species, and radiation. Corals are currently facing unprecedented challenges, and our revised framework can help select more efficient BMC for use in studies on coral microbiome rehabilitation, coral resilience, and coral restoration.


Subject(s)
Anthozoa , Probiotics , Anthozoa/genetics , Anthozoa/microbiology , Anthozoa/metabolism , Animals , Indian Ocean , Genomics/methods , Bacteria/genetics , Microbiota
4.
Mar Drugs ; 22(6)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38921581

ABSTRACT

A marine-derived fungal strain, Aspergillus sp. ITBBc1, was isolated from coral collected from the South China Sea in Hainan province. Intensive chemical investigation of the fermentation extract of this strain afforded four new secondary metabolites (1-4), named megastigmanones A-C and prenylterphenyllin H, along with four known compounds (5-8). Their structures were elucidated by extensive spectroscopic analysis including one-and two-dimensional (1D and 2D) NMR spectroscopy and high-resolution electrospray ionization mass spectrometry (HR-ESI-MS). The modified Mosher's method was undertaken to determine the absolute configurations of new compounds. The phytotoxic activity test showed that compounds 6-8 exhibited significant antagonistic activity against the germination of Triticum aestivum L. and Oryza sativa L. seeds with a dose-dependent relationship.


Subject(s)
Anthozoa , Aspergillus , Triticum , Aspergillus/metabolism , Aspergillus/chemistry , Anthozoa/microbiology , Animals , Triticum/microbiology , Oryza/microbiology , Secondary Metabolism , Magnetic Resonance Spectroscopy , Seeds , China , Germination/drug effects , Molecular Structure
5.
PLoS One ; 19(6): e0305607, 2024.
Article in English | MEDLINE | ID: mdl-38917168

ABSTRACT

Geochemical proxies of sea surface temperature (SST) and seawater pH (pHsw) in scleractinian coral skeletons are valuable tools for reconstructing tropical climate variability. However, most coral skeletal SST and pHsw proxies are univariate methods that are limited in their capacity to circumvent non-climate-related variability. Here we present a novel multivariate method for reconstructing SST and pHsw from the geochemistry of coral skeletons. Our Scleractinian Multivariate Isotope and Trace Element (SMITE) method optimizes reconstruction skill by leveraging the covariance across an array of coral elemental and isotopic data with SST and pHsw. First, using a synthetic proxy experiment, we find that SMITE SST reconstruction statistics (correlation, accuracy, and precision) are insensitive to noise and variable calibration period lengths relative to Sr/Ca. While SMITE pHsw reconstruction statistics remain relative to δ11B throughout the same synthetic experiment, the magnitude of the long-term trend in pHsw is progressively lost under conditions of moderate-to-high analytical uncertainty. Next, we apply the SMITE method to an array of seven coral-based geochemical variables (B/Ca, δ11B, Li/Ca, Mg/Ca, Sr/Ca, U/Ca & Li/Mg) measured from two Bermudan Porites astreoides corals. Despite a <3.5 year calibration period, SMITE SST and pHsw estimates exhibit significantly better accuracy, precision, and correlation with their respective climate targets than the best single- and dual-proxy estimators. Furthermore, SMITE model parameters are highly reproducible between the two coral cores, indicating great potential for fossil applications (when preservation is high). The results shown here indicate that the SMITE method can outperform the most common coral-based SST and pHsw reconstructions methods to date, particularly in datasets with a large variety of geochemical variables. We therefore provide a list of recommendations and procedures for users to begin implementing the SMITE method as well as an open-source software package to facilitate dissemination of the SMITE method.


Subject(s)
Anthozoa , Seawater , Temperature , Seawater/chemistry , Hydrogen-Ion Concentration , Anthozoa/chemistry , Animals , Trace Elements/analysis
6.
Sci Total Environ ; 945: 173912, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38871329

ABSTRACT

Coral reef ecosystems have been severely ravaged by global warming and eutrophication. Eutrophication often originates from nitrogen (N) overloading that creates stoichiometric phosphorus (P) limitation, which can be aggravated by sea surface temperature rises that enhances stratification. However, how P-limitation interacts with thermal stress to impact coral-Symbiodiniaceae mutualism is poorly understood and underexplored. Here, we investigated the effect of P-limitation (P-depleted vs. P-replete) superimposed on heat stress (31 °C vs. 25 °C) on a Symbiodinium strain newly isolated from the coral host by a 14-day incubation experiment. The heat and P-limitation co-stress induced an increase in alkaline phosphatase activity and reppressed cell division, photosynthetic efficiency, and expression of N uptake and assimilation genes. Moreover, P limitation intensified downregulation of carbon fixation (light and dark reaction) and metabolism (glycolysis) pathways in heat stressed Symbiodinium. Notably, co-stress elicited a marked transcriptional downregulation of genes encoding photosynthates transporters and microbe-associated molecular patterns, potentially undermining the mutualism potential. This work sheds light on the interactive effects of P-limitation and heat stress on coral symbionts, indicating that nutrient imbalance in the coral reef ecosystem can intensify heat-stress effects on the mutualistic capacity of Symbiodiniaceae.


Subject(s)
Anthozoa , Coral Reefs , Dinoflagellida , Heat-Shock Response , Phosphorus , Symbiosis , Phosphorus/metabolism , Anthozoa/physiology , Animals , Dinoflagellida/physiology , Heat-Shock Response/physiology , Hot Temperature , Global Warming
7.
Curr Biol ; 34(12): R576-R578, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38889680

ABSTRACT

Aquatic apicomplexans called Corallicolida have been found in tropical and coral-reef settings, infecting many coral species. New data challenge this tropical distribution and expand the corallicolids' range well into the cold temperate. Surprisingly, the sister clade to corallicolids infects only one group of vertebrates - bony fishes.


Subject(s)
Anthozoa , Coral Reefs , Fishes , Symbiosis , Animals , Anthozoa/physiology , Fishes/physiology , Phylogeny
8.
Curr Biol ; 34(12): R578-R580, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38889681

ABSTRACT

Sea urchins are critically important herbivores on coral reefs. A new study shows that a disease that decimated sea urchins in the Caribbean in 2022 has spread to the Red Sea, further threatening coral ecosystems.


Subject(s)
Coral Reefs , Sea Urchins , Animals , Sea Urchins/physiology , Ecosystem , Caribbean Region , Anthozoa/physiology
9.
Molecules ; 29(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38893370

ABSTRACT

Kallopterolides A-I (1-9), a family of nine diterpenoids possessing either a cleaved pseudopterane or a severed cembrane skeleton, along with several known compounds were isolated from the Caribbean Sea plume Antillogorgia kallos. The structures and relative configurations of 1-9 were characterized by analysis of HR-MS, IR, UV, and NMR spectroscopic data in addition to computational methods and side-by-side comparisons with published NMR data of related congeners. An investigation was conducted as to the potential of the kallopterolides as plausible in vitro anti-inflammatory, antiprotozoal, and antituberculosis agents.


Subject(s)
Anthozoa , Diterpenes , Diterpenes/chemistry , Diterpenes/isolation & purification , Diterpenes/pharmacology , Animals , Anthozoa/chemistry , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/isolation & purification , Caribbean Region , Molecular Structure , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification , Magnetic Resonance Spectroscopy , Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Antitubercular Agents/isolation & purification
10.
Article in English | MEDLINE | ID: mdl-38900566

ABSTRACT

A genome-based polyphasic approach was used to determine the taxonomic status of two novel bacterial strains, SCSIO 12594T and SCSIO 12813T, isolated from tissues of a coral. Both strains were Gram-stain-negative and facultatively anaerobic. The genome sizes of strains SCSIO 12594T and SCSIO 12813T were 3.9 Mb and 4.1 Mb, respectively, and they possessed DNA G+C contents of 55.1 and 46.2 mol%, respectively . Both strains were found to be catalase- and oxidase-positive, while SCSIO 12594T also could hydrolyse starch. SCSIO 12594T was observed to grow at between 20 and 37 °C (optimally at 25 °C) and at a pH range from 6 to 7 and in the presence of 3-7 % (w/v) NaCl. The growth of SCSIO 12813T required seawater and occurred at 20-30 °C (optimum, 25 °C), pH 5-8 (optimum, pH 6-7) and in the presence of 3-3.7 % (w/v) NaCl. The results of 16S rRNA gene-based phylogenetic analysis indicated that SCSIO 12594T shared 92.97 % or less sequence similarity with its closest relatives Rhodobium gokarnense JA173T and other members of the order Hyphomicrobiales. The results of 16S rRNA sequences-based phylogenetic analysis of SCSIO 12813T indicated that Croceimicrobium hydrocarbonivorans A20-9T (89.34 %) was the most closely related species. SCSIO 12594T and SCSIO 12813T can be readily separated from their closest relatives, as indicated by the results of phylogenomic analysis, low average nucleotide indexes, average amino acid identity, digital DNA-DNA hybridisation (dDDH) similarities and associated phenotypic and chemical data. Consequently, the two coral isolates are considered to represent two novel genera and species for which the names Coralliovum pocilloporae gen. nov., sp. nov. and Sanyastnella coralliicola gen. nov., sp. nov. are proposed, the type strains are SCSIO 12594T (= JCM 35320T = GDMCC 1.3060T) and SCSIO 12813T (= JCM 35373T = GDMCC 1.3063T), respectively. In addition, two novel families, Coralliovaceae fam. nov. and Sanyastnellaceae fam. nov are proposed to accommodate Coralliovum pocilloporae gen. nov., sp. nov. and Sanyastnella coralliicola gen. nov., sp. nov., respectively.


Subject(s)
Anthozoa , Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Phylogeny , RNA, Ribosomal, 16S , Seawater , Sequence Analysis, DNA , Anthozoa/microbiology , Animals , DNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Seawater/microbiology , Nucleic Acid Hybridization
11.
Metabolomics ; 20(4): 66, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886248

ABSTRACT

The coral holobiont is underpinned by complex metabolic exchanges between different symbiotic partners, which are impacted by environmental stressors. The chemical diversity of the compounds produced by the holobiont is high and includes primary and secondary metabolites, as well as volatiles. However, metabolites and volatiles have only been characterised in isolation so far. Here, we applied a paired metabolomic-volatilomic approach to characterise holistically the chemical response of the holobiont under stress. Montipora mollis fragments were subjected to high-light stress (8-fold higher than the controls) for 30 min. Photosystem II (PSII) photochemical efficiency values were 7-fold higher in control versus treatment corals immediately following high-light exposure, but returned to pre-stress levels after 30 min of recovery. Under high-light stress, we identified an increase in carbohydrates (> 5-fold increase in arabinose and fructose) and saturated fatty acids (7-fold increase in myristic and oleic acid), together with a decrease in fatty acid derivatives in both metabolites and volatiles (e.g., 80% decrease in oleamide and nonanal), and other antioxidants (~ 85% decrease in sorbitol and galactitol). These changes suggest short-term light stress induces oxidative stress. Correlation analysis between volatiles and metabolites identified positive links between sorbitol, galactitol, six other metabolites and 11 volatiles, with four of these compounds previously identified as antioxidants. This suggests that these 19 compounds may be related and share similar functions. Taken together, our findings demonstrate how paired metabolomics-volatilomics may illuminate broader metabolic shifts occurring under stress and identify linkages between uncharacterised compounds to putatively determine their functions.


Subject(s)
Anthozoa , Light , Metabolomics , Stress, Physiological , Animals , Anthozoa/metabolism , Metabolomics/methods , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/analysis , Photosystem II Protein Complex/metabolism
12.
PeerJ ; 12: e17358, 2024.
Article in English | MEDLINE | ID: mdl-38827291

ABSTRACT

Monitoring coral cover can describe the ecology of reef degradation, but rarely can it reveal the proximal mechanisms of change, or achieve its full potential in informing conservation actions. Describing temporal variation in Symbiodiniaceae within corals can help address these limitations, but this is rarely a research priority. Here, we augmented an ecological time series of the coral reefs of St. John, US Virgin Islands, by describing the genetic complement of symbiotic algae in common corals. Seventy-five corals from nine species were marked and sampled in 2017. Of these colonies, 41% were sampled in 2018, and 72% in 2019; 28% could not be found and were assumed to have died. Symbiodiniaceae ITS2 sequencing identified 525 distinct sequences (comprising 42 ITS2 type profiles), and symbiont diversity differed among host species and individuals, but was in most cases preserved within hosts over 3 yrs that were marked by physical disturbances from major hurricanes (2017) and the regional onset of stony coral tissue loss disease (2019). While changes in symbiont communities were slight and stochastic over time within colonies, variation in the dominant symbionts among colonies was observed for all host species. Together, these results indicate that declining host abundances could lead to the loss of rare algal lineages that are found in a low proportion of few coral colonies left on many reefs, especially if coral declines are symbiont-specific. These findings highlight the importance of identifying Symbiodiniaceae as part of a time series of coral communities to support holistic conservation planning. Repeated sampling of tagged corals is unlikely to be viable for this purpose, because many Caribbean corals are dying before they can be sampled multiple times. Instead, random sampling of large numbers of corals may be more effective in capturing the diversity and temporal dynamics of Symbiodiniaceae metacommunities in reef corals.


Subject(s)
Anthozoa , Coral Reefs , Symbiosis , Animals , Anthozoa/microbiology , Caribbean Region , United States Virgin Islands , Dinoflagellida/genetics , Dinoflagellida/physiology
13.
PeerJ ; 12: e17421, 2024.
Article in English | MEDLINE | ID: mdl-38827308

ABSTRACT

Background: Rainfall-induced coastal runoff represents an important environmental impact in near-shore coral reefs that may affect coral-associated bacterial microbiomes. Shifts in microbiome community composition and function can stress corals and ultimately cause mortality and reef declines. Impacts of environmental stress may be site specific and differ between coral microbiome compartments (e.g., tissue versus mucus). Coastal runoff and associated water pollution represent a major stressor for near-shore reef-ecosystems in Guam, Micronesia. Methods: Acropora pulchra colonies growing on the West Hagåtña reef flat in Guam were sampled over a period of 8 months spanning the 2021 wet and dry seasons. To examine bacterial microbiome diversity and composition, samples of A. pulchra tissue and mucus were collected during late April, early July, late September, and at the end of December. Samples were collected from populations in two different habitat zones, near the reef crest (farshore) and close to shore (nearshore). Seawater samples were collected during the same time period to evaluate microbiome dynamics of the waters surrounding coral colonies. Tissue, mucus, and seawater microbiomes were characterized using 16S DNA metabarcoding in conjunction with Illumina sequencing. In addition, water samples were collected to determine fecal indicator bacteria (FIB) concentrations as an indicator of water pollution. Water temperatures were recorded using data loggers and precipitation data obtained from a nearby rain gauge. The correlation structure of environmental parameters (temperature and rainfall), FIB concentrations, and A. pulchra microbiome diversity was evaluated using a structural equation model. Beta diversity analyses were used to investigate spatio-temporal trends of microbiome composition. Results: Acropora pulchra microbiome diversity differed between tissues and mucus, with mucus microbiome diversity being similar to the surrounding seawater. Rainfall and associated fluctuations of FIB concentrations were correlated with changes in tissue and mucus microbiomes, indicating their role as drivers of A. pulchra microbiome diversity. A. pulchra tissue microbiome composition remained relatively stable throughout dry and wet seasons; tissues were dominated by Endozoicomonadaceae, coral endosymbionts and putative indicators of coral health. In nearshore A. pulchra tissue microbiomes, Simkaniaceae, putative obligate coral endosymbionts, were more abundant than in A. pulchra colonies growing near the reef crest (farshore). A. pulchra mucus microbiomes were more diverse during the wet season than the dry season, a distinction that was also associated with drastic shifts in microbiome composition. This study highlights the seasonal dynamics of coral microbiomes and demonstrates that microbiome diversity and composition may differ between coral tissues and the surface mucus layer.


Subject(s)
Anthozoa , Coral Reefs , Microbiota , Seasons , Animals , Anthozoa/microbiology , Microbiota/physiology , Microbiota/genetics , Mucus/microbiology , Seawater/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification
14.
Sci Data ; 11(1): 602, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849366

ABSTRACT

The skeletons of long-lived bamboo coral (Family Keratoisididae) are promising archives for deep-water palaeoceanographic reconstructions as they can record environmental variation at sub-decadal resolution in locations where in-situ measurements lack temporal coverage. Yet, detailed three dimensional (3D) characterisations of bamboo coral skeletal architecture are not routinely available and non-destructive investigations into microscale variations in calcification are rare. Here, we provide high-resolution micro-focus computed tomography (µCT) data of skeletal density for two species of bamboo coral (Acanella arbuscula: 5 specimens, voxel size, 15 µm (central branch scans) and 50 µm (complete structure scan); Keratoisis sp.: 4 specimens, voxel size, 15 µm) collected from the Labrador Sea and Baffin Bay deep-water basins, Eastern Canadian Arctic. These data provide reference models useful for developing methods to assess structural integrity and other fine-scale complexities in many biological, geological, and industrial systems. This will be of wider value to those investigating structural composition, arrangement and/or composition of complex architecture within the fields and subdisciplines of biology, ecology, medicine, environmental geology, and structural engineering.


Subject(s)
Anthozoa , Animals , X-Ray Microtomography , Imaging, Three-Dimensional , Canada
15.
Glob Chang Biol ; 30(6): e17371, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38863267

ABSTRACT

As the balance between erosional and constructive processes on coral reefs tilts in favor of framework loss under human-induced local and global change, many reef habitats worldwide degrade and flatten. The resultant generation of coral rubble and the beds they form can have lasting effects on reef communities and structural complexity, threatening the continuity of reef ecological functions and the services they provide. To comprehensively capture changing framework processes and predict their evolution in the context of climate change, heavily colonized rubble fragments were exposed to ocean acidification (OA) conditions for 55 days. Controlled diurnal pH oscillations were incorporated in the treatments to account for the known impact of diel carbonate chemistry fluctuations on calcification and dissolution response to OA. Scenarios included contemporary pH (8.05 ± 0.025 diel fluctuation), elevated OA (7.90 ± 0.025), and high OA (7.70 ± 0.025). We used a multifaceted approach, combining chemical flux analyses, mass alteration measurements, and computed tomography scanning images to measure total and chemical bioerosion, as well as chemically driven secondary calcification. Rates of net carbonate loss measured in the contemporary conditions (1.36 kg m-2 year-1) were high compared to literature and increased in OA scenarios (elevated: 1.84 kg m-2 year-1 and high: 1.59 kg m-2 year-1). The acceleration of these rates was driven by enhanced chemical dissolution and reduced secondary calcification. Further analysis revealed that the extent of these changes was contingent on the density of the coral skeleton, in which the micro- and macroborer communities reside. Findings indicated that increased mechanical bioerosion rates occurred in rubble with lower skeletal density, which is of note considering that corals form lower-density skeletons under OA. These direct and indirect effects of OA on chemical and mechanical framework-altering processes will influence the permanence of this crucial habitat, carrying implications for biodiversity and reef ecosystem function.


Subject(s)
Anthozoa , Climate Change , Coral Reefs , Seawater , Anthozoa/physiology , Anthozoa/chemistry , Animals , Seawater/chemistry , Hydrogen-Ion Concentration , Calcification, Physiologic , Carbonates/chemistry , Carbonates/analysis , Oceans and Seas , Ocean Acidification
16.
PLoS One ; 19(6): e0303422, 2024.
Article in English | MEDLINE | ID: mdl-38843131

ABSTRACT

Describing the structural complexity of seabeds is of primary importance for a number of geomorphological, hydrodynamical and ecological issues. Aiming to bring a decisive insight on the long-term development of a unified view, the present study reports on a comparative multi-site analysis of high resolution topography surveys in rough nearshore environments. The nine study sites have been selected to cover a wide variety of topographical features, including rocky and coral seabeds. The topography data has been processed to separate roughness and bathymetry-related terrain features, allowing to perform a comprehensive spectral and statistical analysis of each site. A series of roughness metrics have been tested to identify the most relevant estimators of the bottom roughness at each site. The spectral analysis highlights the systematic presence of a self-affine range of variable extension and spectral slope. The standard deviation of the seabed elevation varies from 0.04 to 0.77 m. The statistical and multi-scale analysis performed on the whole set of roughness metrics allows to identify connection between metrics and therefore to propose a reduced set of relevant roughness estimators. A more general emphasis is placed on the need to properly define a unified framework when reconstructing roughness statistics and bathymetry from fine seabed topographical data.


Subject(s)
Anthozoa , Anthozoa/anatomy & histology , Animals , Geologic Sediments , Ecosystem
17.
Sci Rep ; 14(1): 12757, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38830941

ABSTRACT

Reef-building corals live in highly hydrodynamic environments, where water flow largely controls the complex chemical microenvironments surrounding them-the concentration boundary layer (CBL). The CBL may be key to alleviate ocean acidification (OA) effects on coral colonies by partially isolating them. However, OA effects on coral CBL remain poorly understood, particularly under different flow velocities. Here, we investigated these effects on the reef-building corals Acropora cytherea, Pocillopora verrucosa, and Porites cylindrica. We preconditioned corals to a control (pH 8.0) and OA (pH 7.8) treatment for four months and tested how low flow (2 cm s-1) and moderate flow (6 cm s-1) affected O2 and H+ CBL traits (thickness, surface concentrations, and flux) inside a unidirectional-flow chamber. We found that CBL traits differed between species and flow velocities. Under OA, traits remained generally stable across flows, except surface pH. In all species, the H+ CBL was thin and led to lower surface pH. Still, low flow thickened H+ CBLs and increased light elevation of surface pH. In general, our findings reveal a weak to null OA modulation of the CBL. Moreover, the OA-buffering capacity by the H+ CBL may be limited in coral species, though low flow could enhance CBL sheltering.


Subject(s)
Anthozoa , Oceans and Seas , Oxygen , Seawater , Anthozoa/physiology , Anthozoa/metabolism , Animals , Hydrogen-Ion Concentration , Oxygen/metabolism , Oxygen/chemistry , Seawater/chemistry , Coral Reefs , Water Movements , Ocean Acidification
18.
Sci Rep ; 14(1): 12813, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38834719

ABSTRACT

Deep-sea coral assemblages are marine biodiversity hot spots. Because of their life history traits, deep-sea corals are highly vulnerable to the impacts of human activities such as fishing. The critically endangered "bamboo coral" Isidella elongata is a key structuring species of deep muddy bottoms that is susceptible to habitat destruction, particularly from trawling. A shallow population of this species was recently discovered by a multibeam and ROV survey offshore of the Asinara Island marine protected area (MPA) (northwestern Sardinia, NW Mediterranean Sea). This vulnerable marine assemblage has been found under healthy conditions at depths ranging from 110 to 298 m. Isidella elongata occurs on a muddy seafloor locally characterised by boulders associated with black coral species (Parantipathes larix and Antipathes dichotoma). The lush colonies of I. elongata seem to be related to natural protection from bottom trawling activity; nevertheless, the presence of lost fishing artisanal nets has been observed in the study area. These structuring species are indicators of vulnerable marine ecosystems, and their conservation is essential for preserving marine biodiversity. Therefore, enlarging the perimeter of the Asinara Island MPA into its deeper western waters is suggested to ensure the protection of these valuable and vulnerable marine ecosystems.


Subject(s)
Anthozoa , Biodiversity , Conservation of Natural Resources , Islands , Animals , Mediterranean Sea , Conservation of Natural Resources/methods , Italy , Ecosystem , Fisheries
19.
Mar Environ Res ; 198: 106557, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38823094

ABSTRACT

Sexual reproduction of reef-building corals is vital for coral reef ecosystem recovery. Corals allocate limited energy to growth and reproduction, when being under environmental disturbance, which ultimately shapes the community population dynamics. In the present study, energetic and physiological parameters of both parental colonies and larvae of the coral Pocillopora damicornis were measured during their reproduction stage under four temperatures; 28 °C (low-temperature acclimation, LA), 29 °C (control temperature, CT), 31 °C (high-temperature acclimation, HA), and 32 °C (heat stress, HS). The results showed temperature changes altered the larvae release timing and fecundity in P. damicornis. Parental colonies exposed to the LA treatment exhibited reduced investment in reproduction and released fewer larvae, while retaining more energy for their development. However, each larva acquired higher energy and symbiont densities enabling survival through longer planktonic periods before settlement. In contrast, parental colonies exposed to the HA treatment had increased investment for reproduction and larvae output, while per larva gained less energy to mitigate the threat of higher temperature. Furthermore, the energy allocation processes restructured fatty acids concentration and composition in both parental colonies and larvae as indicated by shifts in membrane fluidity under adaptable temperature changes. Notably, parental colonies from the HS treatment expended more energy in response to heat stress, resulting in adverse effects, especially after larval release. Our study expands the current knowledge on the energy allocation strategies of P. damicornis and how it is impacted by temperature. Parental colonies employed different energy allocation strategies under distinct temperature regimes to optimize their development and offspring success, but under heat stress, both were compromised. Lipid metabolism is essential for the success of coral reproduction and further understanding their response to heat stress can improve intervention strategies for coral reef conservation in warmer future oceans.


Subject(s)
Anthozoa , Energy Metabolism , Reproduction , Temperature , Animals , Anthozoa/physiology , Coral Reefs , Larva/physiology , Larva/growth & development , Acclimatization/physiology
20.
J Vis Exp ; (208)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38912771

ABSTRACT

Coral reefs are facing a crisis as the frequency of bleaching events caused by ocean warming increases, resulting in the death of corals on reefs around the world. The subsequent loss of genetic diversity and biodiversity can diminish the ability of coral to adapt to the changing climate, so efforts to preserve existing diversity are essential to maximize the resources available for reef restoration now and in the future. The most effective approach to secure genetics long-term is cryopreservation and biobanking, which permits the frozen storage of living samples at cryogenic temperatures in liquid nitrogen indefinitely. Cryopreservation of coral sperm has been possible since 2012, but the seasonal nature of coral reproduction means that biobanking activities are restricted to just a few nights per year when spawning occurs. Improving the efficiency of coral sperm processing and cryopreservation workflows is therefore essential to maximizing these limited biobanking opportunities. To this end, we set out to optimize cryopreservation processing pathways for coral sperm by building on existing technologies and creating a semi-automated approach to streamline the assessment, handling, and cryopreservation of coral sperm. The process, which combines computer-assisted sperm analysis, barcoded cryovials, and a series of linked auto-datasheets for simultaneous editing by multiple users, improves the efficiency of both sample processing and metadata management in the field. Through integration with cross-cutting research programs such as the Reef Restoration and Adaptation Program in Australia, cryopreservation can play a crucial role in large-scale reef restoration programs by facilitating the genetic management of aquaculture populations, supporting research to enhance thermal tolerance, and preventing the extinction of coral species. The described procedures will be utilized for coral cryopreservation and biobanking practitioners on reefs worldwide and will provide a model for the transition of cryopreservation technologies from research laboratories to large-scale applications.


Subject(s)
Anthozoa , Aquaculture , Biological Specimen Banks , Cryopreservation , Spermatozoa , Anthozoa/physiology , Cryopreservation/methods , Animals , Male , Aquaculture/methods , Spermatozoa/physiology , Spermatozoa/cytology , Workflow , Semen Preservation/methods , Coral Reefs
SELECTION OF CITATIONS
SEARCH DETAIL
...