Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67.977
Filter
1.
BMC Vet Res ; 20(1): 307, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987775

ABSTRACT

In low- and middle-income countries, data on antimicrobial use (AMU) and antimicrobial resistance (AMR) in aquaculture are scarce. Therefore, summarizing documented data on AMU, antimicrobial residue (AR), and AMR in aquaculture in Africa is key to understanding the risk to public health. Google Scholar, PubMed, African Journals online, and Medline were searched for articles published in English and French following the PRISMA guidelines. A structured search string was used with strict inclusion and exclusion criteria to retrieve and screen the articles. The pooled prevalence and 95% confidence intervals were calculated for each pathogen-antimicrobial pair using random effects models. Among the 113 full-text articles reviewed, 41 met the eligibility criteria. The majority of the articles reported AMR (35; 85.4%), while a few were on AMU (3; 7.3%) and AR (3; 7.3%) in fish. The articles originated from West Africa (23; 56.1%), North Africa (8; 19.7%), and East Africa (7; 17.1%). Concerning the antimicrobial agents used in fish farming, tetracycline was the most common antimicrobial class used, which justified the high prevalence of residues (up to 56.7%) observed in fish. For AMR, a total of 69 antimicrobial agents were tested against 24 types of bacteria isolated. Bacteria were resistant to all classes of antimicrobial agents and exhibited high levels of multidrug resistance. Escherichia coli, Salmonella spp., and Staphylococcus spp. were reported in 16, 10, and 8 studies, respectively, with multidrug resistance rates of 43.1% [95% CI (32.0-55.0)], 40.3% [95% CI (24.1-58.1)] and 31.3% [95% CI (17.5-49.4)], respectively. This review highlights the high multidrug resistance rate of bacteria from aquaculture to commonly used antimicrobial agents, such as tetracycline, ampicillin, cotrimoxazole, gentamicin, and amoxicillin, in Africa. These findings also highlighted the lack of data on AMU and residue in the aquaculture sector, and additional efforts should be made to fill these gaps and mitigate the burden of AMR on public health in Africa.


Subject(s)
Aquaculture , Fishes , Animals , Africa , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Drug Residues , Anti-Infective Agents/pharmacology , Anti-Infective Agents/therapeutic use
2.
J Phys Chem Lett ; 15(27): 7075-7083, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38950375

ABSTRACT

The bactericidal potency of ionic liquids (ILs) is well-established, yet their precise mechanism of action remains elusive. Here, we show evidence that the bactericidal action of ILs primarily involves the permeabilization of the bacterial cell membrane. Our findings reveal that ILs exert their effects by directly interacting with the lipid bilayer and enhancing the membrane dynamics. Lateral lipid diffusion is accelerated, which in turn augments membrane permeability, ultimately leading to bacterial death. Furthermore, our results establish a significant connection: an increase in the alkyl chain length of ILs correlates with a notable enhancement in both lipid lateral diffusion and antimicrobial potency. This underscores a compelling correlation between membrane dynamics and antimicrobial effectiveness, providing valuable insights for the rational design and optimization of IL-based antimicrobial agents in healthcare applications.


Subject(s)
Ionic Liquids , Lipid Bilayers , Ionic Liquids/chemistry , Ionic Liquids/pharmacology , Lipid Bilayers/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Diffusion , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Cell Membrane Permeability/drug effects , Cell Membrane/drug effects , Cell Membrane/chemistry , Microbial Sensitivity Tests
3.
Microb Ecol ; 87(1): 93, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39008123

ABSTRACT

Huanglongbing, also known as citrus greening, is currently the most devastating citrus disease with limited success in prevention and mitigation. A promising strategy for Huanglongbing control is the use of antimicrobials fused to a carrier protein (phloem protein of 16 kDa or PP16) that targets vascular tissues. This study investigated the effects of genetically modified citrus trees expressing Citrus sinensis PP16 (CsPP16) fused to human lysozyme and ß-defensin-2 on the soil microbiome diversity using 16S amplicon analysis. The results indicated that there were no significant alterations in alpha diversity, beta diversity, phylogenetic diversity, differential abundance, or functional prediction between the antimicrobial phloem-overexpressing plants and the control group, suggesting minimal impact on microbial community structure. However, microbiota diversity analysis revealed distinct bacterial assemblages between the rhizosphere soil and root environments. This study helps to understand the ecological implications of crops expressing phloem-targeted antimicrobials for vascular disease management, with minimal impact on soil microbiota.


Subject(s)
Bacteria , Citrus , Microbiota , Phloem , Plant Diseases , Rhizosphere , Soil Microbiology , Phloem/microbiology , Phloem/metabolism , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Bacteria/isolation & purification , Plant Diseases/microbiology , Citrus/microbiology , Plants, Genetically Modified/microbiology , Plants, Genetically Modified/genetics , Phylogeny , Metagenomics , Muramidase/metabolism , Muramidase/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , beta-Defensins/genetics , RNA, Ribosomal, 16S/genetics , Anti-Infective Agents/pharmacology , Anti-Infective Agents/metabolism , Citrus sinensis/microbiology , Plant Roots/microbiology
4.
Int J Mol Sci ; 25(13)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-39000051

ABSTRACT

Amidst the growing concern of antimicrobial resistance as a significant health challenge, research has emerged, focusing on elucidating the antimicrobial potential of polyphenol-rich extracts to reduce reliance on antibiotics. Previous studies explored the antifungal effects of extracts as potential alternatives to conventional therapeutic strategies. We aimed to assess the antibacterial and antifungal effects of standardised pomegranate extract (PE) and lemon extract (LE) using a range of Gram-negative and Gram-positive bacteria and two yeast species. Additionally, we assessed the antimicrobial activities of common antibiotics (Ciprofloxacin, Imipenem, Gentamicin, and Ceftazidime), either alone or in combination with extracts, against Staphylococcus aureus and Escherichia coli. PE displayed substantial antibacterial (primarily bactericidal) and antifungal effects against most pathogens, while LE exhibited antibacterial (mostly bacteriostatic) and antifungal properties to a lesser extent. When compared with antibiotics, PE showed a greater zone of inhibition (ZOI) than Ciprofloxacin and Ceftazidime (p < 0.01) and comparable ZOI to Gentamicin (p = 0.4) against Staphylococcus aureus. However, combinations of either PE or LE with antibiotics exhibited either neutral or antagonistic effects on antibiotic activity against Staphylococcus aureus and Escherichia coli. These findings contribute to the existing evidence regarding the antimicrobial effects of PE and LE. They add to the body of research suggesting that polyphenols exert both antagonistic and synergistic effects in antimicrobial activity. This highlights the importance of identifying optimal polyphenol concentrations that can enhance antibiotic activity and reduce antibiotic resistance. Further in vivo studies, starting with animal trials and progressing to human trials, may potentially lead to recommendation of these extracts for therapeutic use.


Subject(s)
Anti-Bacterial Agents , Citrus , Microbial Sensitivity Tests , Plant Extracts , Pomegranate , Plant Extracts/pharmacology , Plant Extracts/chemistry , Anti-Bacterial Agents/pharmacology , Pomegranate/chemistry , Citrus/chemistry , Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Drug Synergism , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry
5.
Int J Mol Sci ; 25(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39000090

ABSTRACT

The acidic byproducts of bacteria in plaque around orthodontic brackets contribute to white spot lesion (WSL) formation. Nitric oxide (NO) has antibacterial properties, hindering biofilm formation and inhibiting the growth of oral microbes. Materials that mimic NO release could prevent oral bacteria-related pathologies. This study aims to integrate S-nitroso-acetylpenicillamine (SNAP), a promising NO donor, into orthodontic elastomeric ligatures, apply an additional polymer coating, and evaluate the NO-release kinetics and antimicrobial activity against Streptococus mutans. SNAP was added to clear elastomeric chains (8 loops, 23 mm long) at three concentrations (50, 75, 100 mg/mL, and a control). Chains were then coated, via electrospinning, with additional polymer (Elastollan®) to aid in extending the NO release. NO flux was measured daily for 30 days. Samples with 75 mg/mL SNAP + Elastollan® were tested against S. mutans for inhibition of biofilm formation on and around the chain. SNAP was successfully integrated into ligatures at each concentration. Only the 75 mg/mL SNAP chains maintained their elasticity. After polymer coating, samples exhibited a significant burst of NO on the first day, exceeding the machine's reading capacity, which gradually decreased over 29 days. Ligatures also inhibited S. mutans growth and biofilm formation. Future research will assess their mechanical properties and cytotoxicity. This study presents a novel strategy to address white spot lesion (WSL) formation and bacterial-related pathologies by utilizing nitric oxide-releasing materials. Manufactured chains with antimicrobial properties provide a promising solution for orthodontic challenges, showing significant potential for academic-industrial collaboration and commercial viability.


Subject(s)
Biofilms , Elastomers , Nitric Oxide , Streptococcus mutans , Streptococcus mutans/drug effects , Streptococcus mutans/growth & development , Elastomers/chemistry , Nitric Oxide/chemistry , Nitric Oxide/metabolism , Biofilms/drug effects , S-Nitroso-N-Acetylpenicillamine/pharmacology , S-Nitroso-N-Acetylpenicillamine/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Orthodontic Brackets/microbiology , Microbial Sensitivity Tests , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/chemical synthesis , Nitric Oxide Donors/pharmacology , Nitric Oxide Donors/chemistry , Nitric Oxide Donors/chemical synthesis , Humans
6.
J Indian Prosthodont Soc ; 24(3): 266-272, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38946510

ABSTRACT

AIM: Occurrence of denture stomatitis and prosthesis breakage are common problems faced by elderly people wearing removable dentures. To overcome this, several attempts are made to improve the denture material by addition of antimicrobials without compromising original properties. The aim of the study was to evaluate flexural strength and microhardness of self-cured polymethyl methacrylate (PMMA) denture base resin after addition of Vaccinium macrocarpon (commonly called as cranberry), extract as antimicrobial, at varying proportions. STUDY SETTING AND DESIGN: Experimental in vitro study. MATERIALS AND METHODS: Frozen cranberry fruits were subjected to extraction process in the presence of aqueous solvents. Lyophilized extract was added in proportions of 0, 0.5, 1.0, 1.5, and 2.0 dry wt/wt % into polymer of self-cure PMMA denture base resin. Based on cranberry inclusion, the study comprised one control (0%) and four test groups (0.5%-2%) with total of 100 samples. A three-point bending test for flexural strength was done for fifty study samples (n = 10). Surface of fractured samples was analyzed using a scanning electron microscope (SEM). Microhardness was determined using Vickers hardness test. STATISTICAL ANALYSIS USED: One-way statistical ANOVA test was done to find the difference between groups, followed by Tukey's post hoc test for multiple pairwise comparison. RESULTS: Flexural strength ranged from 66.80 to 69.28 MPa, and a statistically insignificant difference was observed between groups (P > 0.05). SEM evaluation showed uniformly dispersed strands of cranberry extract in PMMA matrix. With higher concentration, less voids were seen. Vickers microhardness value significantly decreased from 15.96 in the control group to 14.57 with 2% cranberry addition (P < 0.05). CONCLUSION: Incorporation of cranberry extract into self-cure PMMA denture base resin, up to 2 dry wt %, did not decline the flexural strength. However, there was a significant decrease in Vickers microhardness values when compared against the control group (0% cranberry inclusion).


Subject(s)
Flexural Strength , Hardness , Materials Testing , Plant Extracts , Polymethyl Methacrylate , Vaccinium macrocarpon , Polymethyl Methacrylate/chemistry , Vaccinium macrocarpon/chemistry , Plant Extracts/chemistry , Humans , Denture Bases , Dental Materials/chemistry , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , In Vitro Techniques
7.
Methods Mol Biol ; 2833: 51-56, 2024.
Article in English | MEDLINE | ID: mdl-38949700

ABSTRACT

Photodynamic therapy (PDT) is an established therapy used for the treatment of cutaneous skin cancers and other non-infective ailments. There has been recent interest in the opportunity to use aPDT (antimicrobial PDT) to treat skin and soft tissue infections. PDT utilizes photosensitizers that infiltrate all cells and "sensitize" them to a given wavelength of light. The photosensitizer is simply highly absorbent to a given wavelength of light and when excited will produce, in the presence of oxygen, damaging oxygen radicals and singlet oxygen. Bacterial cells are comparatively poor at combatting oxidative stress when compared with human cells therefore a degree of selective toxicity can be achieved with aPDT.In this chapter, we outline methodologies for testing aPDT in vitro using standard lab equipment.


Subject(s)
Photochemotherapy , Photosensitizing Agents , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Photochemotherapy/methods , Humans , Singlet Oxygen/metabolism , Anti-Infective Agents/pharmacology
8.
Methods Mol Biol ; 2833: 43-49, 2024.
Article in English | MEDLINE | ID: mdl-38949699

ABSTRACT

Current clinical practice assumes that a single antibiotic given as a bolus or as a course will successfully treat most infections. In modern medicine, this is becoming less and less true with drug-resistant, multi-drug-resistant, extensively drug-resistant, and untreatable infections becoming more common. Where single-drug therapy (monotherapy) fails, we will turn to multi-drug therapy. Alternatively, combination therapy could be useful to prevent the emergence of resistance. Multi-drug therapy is already standard for some multi-drug resistant infections and is the standard for the treatment of some pathogens such as Mycobacterium tuberculosis.The use of combination therapy for everyday infections could be a clear course out of the current AMR crisis we are facing. With every additional drug added to a combination (n + 1) the likelihood of the pathogen evolving resistance drops exponentially.Many generic antibiotics are cheap to manufacture as they have fallen out of patent protection but are less effective at pharmacologically effective doses due to overuse in the past. Combination therapy can combine these generic compounds into cocktails that can not only treat susceptible and resistant infections but can also reduce the risk of new resistances arising and can resuscitate the use of antimicrobials once thought defunct.In this chapter, we will summarize theory behind combination therapy and standard in vitro methodologies used.


Subject(s)
Drug Therapy, Combination , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Microbial Sensitivity Tests , Anti-Infective Agents/pharmacology , Anti-Infective Agents/therapeutic use , Drug Resistance, Multiple, Bacterial/drug effects
9.
Chirality ; 36(7): e23698, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38961803

ABSTRACT

Chirality, the property of molecules having mirror-image forms, plays a crucial role in pharmaceutical and biomedical research. This review highlights its growing importance, emphasizing how chiral drugs and nanomaterials impact drug effectiveness, safety, and diagnostics. Chiral molecules serve as precise diagnostic tools, aiding in accurate disease detection through unique biomolecule interactions. The article extensively covers chiral drug applications in treating cardiovascular diseases, CNS disorders, local anesthesia, anti-inflammatories, antimicrobials, and anticancer drugs. Additionally, it explores the emerging field of chiral nanomaterials, highlighting their suitability for biomedical applications in diagnostics and therapeutics, enhancing medical treatments.


Subject(s)
Nanostructures , Nanostructures/chemistry , Humans , Stereoisomerism , Pharmaceutical Preparations/chemistry , Animals , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology
10.
PLoS One ; 19(7): e0297351, 2024.
Article in English | MEDLINE | ID: mdl-38954692

ABSTRACT

OBJECTIVE: This study aimed to evaluate the effect of antimicrobial photodynamic therapy (aPDT) and the use of probiotics on the treatment of halitosis. METHODS: Fifty-two participants, aged from 18 to 25 years, exhaling sulfhydride (H2S) ≥ 112 ppb were selected. They were allocated into 4 groups (n = 13): Group 1: tongue scraper; Group 2: treated once with aPDT; Group 3: probiotic capsule containing Lactobacillus salivarius WB21 (6.7 x 108 CFU) and xylitol (280mg), 3 times a day after meals, for 14 days; Group 4: treated once with aPDT and with the probiotic capsule for 14 days. Halimetry with gas chromatography (clinical evaluation) and microbiological samples were collected from the dorsum of the tongue before and after aPDT, as well as after 7, 14, and 30 days. The clinical data failed to follow a normal distribution; therefore, comparisons were made using the Kruskal-Wallis test (independent measures) and Friedman ANOVA (dependent measures) followed by appropriate posthoc tests, when necessary. For the microbiological data, seeing as the data failed to follow a normal distribution, the Kruskal-Wallis rank sum test was performed with Dunn's post-test. The significance level was α = 0.05. RESULTS: Clinical results (halimetry) showed an immediate significant reduction in halitosis with aPDT (p = 0.0008) and/or tongue scraper (p = 0.0006). Probiotics showed no difference in relation to the initial levels (p = 0.7530). No significant differences were found in the control appointments. The amount of Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola were not altered throughout the analysis (p = 0.1616, p = 0.2829 and p = 0.2882, respectively). CONCLUSION: There was an immediate clinical reduction of halitosis with aPDT and tongue scraping, but there was no reduction in the number of bacteria throughout the study, or differences in the control times, both in the clinical and microbiological results. New clinical trials are necessary to better assess the tested therapies. TRIAL REGISTRATION: Clinical Trials NCT03996044.


Subject(s)
Halitosis , Ligilactobacillus salivarius , Photochemotherapy , Probiotics , Humans , Halitosis/microbiology , Halitosis/drug therapy , Halitosis/therapy , Probiotics/therapeutic use , Probiotics/administration & dosage , Adult , Photochemotherapy/methods , Male , Female , Adolescent , Young Adult , Tongue/microbiology , Anti-Infective Agents/therapeutic use
11.
Sci Rep ; 14(1): 15211, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956076

ABSTRACT

Biological agents are getting a noticeable concern as efficient eco-friendly method for nanoparticle fabrication, from which fungi considered promising agents in this field. In the current study, two fungal species (Embellisia spp. and Gymnoascus spp.) were isolated from the desert soil in Saudi Arabia and identified using 18S rRNA gene sequencing then used as bio-mediator for the fabrication of silver nanoparticles (AgNPs). Myco-synthesized AgNPs were characterized using UV-visible spectrometry, transmission electron microscopy, Fourier transform infrared spectroscopy and dynamic light scattering techniques. Their antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Klebsiella pneumoniae were investigated. In atrial to detect their possible antibacterial mechanism, Sodium dodecyl sulfate (SDS-PAGE) and TEM analysis were performed for Klebsiella pneumoniae treated by the myco-synthesized AgNPs. Detected properties of the fabricated materials indicated the ability of both tested fungal strains in successful fabrication of AgNPs having same range of mean size diameters and varied PDI. The efficiency of Embellisia spp. in providing AgNPs with higher antibacterial activity compared to Gymnoascus spp. was reported however, both indicated antibacterial efficacy. Variations in the protein profile of K. pneumoniae after treatments and ultrastructural changes were observed. Current outcomes suggested applying of fungi as direct, simple and sustainable approach in providing efficient AgNPs.


Subject(s)
Metal Nanoparticles , Silver , Soil Microbiology , Silver/chemistry , Silver/pharmacology , Saudi Arabia , Metal Nanoparticles/chemistry , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Desert Climate , Fungi/drug effects , Klebsiella pneumoniae/drug effects , Pseudomonas aeruginosa/drug effects , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry
12.
Microb Cell Fact ; 23(1): 189, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956629

ABSTRACT

Developing special textiles (for patients in hospitals for example) properties, special antimicrobial and anticancer, was the main objective of the current work. The developed textiles were produced after dyeing by the novel formula of natural (non-environmental toxic) pigments (melanin amended by microbial-AgNPs). Streptomyces torulosus isolate OSh10 with accession number KX753680.1 was selected as a superior producer for brown natural pigment. By optimization processes, some different pigment colors were observed after growing the tested strain on the 3 media. Dextrose and malt extract enhanced the bacteria to produce a reddish-black color. However, glycerol as the main carbon source and NaNO3 and asparagine as a nitrogen source were noted as the best for the production of brown pigment. In another case, starch as a polysaccharide was the best carbon for the production of deep green pigment. Peptone and NaNO3 are the best nitrogen sources for the production of deep green pigment. Microbial-AgNPs were produced by Fusarium oxysporum with a size of 7-21 nm, and the shape was spherical. These nanoparticles were used to produce pigments-nanocomposite to improve their promising properties. The antimicrobial of nanoparticles and textiles dyeing by nanocomposites was recorded against multidrug-resistant pathogens. The new nanocomposite improved pigments' dyeing action and textile properties. The produced textiles had anticancer activity against skin cancer cells with non-cytotoxicity detectable action against normal skin cells. The obtained results indicate to application of these textiles in hospital patients' clothes.


Subject(s)
Antineoplastic Agents , Coloring Agents , Silver , Textiles , Textiles/microbiology , Coloring Agents/chemistry , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Silver/pharmacology , Silver/chemistry , Fusarium/drug effects , Streptomyces/metabolism , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Metal Nanoparticles/chemistry , Pigments, Biological/pharmacology , Pigments, Biological/biosynthesis , Microbial Sensitivity Tests , Cell Line, Tumor
13.
Arch Microbiol ; 206(8): 347, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985339

ABSTRACT

Essential oils are among the most well-known phyto-compounds, and since ancient times, they have been utilized in medicine. Over 100 essential oils have been identified and utilized as therapies for various skin infections and related ailments. While numerous commercial medicines are available in different dosage forms to treat skin diseases, the persisting issues include their side effects, toxicity, and low efficacy. As a result, researchers are seeking novel classes of compounds as substitutes for synthetic drugs, aiming for minimal side effects, no toxicity, and high efficacy. Essential oils have shown promising antimicrobial activity against skin-associated pathogens. This review presents essential knowledge and scientific information regarding essential oil's antimicrobial capabilities against microorganisms that cause skin infections. Essential oils mechanisms against different pathogens have also been explored. Many essential oils exhibit promising activity against various microbes, which has been qualitatively assessed using the agar disc diffusion experiment, followed by determining the minimum inhibitory concentration for quantitative evaluation. It has been observed that Staphylococcus aureus and Candida albicans have been extensively researched in the context of skin-related infections and their antimicrobial activity, including established modes of action. In contrast, other skin pathogens such as Staphylococcus epidermidis, Streptococcus pyogens, Propionibacterium acnes, and Malassezia furfur have received less attention or neglected. This review report provides an updated understanding of the mechanisms of action of various essential oils with antimicrobial properties. This review explores the anti-infectious activity and mode of action of essential against distinct skin pathogens. Such knowledge can be valuable in treating skin infections and related ailments.


Subject(s)
Oils, Volatile , Oils, Volatile/pharmacology , Humans , Skin/microbiology , Skin/drug effects , Microbial Sensitivity Tests , Anti-Infective Agents/pharmacology , Bacteria/drug effects , Staphylococcus aureus/drug effects , Candida albicans/drug effects , Anti-Bacterial Agents/pharmacology
14.
Foodborne Pathog Dis ; 21(7): 447-457, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38985570

ABSTRACT

Bacillus cereus causes food poisoning by producing toxins that cause diarrhea and vomiting and, in severe cases, endocarditis, meningitis, and other diseases. It also tends to form biofilms and spores that lead to contamination of the food production environment. Citral is a potent natural antibacterial agent, but its antibacterial activity against B. cereus has not been extensively studied. In this study, we first determined the minimum inhibitory concentrations and minimum bactericidal concentrations, growth curves, killing effect in different media, membrane potential, intracellular adenosine triphosphate (ATP), reactive oxygen species levels, and morphology of vegetative cells, followed by germination rate, morphology, germination state of spores, and finally biofilm clearance effect. The results showed that the minimum inhibitory concentrations and minimum bactericidal concentrations of citral against bacteria ranged from 100 to 800 µg/mL. The lag phase of bacteria was effectively prolonged by citral, and the growth rate of bacteria was slowed down. Bacteria in Luria-Bertani broth were reduced to below the detection limit by citral at 800 µg/mL within 0.5 h. Bacteria in rice were reduced to 3 log CFU/g by citral at 4000 µg/mL within 0.5 h. After treatment with citral, intracellular ATP concentration was reduced, membrane potential was altered, intracellular reactive oxygen species concentration was increased, and normal cell morphology was altered. After treatment with citral at 400 µg/mL, spore germination rate was reduced to 16.71%, spore morphology was affected, and spore germination state was altered. It also had a good effect on biofilm removal. The present study showed that citral had good bacteriostatic activity against B. cereus vegetative cells and its spores and also had a good clearance effect on its biofilm. Citral has the potential to be used as a bacteriostatic substance for the control of B. cereus in food industry production.


Subject(s)
Acyclic Monoterpenes , Bacillus cereus , Biofilms , Acyclic Monoterpenes/pharmacology , Anti-Infective Agents/pharmacology , Bacillus cereus/drug effects , Bacillus cereus/growth & development , Bacillus cereus/ultrastructure , Spores, Bacterial/drug effects , Biofilms/drug effects , Microbial Sensitivity Tests , Oryza/microbiology , Membrane Potentials/drug effects , Intracellular Space/enzymology , Adenosine Triphosphate/metabolism , Reactive Oxygen Species/metabolism , Microscopy, Electron, Scanning , Food Microbiology
15.
PLoS One ; 19(7): e0305533, 2024.
Article in English | MEDLINE | ID: mdl-38985775

ABSTRACT

This study aimed to investigate how the presence of co-morbid conditions influenced antimicrobial usage as presumptive prophylaxis for suspected bacteremia in dogs and cats undergoing dental treatments at primary care veterinary clinics in the United States. In 2020, data was collected from 1076 veterinary clinics across 44 US states. A total of 681,541 general anesthesia dental procedures were conducted on 592,472 dogs and 89,069 cats. This revealed that systemic antimicrobials were administered in 8.8% of dog procedures and 7.8% of cat procedures in the absence of concurrent periodontal disease or extractions. Cefpodoxime, clindamycin, and amoxicillin-clavulanate were the most frequently used antimicrobials in dogs, while cefovecin, amoxicillin-clavulanate, and clindamycin topped the list for cats. Dogs with cardiovascular, hepato-renal, and endocrine co-morbidities, as well as those undergoing concurrent removal of cutaneous or subcutaneous neoplasia, displayed higher antimicrobial use. Similarly, cats with endocrine or hepato-renal disease, retroviral infection (i.e., feline leukemia virus (FeLV), feline immunodeficiency virus (FIV)), and concurrent removal of cutaneous or subcutaneous neoplasia exhibited increased antimicrobial use. Dogs with hepato-renal abnormalities had longer treatment durations compared to those without (10.1 vs. 9.6 days). Conversely, cats with concurrent removal of cutaneous or subcutaneous neoplasia had shorter durations of treatment as compared to those that did not have this procedure performed (8.4 vs 9.2 days). The findings of this study underscore the necessity for further research and collaboration within the veterinary community to develop evidence-based guidelines, promoting responsible antimicrobial use, and advancing the field of veterinary dentistry for enhanced patient outcomes.


Subject(s)
Cat Diseases , Animals , Dogs , Cats , United States/epidemiology , Cat Diseases/drug therapy , Comorbidity , Anti-Bacterial Agents/therapeutic use , Primary Health Care , Dog Diseases/drug therapy , Dog Diseases/epidemiology , Bacteremia/drug therapy , Dental Care , Anti-Infective Agents/therapeutic use
16.
Sci Rep ; 14(1): 16139, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997417

ABSTRACT

Rapid and safe hemostasis is crucial for the survival of bleeding patients in prehospital care. It is urgent to develop high performance hemostatic material to control the massive hemorrhage in the military field and accidental trauma. In this work, an efficient protein hemostat of thrombin was immobilized onto commercial gauze, which was mediated by self-polymerization and anchoring of tannic acid (TA). Through TA treatment, the efficient immobilization of thrombin was achieved, preserving both the biological activity of thrombin and the physical properties of the dressing, including absorbency, breathability, and mechanical performance. Moreover, in the presence of TA coating and thrombin, Gau@TA/Thr could obviously shortened clotting time and enriched blood components such as plasma proteins, platelets, and red blood cells, thereby exhibiting an enhanced in vitro coagulation effect. In SD rat liver volume defect and artery transection hemorrhage models, Gau@TA/Thr still had outstanding hemostatic performance. Besides, the Gau@TA/Thr gauze had inherent antibacterial property and demonstrated excellent biocompatibility. All results suggested that Gau@TA/Thr would be a potential candidate for treating uncontrollable hemorrhage in prehospital care.


Subject(s)
Bandages , Blood Coagulation , Hemorrhage , Hemostatics , Tannins , Thrombin , Tannins/chemistry , Tannins/pharmacology , Animals , Hemorrhage/drug therapy , Thrombin/metabolism , Blood Coagulation/drug effects , Rats , Hemostatics/pharmacology , Hemostatics/chemistry , Rats, Sprague-Dawley , Male , Anti-Infective Agents/pharmacology , Humans , Immobilized Proteins/pharmacology , Immobilized Proteins/chemistry , Disease Models, Animal , Polyphenols
17.
Molecules ; 29(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38998912

ABSTRACT

Managing chronic non-healing wounds presents a significant clinical challenge due to their frequent bacterial infections. Mesoporous silica-based materials possess robust wound-healing capabilities attributed to their renowned antimicrobial properties. The current study details the advancement of mesoporous silicon-loaded MnO and CaO molecules (HMn-Ca) against bacterial infections and chronic non-healing wounds. HMn-Ca was synthesized by reducing manganese chloride and calcium chloride by urotropine solution with mesoporous silicon as the template, thereby transforming the manganese and calcium ions on the framework of mesoporous silicon. The developed HMn-Ca was investigated using scanning electron microscopy (SEM), transmission electron microscope (TEM), ultraviolet-visible (UV-visible), and visible spectrophotometry, followed by the determination of Zeta potential. The production of reactive oxygen species (ROS) was determined by using the 3,3,5,5-tetramethylbenzidine (TMB) oxidation reaction. The wound healing effectiveness of the synthesized HMn-Ca is evaluated in a bacterial-infected mouse model. The loading of MnO and CaO inside mesoporous silicon enhanced the generation of ROS and the capacity of bacterial capture, subsequently decomposing the bacterial membrane, leading to the puncturing of the bacterial membrane, followed by cellular demise. As a result, treatment with HMn-Ca could improve the healing of the bacterial-infected wound, illustrating a straightforward yet potent method for engineering nanozymes tailored for antibacterial therapy.


Subject(s)
Manganese Compounds , Nanoparticles , Oxides , Reactive Oxygen Species , Wound Healing , Wound Healing/drug effects , Animals , Mice , Nanoparticles/chemistry , Oxides/chemistry , Oxides/pharmacology , Manganese Compounds/chemistry , Manganese Compounds/pharmacology , Porosity , Reactive Oxygen Species/metabolism , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Calcium Compounds/chemistry , Calcium Compounds/pharmacology , Oxidation-Reduction , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Manganese/chemistry , Manganese/pharmacology , Microbial Sensitivity Tests
18.
Molecules ; 29(13)2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38998923

ABSTRACT

Elderberry (Sambucus nigra L.) is a widespread deciduous shrub, of which the fruits (elderberries) are used in the food industry to produce different types of dietary supplement products. These berries have been found to show multiple bioactivities, including antidiabetic, anti-infective, antineoplastic, anti-obesity, and antioxidant activities. An elderberry extract product, Sambucol®, has also been used clinically for the treatment of viral respiratory infections. As the major components, phenolic compounds, such as simple phenolic acids, anthocyanins and other flavonoids, and tannins, show promising pharmacological effects that could account for the bioactivities observed for elderberries. Based on these components, salicylic acid and its acetate derivative, aspirin, have long been used for the treatment of different disorders. Dapagliflozin, an FDA-approved antidiabetic drug, has been developed based on the conclusions obtained from a structure-activity relationship study for a simple hydrolyzable tannin, ß-pentagalloylglucoside (ß-PGG). Thus, the present review focuses on the development of therapeutic agents from elderberries and their small-molecule secondary metabolites. It is hoped that this contribution will support future investigations on elderberries.


Subject(s)
Fruit , Plant Extracts , Sambucus nigra , Sambucus nigra/chemistry , Humans , Fruit/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Antioxidants/pharmacology , Antioxidants/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Animals , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry
19.
Molecules ; 29(13)2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38998932

ABSTRACT

Microbial contamination has profoundly impacted human health, and the effective eradication of widespread microbial issues is essential for addressing serious hygiene concerns. Taking polystyrene (PS) membrane as an example, we herein developed report a robust strategy for the in situ preparation of chlorine-regenerable antimicrobial polymer molecular sieve membranes through combining post-crosslinking and nucleophilic substitution reaction. The cross-linking PS membranes underwent a reaction with 5,5-dimethylhydantoin (DMH), leading to the formation of polymeric N-halamine precursors (PS-DMH). These hydantoinyl groups within PS-DMH were then efficiently converted into biocidal N-halamine structures (PS-DMH-Cl) via a simple chlorination process. ATR-FTIR and XPS spectra were recorded to confirm the chemical composition of the as-prepared PS-DMH-Cl membranes. SEM analyses revealed that the chlorinated PS-DMH-Cl membranes displayed a rough surface with a multitude of humps. The effect of chlorination temperature and time on the oxidative chlorine content in the PS-DMH-Cl membranes was systematically studied. The antimicrobial assays demonstrated that the PS-DMH-Cl membranes could achieve a 6-log inactivation of E. coli and S. aureus within just 4 min of contact time. Additionally, the resulting PS-DMH-Cl membranes exhibited excellent stability and regenerability of the oxidative chlorine content.


Subject(s)
Chlorine , Escherichia coli , Membranes, Artificial , Staphylococcus aureus , Chlorine/chemistry , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Halogenation , Polymers/chemistry , Polystyrenes/chemistry , Hydantoins/chemistry , Hydantoins/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Amines
20.
Molecules ; 29(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38998969

ABSTRACT

In this study, the isolation of compounds from the aerial parts of Morina persica L. and the antimicrobial, antioxidant and antityrosinase activities of various polarity extracts and isolated compounds were investigated. Column chromatography methods were used for isolation. A microdilution method was used to determine antimicrobial activity; Folin-Ciocalteu method was used to determine total phenolic content; DPPH and ABTS radical scavenging- capacity methods were used to determine antioxidant activity; and a mushroom tyrosinase method was used to determine antityrosinase activity. Kaempferol-3-O-ß-glucopyranoside (astragalin) and quercetin-3-O-rutinoside (rutin) were isolated from M. persica. The extracts and compounds showed higher activity against Staphylococcus aureus and Enterococcus faecalis than other tested bacteria. The highest phenolic content, DPPH, and ABTS radical scavenging activity were detected in an ethyl acetate extract at 50 µg/mL concentration. The methanol extract showed the highest antityrosinase effect at 200 µg/mL concentration.


Subject(s)
Anti-Infective Agents , Antioxidants , Plant Extracts , Antioxidants/pharmacology , Antioxidants/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Monophenol Monooxygenase/antagonists & inhibitors , Microbial Sensitivity Tests , Phenols/pharmacology , Phenols/chemistry , Phenols/analysis , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/isolation & purification , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Staphylococcus aureus/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...