Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 17.374
1.
Int J Chron Obstruct Pulmon Dis ; 19: 1177-1196, 2024.
Article En | MEDLINE | ID: mdl-38826697

Objective: Chronic obstructive pulmonary disease (COPD) is a chronic respiratory disease with high prevalence, morbidity, and mortality. Chuankezhi (CKZ) injection, a Chinese patent medicine, has been commonly used for treating COPD. This study evaluated the clinical efficacy of CKZ injections in COPD patients and explored potential underlying mechanisms by integrating meta-analysis and network pharmacology. Research Methods: Randomized controlled trials (RCTs) were search in database by Web of Science, Cochrane Library and PubMed as of November 2022 for literature collection, and the Review Manager 5.4 was used to analyze the data. Through the network pharmacology method, the chemical components and their targets, as well as the disease targets were further analyzed. Results: A total of 15 RCTs including 1212 patients were included. The results of meta-analysis showed that CKZ injection can significantly improve the clinical effective rate (RR = 1.25, 95% CI: 1.14 to 1.36), and the clinical advantage was that it can significantly reduced acute exacerbation rate (RR = 0.29, 95% CI: 0.12 to 0.70) and COPD assessment test (CAT) scores (MD =-4.62, 95% CI:-8.966 to-0.28). A total of 31 chemical compounds and 178 potential targets for CKZ injection were obtained from the online databases. Molecular docking revealed that most key components and targets could form stable structure. Conclusion: This systematic review with meta-analysis and network pharmacology demonstrates that CKZ could effectively improve the clinical efficacy and safety in the treatment of COPD. Such efficacy may be related to an anti-inflammatory effect and immunoregulation of CKZ via multiple components, multiple targets and multiple pathways.


Drugs, Chinese Herbal , Network Pharmacology , Pulmonary Disease, Chronic Obstructive , Randomized Controlled Trials as Topic , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/physiopathology , Pulmonary Disease, Chronic Obstructive/diagnosis , Humans , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/administration & dosage , Treatment Outcome , Lung/drug effects , Lung/physiopathology , Anti-Inflammatory Agents/administration & dosage , Middle Aged , Male , Aged , Female , Injections
2.
Clin Interv Aging ; 19: 981-991, 2024.
Article En | MEDLINE | ID: mdl-38827237

Background: Dexmedetomidine (Dex) may have anti-inflammatory properties and potentially reduce the incidence of postoperative organ injury. Objective: To investigate whether Dex protects pulmonary and renal function via its anti-inflammatory effects in elderly patients undergoing prolonged major hepatobiliary and pancreatic surgery. Design and Setting: Between October 2019 and December 2020, this randomized controlled trial was carried out at a tertiary hospital in Chongqing, China. Patients: 86 patients aged 60-75 who underwent long-duration (> 4 hrs) hepatobiliary and pancreatic surgery without significant comorbidities were enrolled and randomly assigned into two groups at a 1:1 ratio. Interventions: Patients were given either Dex or an equivalent volume of 0.9% saline (Placebo) with a loading dose of 1 µg kg-1 for 10 min, followed by 0.5 µg kg-1 hr-1 for maintenance until the end of surgery. Main Outcome Measures: The changes in serum concentrations of interleukin-6 (IL-6) and tumour necrosis factor-α (TNF-α) were primary outcomes. Results: At one hour postoperatively, serum IL-6 displayed a nine-fold increase (P<0.05) in the Placebo group. Administration of Dex decreased IL-6 to 278.09 ± 45.43 pg/mL (95% CI: 187.75 to 368.43) compared to the Placebo group (P=0.019; 432.16 ± 45.43 pg/mL, 95% CI: 341.82 to 522.50). However, no significant differences in TNF-α were observed between the two groups. The incidence of postoperative acute kidney injury was twice as high in the Placebo group (9.30%) compared to the Dex group (4.65%), and the incidence of postoperative acute lung injury was 23.26% in the Dex group, lower than that in the Placebo group (30.23%), although there was no statistical significance between the two groups. Conclusion: Dex administration in elderly patients undergoing major hepatobiliary and pancreatic surgery reduces inflammation and potentially protects kidneys and lungs. Registration: Chinese Clinical Trials Registry, identifier: ChiCTR1900024162, on 28 June 2019.


Dexmedetomidine , Interleukin-6 , Postoperative Complications , Tumor Necrosis Factor-alpha , Humans , Dexmedetomidine/administration & dosage , Dexmedetomidine/pharmacology , Male , Female , Aged , Postoperative Complications/prevention & control , Middle Aged , Interleukin-6/blood , Tumor Necrosis Factor-alpha/blood , Inflammation/prevention & control , China , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/therapeutic use , Double-Blind Method , Biliary Tract Surgical Procedures/adverse effects , Acute Kidney Injury/prevention & control , Acute Kidney Injury/etiology
3.
Sci Rep ; 14(1): 12800, 2024 06 04.
Article En | MEDLINE | ID: mdl-38834591

This study aims to observe the hemostatic and anti-inflammatory effects of intravenous administration of tranexamic acid (TXA) in dual segment posterior lumbar interbody fusion (PLIF). The data of 53 patients with lumbar disease treated with double-segment PLIF were included in this study. The observation group was received a single-dose intravenous of TXA (1 g/100 mL) 15 min before skin incision after general anesthesia. The control group was not received TXA. The observation indicators included postoperative activated partial prothrombin time (APTT), thrombin time (PT), thrombin time (TT), fibrinogen (FIB), platelets (PLT), and postoperative deep vein thrombosis in the lower limbs, surgical time, intraoperative bleeding volume, postoperative drainage volume, transfusion rate, postoperative hospital stay, red blood cell (RBC), hemoglobin (HB), hematocrit (HCT), C-reactive protein (CRP), and erythrocyte sedimentation rate (ESR) on the 1st, 4th, 7th, and last tested day after surgery. All patients successfully completed the operation, and there was no deep vein thrombosis after operation. There was no statistically significant difference in postoperative APTT, PT, TT, FIB, PLT, surgical time, and postoperative hospital stay between the two groups (p > 0.05). The intraoperative bleeding volume, postoperative drainage volume, and transfusion rate in the observation group were lower than those in the control group, and the differences were statistically significant (p < 0.05). There was no statistically significant difference in RBC, HB, HCT, CRP, and ESR between the two groups on the 1st, 4th, 7th, and last tested day after surgery (p > 0.05). Intravenous administration of TXA in dual segment PLIF does not affect coagulation function and can reduce bleeding volume, postoperative drainage volume, and transfusion rate. Moreover, it does not affect the postoperative inflammatory response.


Spinal Fusion , Tranexamic Acid , Humans , Tranexamic Acid/administration & dosage , Female , Male , Middle Aged , Spinal Fusion/methods , Spinal Fusion/adverse effects , Case-Control Studies , Aged , Lumbar Vertebrae/surgery , Administration, Intravenous , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/pharmacology , Hemostatics/administration & dosage , Hemostatics/pharmacology , Adult , Blood Loss, Surgical/prevention & control , Antifibrinolytic Agents/administration & dosage , Antifibrinolytic Agents/therapeutic use
4.
AAPS PharmSciTech ; 25(5): 108, 2024 May 10.
Article En | MEDLINE | ID: mdl-38730090

Wound healing presents a complex physiological process that involves a sequence of events orchestrated by various cellular and molecular mechanisms. In recent years, there has been growing interest in leveraging nanomaterials and peptides to enhance wound healing outcomes. Nanocarriers offer unique properties such as high surface area-to-volume ratio, tunable physicochemical characteristics, and the ability to deliver therapeutic agents in a controlled manner. Similarly, peptides, with their diverse biological activities and low immunogenicity, hold great promise as therapeutics in wound healing applications. In this review, authors explore the potential of peptides as bioactive components in wound healing formulations, focusing on their antimicrobial, anti-inflammatory, and pro-regenerative properties. Despite the significant progress made in this field, several challenges remain, including the need for standardized characterization methods, optimization of biocompatibility and safety profiles, and translation from bench to bedside. Furthermore, developing multifunctional nanomaterial-peptide hybrid systems represents promising avenues for future research. Overall, the integration of nanomaterials made up of natural or synthetic polymers with peptide-based formulations holds tremendous therapeutic potential in advancing the field of wound healing and improving clinical outcomes for patients with acute and chronic wounds.


Drug Carriers , Peptides , Wound Healing , Wound Healing/drug effects , Humans , Peptides/chemistry , Peptides/administration & dosage , Peptides/pharmacology , Drug Carriers/chemistry , Animals , Drug Delivery Systems/methods , Nanostructures/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/chemistry , Nanoparticles/chemistry , Anti-Infective Agents/administration & dosage , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry
5.
BMJ Open Gastroenterol ; 11(1)2024 May 07.
Article En | MEDLINE | ID: mdl-38719549

BACKGROUND AND OBJECTIVE: The influence of concomitant prednisolone on clinical outcomes and safety in infliximab-treated ulcerative colitis (UC) patients is unknown. DESIGN, SETTING, PARTICIPANTS AND OUTCOME MEASURES: A retrospective cohort study was performed, including 147 UC patients treated with infliximab at a tertiary inflammatory bowel disease (IBD) centre. Primary outcome was corticosteroid-free clinical remission (CFCR) at week 14 and week 52. Patients were grouped according to prednisolone tapering regimens: standard (≤5 mg/week), fast (>5 mg/week), direct discontinuation or no prednisolone. Patients intolerant to corticosteroids and patients stopping corticosteroids in preparation for surgery including colectomy during their initial admission were excluded. RESULTS: There was no overall association between prednisolone exposure or no exposure and CFCR at weeks 14 or 52 of infliximab. The proportion of patients with C reactive protein ≤5 mg/L was higher in the standard tapering at week 14 as compared with faster regimens or no prednisolone. In subgroup analyses, the standard tapering was associated with a higher rate of CFCR at week 14 compared with the fast-tapering regimen in patients receiving ≥40 mg prednisolone at initiation of infliximab (64.3% vs 26.3%, p=0.04) and among patients admitted with acute severe UC (66.6% vs 23.5%, p<0.05). Similar data were seen at week 52. Prednisolone did not affect infliximab trough levels but increased infection rates (10/77 vs 2/70, p=0.03), in particular C. difficile infection. CONCLUSION: In UC patients with limited disease burden, prednisolone did not affect effectiveness of infliximab. However, patients with increased disease burden seem to benefit from corticosteroid combination therapy.


Colitis, Ulcerative , Gastrointestinal Agents , Infliximab , Prednisolone , Remission Induction , Humans , Colitis, Ulcerative/drug therapy , Infliximab/administration & dosage , Infliximab/therapeutic use , Retrospective Studies , Prednisolone/administration & dosage , Prednisolone/therapeutic use , Male , Female , Adult , Middle Aged , Treatment Outcome , Remission Induction/methods , Gastrointestinal Agents/administration & dosage , Gastrointestinal Agents/therapeutic use , Drug Tapering/methods , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/adverse effects , C-Reactive Protein/analysis , C-Reactive Protein/metabolism , Glucocorticoids/administration & dosage , Glucocorticoids/therapeutic use , Glucocorticoids/adverse effects , Drug Therapy, Combination
6.
Otol Neurotol ; 45(5): 564-571, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38728560

OBJECTIVE: To investigate the safety and feasibility of precise delivery of a long-acting gel formulation containing 6% dexamethasone (SPT-2101) to the round window membrane for the treatment of Menière's disease. STUDY DESIGN: Prospective, unblinded, cohort study. SETTING: Tertiary care neurotology clinic. PATIENTS: Adults 18 to 85 years with a diagnosis of unilateral definite Menière's disease per Barany society criteria. INTERVENTIONS: A single injection of a long-acting gel formulation under direct visualization into the round window niche. MAIN OUTCOME MEASURES: Procedure success rate, adverse events, and vertigo control. Vertigo control was measured with definitive vertigo days (DVDs), defined as any day with a vertigo attack lasting 20 minutes or longer. RESULTS: Ten subjects with unilateral Menière's disease were enrolled. Precise placement of SPT-2101 at the round window was achieved in all subjects with in-office microendoscopy. Adverse events included one tympanic membrane perforation, which healed spontaneously after the study, and two instances of otitis media, which resolved with antibiotics. The average number of DVDs was 7.6 during the baseline month, decreasing to 3.3 by month 1, 3.7 by month 2, and 1.9 by month 3. Seventy percent of subjects had zero DVDs during the third month after treatment. CONCLUSIONS: SPT-2101 delivery to the round window is safe and feasible, and controlled trials are warranted to formally assess efficacy.


Dexamethasone , Meniere Disease , Round Window, Ear , Humans , Meniere Disease/drug therapy , Dexamethasone/administration & dosage , Dexamethasone/therapeutic use , Middle Aged , Male , Female , Aged , Adult , Treatment Outcome , Prospective Studies , Aged, 80 and over , Delayed-Action Preparations , Cohort Studies , Vertigo/drug therapy , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/therapeutic use , Gels , Young Adult
7.
Clin Exp Dent Res ; 10(3): e886, 2024 Jun.
Article En | MEDLINE | ID: mdl-38798063

OBJECTIVE: This study evaluates the efficacy of a novel mucoadhesive patch containing Nigella sativa 10% extract compared to triamcinolone 0.1% in alleviating symptoms and reducing lesion severity in patients with erosive-atrophic oral lichen planus. METHODS AND MATERIALS: A pilot study comprising two groups, each with 10 patients, was conducted. The intervention group received mucoadhesive patches containing N. sativa 10% extract, while the control group received triamcinolone acetonide 0.1% patches. Pain and burning intensity, measured through visual analog scale, and lesion severity based on the Thongprasom scale were assessed weekly for 4 weeks. Descriptive records were kept for side effects and patient satisfaction. RESULTS: Pain and burning intensity decreased in both groups throughout the sessions, with the N. sativa group showing a greater reduction than the triamcinolone group. The reduction in burning intensity within each group was significant (p < .001), and there was a significant difference between groups only in the second session (p = .045). The overall difference between groups was not significant (p > .05). Lesion severity also decreased significantly in both groups (p < .001), with a significant difference between groups observed in the third session (p = .043) and overall throughout the study (p = .006). CONCLUSION: The use of N. sativa extract in mucoadhesive patches was as effective as corticosteroids in reducing pain, burning, and lesion severity in patients with oral lichen planus, with N. sativa showing superior results in some sessions. Notably, no significant complications were observed with N. sativa use, making it a promising treatment option for lichen planus.


Lichen Planus, Oral , Nigella sativa , Plant Extracts , Adult , Aged , Female , Humans , Male , Middle Aged , Anti-Inflammatory Agents/administration & dosage , Lichen Planus, Oral/drug therapy , Nigella sativa/chemistry , Pain Measurement , Phytotherapy/methods , Pilot Projects , Plant Extracts/administration & dosage , Treatment Outcome , Triamcinolone/administration & dosage , Triamcinolone/therapeutic use , Triamcinolone Acetonide/administration & dosage , Triamcinolone Acetonide/therapeutic use
8.
Transl Vis Sci Technol ; 13(5): 15, 2024 May 01.
Article En | MEDLINE | ID: mdl-38767904

Purpose: To highlight the utility of en face swept-source optical coherence tomography angiography (SS-OCTA) in assessing vitreoretinal interface cells (VRICs) of patients with active uveitis and their dynamics. Methods: In this prospective, single-center study, 20 eyes from patients with active uveitis were analyzed using six 6 × 6-mm macular scans at three time points: active inflammation (baseline), clinically improving (T1), and resolved inflammation (T2). VRICs were visualized using 3-µm en face OCT slabs on the inner limiting membrane. The variation of VRIC number, density, and size over time was assessed, and VRIC measurements were compared with clinical grading. Results: At baseline, the VRIC count was significantly higher (552.5 VRICs) than that of the healthy controls (478.2 VRICs), with a density of 15.3 cells/mm2. VRIC number decreased significantly to 394.8 (P = 0.007) at T1, with a density of 10.9 cells/mm2 (P = 0.007). VRIC size reduced from 6.8 µm to 6.3 µm at T1 (P = 0.009) and remained stable at T2 (P = 0.3). Correlation coefficients between inflammatory parameters (anterior chamber cells and National Eye Institute vitreous haze), and VRIC count indicated a positive correlation at baseline (r = 0.53), weakening at T1 (r = 0.36), and becoming negative at T2 (r = -0.24). Conclusions: En face SS-OCTA revealed increased VRIC number and size in active uveitis, likely due to monocyte recruitment. Post-inflammation control, VRIC number, size, and density significantly decreased, returning to normal despite residual anterior chamber cells or vitreous haze. Translational Relevance: Visualization of VRICs by in vivo OCT opens up new opportunities for therapeutic targets.


Tomography, Optical Coherence , Uveitis , Vitreous Body , Humans , Male , Prospective Studies , Female , Uveitis/drug therapy , Uveitis/pathology , Middle Aged , Adult , Vitreous Body/pathology , Vitreous Body/diagnostic imaging , Fluorescein Angiography/methods , Aged , Retina/pathology , Retina/diagnostic imaging , Young Adult , Cell Count , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/administration & dosage
9.
Int J Pharm ; 658: 124205, 2024 Jun 10.
Article En | MEDLINE | ID: mdl-38734278

The current wound healing process faces numerous challenges such as bacterial infection, inflammation and oxidative stress. However, wound dressings used to promote wound healing, are not well suited to meet the clinical needs. Hyaluronic acid (HA) not only has excellent water absorption and good biocompatibility but facilitates cell function and tissue regeneration. Dopamine, on the other hand, increases the overall viscosity of the hydrogel and possesses antioxidant property. Furthermore, chitosan exhibits outstanding performance in antimicrobial, anti-inflammatory and antioxidant activities. Basic fibroblast growth factor (bFGF) is conducive to cell proliferation and migration, vascular regeneration and wound healing. Hence, we designed an all-in-one hydrogel patch containing dopamine and chitosan framed by hyaluronic acid (HDC) with sprayed gelatin methacryloyl (GelMA) microspheres loaded with bFGF (HDC-bFGF). The hydrogel patch exhibits excellent adhesive, anti-inflammatory, antioxidant and antibacterial properties. In vitro experiments, the HDC-bFGF hydrogel patch not only showed significant inhibitory effect on RAW cell inflammation and Staphylococcus aureus (S. aureus) growth but also effectively scavenged free radicals, in addition to promoting the migration of 3 T3 cells. In the mice acute infected wound model, the HDC-bFGF hydrogel patch adhered to the wound surface greatly accelerated the healing process via its anti-inflammatory and antioxidant activities, bacterial inhibition and pro-vascularization effects. Therefore, the multifunctional HDC-bFGF hydrogel patch holds great promise for clinical application.


Anti-Bacterial Agents , Anti-Inflammatory Agents , Antioxidants , Chitosan , Fibroblast Growth Factor 2 , Gelatin , Hydrogels , Methacrylates , Microspheres , Staphylococcus aureus , Wound Healing , Animals , Wound Healing/drug effects , Mice , Fibroblast Growth Factor 2/administration & dosage , Fibroblast Growth Factor 2/chemistry , Fibroblast Growth Factor 2/pharmacology , Gelatin/chemistry , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Hydrogels/chemistry , Hydrogels/administration & dosage , Chitosan/chemistry , Chitosan/administration & dosage , Antioxidants/administration & dosage , Antioxidants/pharmacology , Antioxidants/chemistry , Methacrylates/chemistry , Methacrylates/administration & dosage , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Male , Dopamine/administration & dosage , Dopamine/chemistry , Dopamine/pharmacology , Hyaluronic Acid/chemistry , Hyaluronic Acid/administration & dosage , Hyaluronic Acid/pharmacology , RAW 264.7 Cells , Cell Movement/drug effects , Wound Infection/drug therapy
10.
Int J Pharm ; 658: 124222, 2024 Jun 10.
Article En | MEDLINE | ID: mdl-38735632

Dry eye disease (DED) is a chronic multifactorial disorder of the ocular surface caused by tear film dysfunction and constitutes one of the most common ocular conditions worldwide. However, its treatment remains unsatisfactory. While artificial tears are commonly used to moisturize the ocular surface, they do not address the underlying causes of DED. Apigenin (APG) is a natural product with anti-inflammatory properties, but its low solubility and bioavailability limit its efficacy. Therefore, a novel formulation of APG loaded into biodegradable and biocompatible nanoparticles (APG-NLC) was developed to overcome the restricted APG stability, improve its therapeutic efficacy, and prolong its retention time on the ocular surface by extending its release. APG-NLC optimization, characterization, biopharmaceutical properties and therapeutic efficacy were evaluated. The optimized APG-NLC exhibited an average particle size below 200 nm, a positive surface charge, and an encapsulation efficiency over 99 %. APG-NLC exhibited sustained release of APG, and stability studies demonstrated that the formulation retained its integrity for over 25 months. In vitro and in vivo ocular tolerance studies indicated that APG-NLC did not cause any irritation, rendering them suitable for ocular topical administration. Furthermore, APG-NLC showed non-toxicity in an epithelial corneal cell line and exhibited fast cell internalization. Therapeutic benefits were demonstrated using an in vivo model of DED, where APG-NLC effectively reversed DED by reducing ocular surface cellular damage and increasing tear volume. Anti-inflammatory assays in vivo also showcased its potential to treat and prevent ocular inflammation, particularly relevant in DED patients. Hence, APG-NLC represent a promising system for the treatment and prevention of DED and its associated inflammation.


Apigenin , Drug Carriers , Dry Eye Syndromes , Lipids , Nanoparticles , Animals , Apigenin/administration & dosage , Apigenin/chemistry , Apigenin/pharmacology , Apigenin/pharmacokinetics , Drug Carriers/chemistry , Dry Eye Syndromes/drug therapy , Humans , Rabbits , Lipids/chemistry , Lipids/administration & dosage , Cell Line , Nanoparticles/chemistry , Administration, Ophthalmic , Drug Liberation , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/pharmacokinetics , Particle Size , Nanostructures/administration & dosage , Nanostructures/chemistry , Male
11.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38731964

Cannabidiol (CBD) is a non-psychoactive compound derived from Cannabis sativa. It has demonstrated promising effects in combating inflammation and holds potential as a treatment for the progression of chronic inflammation. However, the clinical application of CBD is limited due to its poor solubility and bioavailability. This study introduces an effective method for preparing CBD-loaded solid lipid nanoparticles (CBD-SLNs) using a combination of low-energy hot homogenization and ultrasonication. We enhanced this process by employing statistical optimization with response surface methodology (RSM). The optimized CBD-SLN formulation utilizes glyceryl monostearate as the primary lipid component of the nanocarrier. The CBD-SLN formulation is screened as a potential tool for managing chronic inflammation. Stable, uniformly dispersed spherical nanoparticles with a size of 123 nm, a surface charge of -32.1 mV, an encapsulation efficiency of 95.16%, and a drug loading of 2.36% were obtained. The CBD-SLNs exhibited sustained release properties, ensuring prolonged and controlled CBD delivery, which could potentially amplify its therapeutic effects. Additionally, we observed that CBD-SLNs significantly reduced both reactive oxygen and nitrogen species and proinflammatory cytokines in chondrocyte and macrophage cell lines, with these inhibitory effects being more pronounced than those of free CBD. In conclusion, CBD-SLNs demonstrated superiority over free CBD, highlighting its potential as an effective delivery system for CBD.


Cannabidiol , Cytokines , Inflammation , Nanoparticles , Cannabidiol/chemistry , Cannabidiol/pharmacology , Nanoparticles/chemistry , Cytokines/metabolism , Inflammation/drug therapy , Humans , Animals , Free Radicals , Mice , Drug Carriers/chemistry , Lipids/chemistry , Cell Line , Reactive Oxygen Species/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/administration & dosage , Liposomes
12.
Mol Pharm ; 21(6): 3040-3052, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38767388

The progression of liver fibrosis is determined by the interaction of damaged hepatocytes, active hepatic stellate cells, and macrophages, contributing to the development of oxidative stress and inflammatory environments within the liver. Unfortunately, the current pharmacological treatment for liver fibrosis is limited by its inability to regulate inflammation and oxidative stress concurrently. In this study, we developed a cell membrane biomaterial for the treatment of liver fibrosis, which we designated as PM. PM is a biomimetic nanomaterial constructed by encapsulating polydopamine (PDA) with a macrophage membrane (MM). It is hypothesized that PM nanoparticles (NPs) can successfully target the site of inflammation, simultaneously inhibit inflammation, and scavenge reactive oxygen species (ROS). In vitro experiments demonstrated that PM NPs exhibited strong antioxidant properties and the ability to neutralize pro-inflammatory cytokines (TNF-α, IL-6, and IL-1ß). Moreover, the capacity of PM NPs to safeguard cells from oxidative stress and their anti-inflammatory efficacy in an inflammatory model were validated in subsequent cellular experiments. Additionally, PM NPs exhibited a high biocompatibility. In a mouse model of hepatic fibrosis, PM NPs were observed to aggregate efficiently in the fibrotic liver, displaying excellent antioxidant and anti-inflammatory properties. Notably, PM NPs exhibited superior targeting, anti-inflammatory, and ROS scavenging abilities in inflamed tissues compared to MM, PDA, or erythrocyte membrane-encapsulated PDA. Under the synergistic effect of anti-inflammation and antioxidant, PM NPs produced significant therapeutic effects on liver fibrosis in mice. In conclusion, the synergistic alleviation of inflammation and ROS scavenging by this specially designed nanomaterial, PM NPs, provides valuable insights for the treatment of liver fibrosis and other inflammatory- or oxidative stress-related diseases.


Antioxidants , Indoles , Inflammation , Liver Cirrhosis , Macrophages , Nanoparticles , Oxidative Stress , Polymers , Reactive Oxygen Species , Animals , Polymers/chemistry , Reactive Oxygen Species/metabolism , Indoles/chemistry , Indoles/pharmacology , Indoles/administration & dosage , Mice , Liver Cirrhosis/drug therapy , Liver Cirrhosis/pathology , Nanoparticles/chemistry , Oxidative Stress/drug effects , Macrophages/drug effects , Macrophages/metabolism , Antioxidants/pharmacology , Antioxidants/chemistry , Inflammation/drug therapy , Inflammation/pathology , Humans , Male , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/administration & dosage , RAW 264.7 Cells , Mice, Inbred C57BL , Disease Models, Animal , Cytokines/metabolism
13.
Biomed Pharmacother ; 175: 116717, 2024 Jun.
Article En | MEDLINE | ID: mdl-38749179

Knee osteoarthritis (OA) involves articular cartilage degradation driven mainly by inflammation. Kaempferol (KM), known for its anti-inflammatory property, holds potential for OA treatment. This study investigated the potential of hyaluronic acid (HA)-coated gelatin nanoparticles loaded with KM (HA-KM GNP) for treating knee OA. KM was encapsulated into gelatin nanoparticles (KM GNP) and then coated with HA to form HA-KM GNPs. Physical properties were characterized, and biocompatibility and cellular uptake were assessed in rat chondrocytes. Anti-inflammatory and chondrogenic properties were evaluated using IL-1ß-stimulated rat chondrocytes, compared with HA-coated nanoparticles without KM (HA GNP) and KM alone. Preclinical efficacy was tested in an anterior cruciate ligament transection (ACLT)-induced knee OA rat model treated with intra-articular injection of HA-KM GNP. Results show spherical HA-KM GNPs (88.62 ± 3.90 nm) with positive surface charge. Encapsulation efficiency was 98.34 % with a sustained release rate of 18 % over 48 h. Non-toxic KM concentration was 2.5 µg/mL. In IL-1ß-stimulated OA rat chondrocytes, HA-KM GNP significantly down-regulated RNA expression of IL-1ß, TNF-α, COX-2, MMP-9, and MMP-13, while up-regulating SOX9 compared to HA GNP, and KM. In vivo imaging demonstrated significantly higher fluorescence intensity within rat knee joints for 3 hours post HA-KM GNP injection compared with KM GNP (185.2% ± 34.1% vs. 45.0% ± 16.7%). HA-KM GNP demonstrated significant effectiveness in reducing subchondral sclerosis, attenuating inflammation, inhibiting matrix degradation, restoring cartilage thickness, and reducing the severity of OA in the ACLT rat model. In conclusion, HA-KM GNP holds promise for knee OA therapy.


Chondrocytes , Hyaluronic Acid , Kaempferols , Nanoparticles , Osteoarthritis, Knee , Rats, Sprague-Dawley , Animals , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Osteoarthritis, Knee/drug therapy , Osteoarthritis, Knee/pathology , Kaempferols/pharmacology , Kaempferols/administration & dosage , Nanoparticles/chemistry , Injections, Intra-Articular , Rats , Chondrocytes/drug effects , Chondrocytes/metabolism , Chondrocytes/pathology , Male , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/administration & dosage , Cartilage, Articular/drug effects , Cartilage, Articular/pathology , Interleukin-1beta/metabolism , Cells, Cultured
14.
Biomed Pharmacother ; 175: 116647, 2024 Jun.
Article En | MEDLINE | ID: mdl-38703503

OBJECTIVE: To improve the biological and toxicological properties of Mefenamic acid (MA), the galactosylated prodrug of MA named MefeGAL was included in polymeric solid dispersions (PSs) composed of poly(glycerol adipate) (PGA) and Pluronic® F68 (MefeGAL-PS). MefeGAL-PS was compared with polymeric solid formulations of MA (MA-PS) or a mixture of equal ratio of MefeGAL/MA (Mix-PS). METHODS: The in vitro and in vivo pharmacological and toxicological profiles of PSs have been investigated. In detail, we evaluated the anti-inflammatory (carrageenan-induced paw edema test), analgesic (acetic acid-induced writhing test) and ulcerogenic activity in mice after oral treatment. Additionally, the antiproliferative activity of PSs was assessed on in vitro models of colorectal and non-small cell lung cancer. RESULTS: When the PSs were resuspended in water, MefeGAL's, MA's and their mixture's apparent solubilities improved due to the interaction with the polymeric formulation. By comparing the in-vivo biological performance of MefeGAL-PS with that of MA, MefeGAL and MA-PS, it was seen that MefeGAL-PS exhibited the same sustained and delayed analgesic and anti-inflammatory profile as MefeGAL but did not cause gastrointestinal irritation. The pharmacological effect of Mix-PS was present from the first hours after administration, lasting about 44 hours with only slight gastric mucosa irritation. In-vitro evaluation indicated that Mix-PS had statistically significant higher cytotoxicity than MA-PS and MefeGAL-PS. CONCLUSIONS: These preliminary data are promising evidence that the galactosylated prodrug approach in tandem with a polymer-drug solid dispersion formulation strategy could represent a new drug delivery route to improve the solubility and biological activity of NSAIDs.


Drug Delivery Systems , Mefenamic Acid , Animals , Mefenamic Acid/pharmacology , Mefenamic Acid/administration & dosage , Mice , Humans , Male , Edema/drug therapy , Edema/chemically induced , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/administration & dosage , Prodrugs/pharmacology , Prodrugs/administration & dosage , Analgesics/pharmacology , Analgesics/administration & dosage , Analgesics/toxicity , Cell Proliferation/drug effects , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/toxicity , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Stomach Ulcer/pathology , Poloxamer/chemistry
15.
Int J Mol Sci ; 25(10)2024 May 18.
Article En | MEDLINE | ID: mdl-38791541

Appropriate nutrients are essential for cellular function. Dietary components can alter the risk of systemic metabolic diseases, including cardiovascular diseases, cancer, diabetes, and obesity, and can also affect retinal diseases, including age-related macular degeneration, diabetic retinopathy, and glaucoma. Dietary nutrients have been assessed for the prevention or treatment of retinal ischemic diseases and the diseases of aging. In this article, we review clinical and experimental evidence concerning the potential of some nutritional supplements to prevent or treat retinal ischemic diseases and provide further insights into the therapeutic effects of nutritional supplementation on retinopathies. We will review the roles of nutrients in preventing or protecting against retinal ischemic diseases.


Anti-Inflammatory Agents , Antioxidants , Dietary Supplements , Retinal Diseases , Humans , Antioxidants/therapeutic use , Antioxidants/administration & dosage , Retinal Diseases/diet therapy , Retinal Diseases/therapy , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/administration & dosage , Animals , Ischemia/therapy , Ischemia/diet therapy
16.
Psychiatry Res ; 337: 115949, 2024 Jul.
Article En | MEDLINE | ID: mdl-38795698

Ketamine, a N-methyl-D-aspartate (NMDA) antagonist, is used for treatment-resistant depression (TRD). Recent studies have shown that there are increased levels of pro-inflammatory cytokines in individuals with major depressive disorder (MDD) and those with higher levels of oxidative stress markers have a decreased or null response to conventional antidepressants. Glutathione (GSH) as an antioxidant adjuvant to ketamine has not been well studied. This double-blind study with 30 patients divided into 2 groups of 15 each, aimed to determine if GSH, added to standard ketamine infusion (GSH+K), rendered better outcomes in MDD patients versus patients receiving ketamine infusions with a normal saline placebo (K+NS). There were significant drops in BDI-II scores from day 1 to day 14, PHQ- scores from day 1 to day 14 and PHQ-9 scores day 14 to day 28, suggesting the overall treatment was effective. There were no statistically significant differences between the groups over time. However, a sustained improvement in depressive symptoms was observed for 14 days post-infusion in both groups.


Depressive Disorder, Major , Glutathione , Ketamine , Humans , Ketamine/administration & dosage , Ketamine/pharmacology , Ketamine/therapeutic use , Depressive Disorder, Major/drug therapy , Female , Male , Adult , Double-Blind Method , Middle Aged , Drug Therapy, Combination , Antidepressive Agents/administration & dosage , Anti-Inflammatory Agents/administration & dosage , Depressive Disorder, Treatment-Resistant/drug therapy , Treatment Outcome , Infusions, Intravenous , Psychiatric Status Rating Scales
17.
Behav Brain Res ; 469: 115041, 2024 Jul 09.
Article En | MEDLINE | ID: mdl-38723674

Cognitive impairment (CI) and memory deficit are prevalent manifestations of multiple sclerosis (MS). This study explores the therapeutic potential of arbutin on memory deficits using a rat hippocampal demyelination model induced by lysophosphatidylcholine (LPC). Demyelination was induced by bilateral injection of 1% LPC into the CA1 area of the hippocampus, and the treated group received daily arbutin injections (50 mg/kg, i.p) for two weeks. Arbutin significantly improved memory impairment 14 days post-demyelination as assessed by Morris water maze test. Histological and immunohistochemical analyses demonstrated that arbutin reduced demyelination suppressed pro-inflammatory markers (IL-1ß, TNF-α) and increased anti-inflammatory cytokine IL-10. Arbutin also diminished astrocyte activation, decreased iNOS, enhanced anti-oxidative factors (Nrf2, HO-1), and exhibited neuroprotective effects by elevating myelin markers (MBP) and brain derived neurotrophic factor (BDNF). These findings propose arbutin as a potential therapeutic candidate for multiple sclerosis-associated memory deficits, warranting further clinical exploration.


Anti-Inflammatory Agents , Arbutin , Demyelinating Diseases , Disease Models, Animal , Lysophosphatidylcholines , Memory Disorders , Neuroprotective Agents , Animals , Lysophosphatidylcholines/pharmacology , Rats , Memory Disorders/drug therapy , Neuroprotective Agents/pharmacology , Neuroprotective Agents/administration & dosage , Male , Arbutin/pharmacology , Arbutin/administration & dosage , Demyelinating Diseases/drug therapy , Demyelinating Diseases/chemically induced , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/administration & dosage , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/pathology , Rats, Sprague-Dawley
18.
ACS Appl Mater Interfaces ; 16(22): 28209-28221, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38778020

Diabetic chronic wounds are notoriously difficult to heal as a result of their susceptibility to infection. To address this issue, we constructed an innovated and adaptable solution in the form of injectable chitosan (CS) hydrogel, denoted as CCOD, with enhanced antibacterial and anti-inflammatory properties. This hydrogel is created through a Schiff base reaction that combines chitosan-grafted chlorogenic acid (CS-CGA) and oxidized hyaluronic acid (OHA) with deferoxamine (DFO) as a model drug. The combination of CS and CGA has demonstrated excellent antibacterial and anti-inflammatory properties, while grafting played a pivotal role in making these positive effects stable. These unique features make it possible to customize injectable hydrogel and fit any wound shape, allowing for more effective and personalized treatment of complex bacterial infections. Furthermore, the hydrogel system is not only effective against inflammation and bacterial infections but also possesses antioxidant and angiogenic abilities, making it an ideal solution for the repair of chronic wounds that have been previously thought of as unmanageable.


Anti-Bacterial Agents , Anti-Inflammatory Agents , Chitosan , Chlorogenic Acid , Deferoxamine , Hyaluronic Acid , Hydrogels , Wound Healing , Chitosan/chemistry , Chitosan/pharmacology , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Deferoxamine/chemistry , Deferoxamine/pharmacology , Wound Healing/drug effects , Hydrogels/chemistry , Hydrogels/pharmacology , Animals , Chlorogenic Acid/chemistry , Chlorogenic Acid/pharmacology , Chlorogenic Acid/administration & dosage , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/administration & dosage , Mice , Humans , Oxidation-Reduction , Angiogenesis Inducing Agents/pharmacology , Angiogenesis Inducing Agents/chemistry , Angiogenesis Inducing Agents/administration & dosage , Angiogenesis Inducing Agents/therapeutic use , Neovascularization, Physiologic/drug effects , Staphylococcus aureus/drug effects , Angiogenesis
19.
Int J Nanomedicine ; 19: 4217-4234, 2024.
Article En | MEDLINE | ID: mdl-38766660

Introduction: Rheumatoid arthritis (RA) is an inflammatory immune-mediated disease that involves synovitis, cartilage destruction, and even joint damage. Traditional agents used for RA therapy remain unsatisfactory because of their low efficiency and obvious adverse effects. Therefore, we here established RA microenvironment-responsive targeted micelles that can respond to the increase in reactive oxygen species (ROS) levels in the joint and improve macrophage-specific targeting of loaded drugs. Methods: We here prepared ROS-responsive folate-modified curcumin micelles (TK-FA-Cur-Ms) in which thioketal (TK) was used as a ROS-responsive linker for modifying polyethylene glycol 5000 (PEG5000) on the micellar surface. When micelles were in the ROS-overexpressing inflammatory microenvironment, the PEG5000 hydration layer was shed, and the targeting ligand FA was exposed, thereby enhancing cellular uptake by macrophages through active targeting. The targeting, ROS sensitivity and anti-inflammatory properties of the micelles were assessed in vitro. Collagen-induced arthritis (CIA) rats model was utilized to investigate the targeting, expression of serum inflammatory factors and histology change of the articular cartilage by micelles in vivo. Results: TK-FA-Cur-Ms had a particle size of 90.07 ± 3.44 nm, which decreased to 78.87 ± 2.41 nm after incubation with H2O2. The micelles exhibited in vitro targeting of RAW264.7 cells and significantly inhibited inflammatory cytokine levels. Pharmacodynamic studies have revealed that TK-FA-Cur-Ms prolonged the drug circulation and exhibited augmented cartilage-protective and anti-inflammatory effects in vivo. Conclusion: The unique ROS-responsive targeted micelles with targeting, ROS sensitivity and anti-inflammatory properties were successfully prepared and may offer an effective therapeutic strategy against RA.


Arthritis, Experimental , Arthritis, Rheumatoid , Curcumin , Folic Acid , Micelles , Reactive Oxygen Species , Animals , Curcumin/pharmacology , Curcumin/chemistry , Curcumin/pharmacokinetics , Curcumin/administration & dosage , Reactive Oxygen Species/metabolism , Rats , Arthritis, Rheumatoid/drug therapy , RAW 264.7 Cells , Mice , Folic Acid/chemistry , Folic Acid/pharmacology , Arthritis, Experimental/drug therapy , Polyethylene Glycols/chemistry , Drug Carriers/chemistry , Folate Receptors, GPI-Anchored/metabolism , Macrophages/drug effects , Macrophages/metabolism , Male , Particle Size , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/pharmacokinetics , Disease Models, Animal
20.
Turk J Ophthalmol ; 54(2): 112-115, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38646109

In recent years, adalimumab has been increasingly used in the chronic treatment of non-infectious uveitis. This case report aimed to describe a drug-induced adverse event in a 34-year-old man who presented with blurred vision and floaters in the right eye and was being treated for intermediate uveitis. The patient had started topical treatment with a diagnosis of uveitis at another center. Best corrected visual acuity at presentation was 0.8 (decimal) in the right eye and 1.0 in the left eye. On examination, the anterior chamber in the right eye was clear, with anterior vitreous cells and mild haze, and snow banking and vitreous opacities in the inferior periphery. Fluorescein angiography (FA) showed hyperfluorescence in the right disc and leakage in the inferior periphery. As the inflammation did not resolve with local treatment, systemic cyclosporine was administered, after which the patient exhibited vomiting and weakness. Cyclosporine was discontinued and adalimumab treatment was started. On examination 5 months later, bilateral vitreous cells and mild vitreous opacity were noted, and FA showed mild leakage in the inferior periphery bilaterally. In addition, a depigmented patchy vitiligo lesion was observed on the chin. Due to the persistence of intraocular inflammation and on the recommendation of the dermatology clinic, adalimumab treatment was continued and topical tacrolimus was started for the lesion. On examination 3 months later, the inflammatory findings had resolved and there was no progression of the vitiligo lesion. The patient's treatment was continued. Taken together with the previous literature findings, no pathology was found in the patient's systemic examination, suggesting that this lesion was a side effect of the treatment. Ophthalmologists should be alert for this side effect in patients receiving adalimumab.


Adalimumab , Anti-Inflammatory Agents , Fluorescein Angiography , Vitiligo , Humans , Adalimumab/adverse effects , Adalimumab/therapeutic use , Male , Adult , Fluorescein Angiography/methods , Vitiligo/diagnosis , Vitiligo/chemically induced , Anti-Inflammatory Agents/adverse effects , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/administration & dosage , Visual Acuity , Fundus Oculi
...