Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 872
Filter
1.
Int J Mol Sci ; 25(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38891815

ABSTRACT

The growing trend in fruit wine production reflects consumers' interest in novel, diverse drinking experiences and the increasing demand for healthier beverage options. Fruit wines made from kiwi, pomegranates, and persimmons fermented using S. bayanus Lalvin strain EC1118 demonstrate the versatility of winemaking techniques. Kiwifruit, persimmon, and pomegranate wines were analyzed using HPLC and GC-TOFMS analyses to determine their concentrations of phenolic acids and volatile compounds. These results were supported by Fourier transform infrared (FTIR) spectroscopy to characterize and compare chemical shifts in the polyphenol regions of these wines. The wines' characterization included an anti-inflammatory assay based on NO, TNF-alpha, and IL-6 production in the RAW 264.7 macrophage model. FTIR spectroscopy predicted the antioxidant and phenolic contents in the wines. In terms of polyphenols, predominantly represented by chlorogenic, caffeic, and gallic acids, pomegranate and kiwifruit wines showed greater benefits. However, kiwifruit wines exhibited a highly diverse profile of volatile compounds. Further analysis is necessary, particularly regarding the use of other microorganisms in the fermentation process and non-Saccharomyces strains methods. These wines exhibit high biological antioxidant potential and health properties, providing valuable insights for future endeavors focused on designing healthy functional food products.


Subject(s)
Anti-Inflammatory Agents , Fermentation , Fruit , Saccharomyces cerevisiae , Volatile Organic Compounds , Wine , Wine/analysis , Volatile Organic Compounds/analysis , Volatile Organic Compounds/metabolism , Mice , Saccharomyces cerevisiae/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/analysis , Anti-Inflammatory Agents/chemistry , Fruit/chemistry , Fruit/metabolism , Animals , RAW 264.7 Cells , Spectroscopy, Fourier Transform Infrared/methods , Polyphenols/analysis , Antioxidants/analysis , Actinidia/chemistry , Pomegranate/chemistry
2.
Am J Chin Med ; 52(3): 667-716, 2024.
Article in English | MEDLINE | ID: mdl-38716617

ABSTRACT

Licorice (Glycyrrhiza) is a medicinal and food homologue of perennial plants derived from the dried roots and rhizomes of the genus Glycyrrhiza in the legume family. In recent years, the comprehensive utilization of licorice resources has attracted people's attention. It is widely utilized to treat diseases, health food products, food production, and other industrial applications. Furthermore, numerous bioactive components of licorice are found using advanced extraction processes, which mainly include polyphenols (flavonoids, dihydrostilbenes, benzofurans, and coumarin), triterpenoids, polysaccharides, alkaloids, and volatile oils, all of which have been reported to possess a variety of pharmacological characteristics, including anti-oxidant, anti-inflammatory, antibacterial, antiviral, anticancer, neuroprotective, antidepressive, antidiabetic, antiparasitic, antisex hormone, skin effects, anticariogenic, antitussive, and expectorant activities. Thereby, all of these compounds promote the development of novel and more effective licorice-derived products. This paper reviews the progress of research on extraction techniques, chemical composition, bioactivities, and applications of licorice to provide a reference for further development and application of licorice in different areas.


Subject(s)
Glycyrrhiza , Glycyrrhiza/chemistry , Humans , Antioxidants/analysis , Anti-Inflammatory Agents/analysis , Plant Extracts/pharmacology , Plant Extracts/chemistry , Hypoglycemic Agents/analysis , Hypoglycemic Agents/chemistry , Polyphenols/analysis , Phytotherapy , Alkaloids/analysis , Alkaloids/isolation & purification , Flavonoids/analysis , Flavonoids/isolation & purification , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Polysaccharides/analysis , Polysaccharides/pharmacology , Animals , Oils, Volatile/chemistry , Oils, Volatile/pharmacology
3.
Phytochem Anal ; 35(6): 1527-1536, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38772567

ABSTRACT

BACKGROUND: Lysimachia christinae Hance (LCH) is a traditional medicine used to treat gallstone disease and cholecystitis. Despite its known anti-inflammatory and choleretic effects, its quality has not been extensively evaluated. OBJECTIVE: In this study, we aimed to establish a reliable quality evaluation method for LCH via fingerprint, spectrum-effect relationship, and quantitative analyses of multicomponents by a single marker (QAMS). METHODS: First, the fingerprints and anti-inflammatory and choleretic activities of 14 LCH batches were determined. Then, the gray relation analysis method was used to analyze the peak areas of the fingerprint profile and pharmacodynamic data. Subsequently, the characteristic peaks were tentatively identified using high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Finally, rutin was selected as the internal reference material, and QAMS was used to analyze the LCH components. RESULTS: Pharmacodynamic experiments confirmed that LCH exerted anti-inflammatory and choleretic effects. Moreover, 15 flavonoids related to the anti-inflammatory and choleretic effects of LCH were identified. Notably, relative error percentage between the QAMS and external standard method was less than 5%. CONCLUSION: This study successfully established a comprehensive evaluation method for the qualitative and quantitative analyses of LCH.


Subject(s)
Primulaceae , Primulaceae/chemistry , Chromatography, High Pressure Liquid/methods , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/analysis , Male , Flavonoids/analysis , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Quality Control , Rats , Lysimachia
4.
Phytochem Anal ; 35(5): 1152-1173, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38591190

ABSTRACT

INTRODUCTION: Artemisia absinthium L. is a well-known medicinal, aromatic, and edible plant with important medicinal and economic properties and a long history of use in treating liver inflammation and other diseases; however, there has been insufficient progress in quality control. OBJECTIVE: This study aimed to investigate the quality markers for the anti-inflammatory and antioxidant activities of A. absinthium based on spectrum-effect relationship analysis. MATERIALS AND METHODS: Eighteen batches of A. absinthium from different origins were used. Chemical fingerprints were obtained by ultra-performance liquid chromatography (UPLC). The chemical compositions were identified by quadrupole-Orbitrap high-resolution mass spectrometry. Anti-inflammatory activity was assessed by inhibition of cyclooxygenase-2 and 15-lipoxygenase in vitro and inhibition of nitric oxide release in lipopolysaccharide-induced BV-2 cells. Antioxidant activity was assessed by DPPH and ABTS radical scavenging assays. The relationship between bioactivity and chemical fingerprints was then analyzed using chemometrics including gray relational analysis, bivariate correlation analysis, and orthogonal partial least squares analysis. RESULTS: Different batches of A. absinthium extracts possessed significant anti-inflammatory and antioxidant activities to varying degrees. Eighty compounds were identified from A. absinthium, and 12 main common peaks were obtained from the UPLC fingerprints. P3 (chlorogenic acid), P5 (isochlorogenic acid A), and P6 (isochlorogenic acid C) were screened as the most promising active compounds by correlation analysis and further validated for their remarkable anti-inflammatory effects. CONCLUSION: This is the first study to screen the quality markers of A. absinthium by establishing the spectrum-effect relationship, which can provide a reference for the development of quality standards and further research on A. absinthium.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Artemisia absinthium , Antioxidants/pharmacology , Antioxidants/analysis , Antioxidants/chemistry , Artemisia absinthium/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/analysis , Mice , Animals , Chromatography, High Pressure Liquid/methods , Nitric Oxide , Plant Extracts/chemistry , Plant Extracts/pharmacology , Lipopolysaccharides , Cell Line
5.
J Ethnopharmacol ; 328: 118051, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38493905

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Traditionally, the plant Morinda longissima Y.Z.Ruan (Rubiaceae) is used by ethnic people in Vietnam for the treatment of liver diseases and hepatitis. AIM OF THE STUDY: The study was designed to assess the efficacy of the 95% ethanolic extract of Morinda longissima roots (MLE) in experimental immune inflammation. The phytochemical variation of root extract and the chemical structures of natural compounds were also investigated using HPLC-DAD-HR-MS analysis. MATERIALS AND METHODS: Three different doses (100, 200, and 300 mg/kg b.w.) of MLE were chosen to determine anti-inflammatory activity. The mice were given orally extracts and monitored their behavior and mortality for 14 days to evaluate acute toxicity. The volume of the paw and the histopathological evaluation were carried out. The polyphenolic phytoconstituents of MLE extract were identified using LC/MS analysis. The anti-inflammatory efficacy in silico and molecular docking simulations of these natural products were evaluated based on their cyclooxygenase (COX)-1 and 2 inhibitory effects. RESULTS: This investigation showed the 95% ethanolic extract of Morinda longissima roots was found non-toxic up to 2000 mg/kg dose level in an acute study, neither showed mortality nor treatment-related signs of toxicity in mice. Eight anthraquinones and anthraquinone glycosides of Morinda longissima roots were identified by HPLC-DAD-HR-MS analysis. In the in vivo experiments, MLE was found to possess powerful anti-inflammatory activities in comparison with diclofenac sodium. The highest anti-inflammatory activity of MLE in mice was observed at a dose of 300 mg/kg body weight. The in silico analysis showed that seven out the eight anthraquinones and anthraquinone glycosides possess a selectivity index RCOX-2/COX-1 lower than 1, indicating that these compounds are selective against the COX-2 enzyme in the following the order: rubiadin-3-methyl ether < morindone morindone-6-methyl ether < morindone-5-methyl ether < damnacanthol < rubiadin < damnacanthol-3-O-ß-primeveroside. The natural compounds with the best selectivity against the COX-2 enzyme are quercetin (9), rubiadin-3-methyl ether (7), and morindone (4), with RCOX2/COX1 ratios of 0.02, 0.03, and 0.19, respectively. When combined with the COX-2 protein in the MD research, quercetin and rubiadin-3-methyl ether greatly stabilized the backbone proteins and ligands. CONCLUSION: In conclusion, the anthraquinones and ethanolic extract of Morinda longissima roots may help fight COX-2 inflammation. To develop novel treatments for inflammatory disorders linked to this one, these chemicals should be investigated more in the future.


Subject(s)
Methyl Ethers , Morinda , Rubiaceae , Humans , Mice , Animals , Morinda/chemistry , Rubiaceae/chemistry , Molecular Docking Simulation , Cyclooxygenase 2 , Quercetin/analysis , Plant Roots/chemistry , Anthraquinones/pharmacology , Anthraquinones/therapeutic use , Plant Extracts/therapeutic use , Plant Extracts/toxicity , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/analysis , Glycosides/chemistry , Inflammation/drug therapy , Methyl Ethers/analysis , Phytochemicals/therapeutic use , Phytochemicals/toxicity
6.
Sci Rep ; 14(1): 5751, 2024 03 08.
Article in English | MEDLINE | ID: mdl-38459108

ABSTRACT

L. edodes (L. edodes) is the most consumed mushroom in the world and has been well known for its therapeutic potential as an edible and medicinal candidate, it contains dietary fibers, vitamins, proteins, minerals, and carbohydrates. In the current study butanolic extract of mushroom was used to form semisolid butanol extract. The current study aimed to explore biometabolites that might have biological activities in n-butanol extract of L. edodes using FT-IR and GC-MS and LC-MS. The synergistic properties of bioactive compounds were futher assessed by performing different biological assays such as antioxidant, anti-inflammatory and antidiabetic. FTIR spectra showed different functional groups including amide N-H group, Alkane (C-H stretching), and (C = C stretching) groups at different spectrum peaks in the range of 500 cm-1 to 5000 cm-1 respectively. GC-MS profiling of n-butanol extract depicted 34 potent biomolecules among those dimethyl; Morphine, 2TMS derivative; Benzoic acid, methyl ester 1-(2-methoxy-1-methylethoxy)-2-propanol were spotted at highest range. Results indicate that L. edodes n-butanol extract showed a maximum anti-inflammatory potential 91.4% at 300 mg/mL. Antioxidant activity was observed by measuring free radical scavenging activity which is 64.6% at optimized concentration along with good antidiabetic activity. In-silico study executed the biopotential of active ingredient morphine which proved the best docking score (- 7.0 kJ/mol) against aldose reductase. The in-silico drug design analysis was performed on biometabolites detected through GC-MS that might be a potential target for sulfatase-2 to treat ruminated arthritis. Morphine binds more strongly (- 7.9 kJ/mol) than other bioactive constituents indicated. QSAR and ADMET analysis shown that morphine is a good candidates against ruminated arthritis. The current study showed that L. edodes might be used as potent drug molecules to cure multiple ailments. As mushrooms have high bioactivity, they can be used against different diseases and to develop antibacterial drugs based on the current situation in the world in which drug resistance is going to increase due to misuse of antibiotics so new and noval biological active compounds are needed to overcome the situation.


Subject(s)
1-Butanol , Arthritis , Humans , Butanols , Spectroscopy, Fourier Transform Infrared , Antioxidants/chemistry , Anti-Bacterial Agents , Phytochemicals/pharmacology , Phytochemicals/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/analysis , Hypoglycemic Agents/pharmacology , Morphine Derivatives , Plant Extracts/chemistry
7.
Curr Top Med Chem ; 24(11): 952-972, 2024.
Article in English | MEDLINE | ID: mdl-38415434

ABSTRACT

An individual's therapeutic drug exposure level is directly linked to corresponding clinical effects. Rapid, sensitive, inexpensive, portable and reliable devices are needed for diagnosis related to drug exposure, treatment, and prognosis of diseases. Electrochemical sensors are useful for drug monitoring due to their high sensitivity and fast response time. Also, they can be combined with portable signal read-out devices for point-of-care applications. In recent years, nanomaterials such as carbon-based, carbon-metal nanocomposites, noble nanomaterials have been widely used to modify electrode surfaces due to their outstanding features including catalytic abilities, conductivity, chemical stability, biocompatibility for development of electrochemical sensors. This review paper presents the most recent advances about nanomaterials-based electrochemical sensors including the use of green assessment approach for detection of drugs including anticancer, antiviral, anti-inflammatory, and antibiotics covering the period from 2019 to 2023. The sensor characteristics such as analyte interactions, fabrication, sensitivity, and selectivity are also discussed. In addition, the current challenges and potential future directions of the field are highlighted.


Subject(s)
Electrochemical Techniques , Nanostructures , Nanostructures/chemistry , Humans , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/analysis , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Green Chemistry Technology , Biosensing Techniques , Anti-Inflammatory Agents/analysis , Anti-Inflammatory Agents/chemistry , Antiviral Agents/chemistry , Antiviral Agents/analysis , Antiviral Agents/pharmacology
8.
J Nutr Health Aging ; 28(2): 100003, 2024 02.
Article in English | MEDLINE | ID: mdl-38388107

ABSTRACT

OBJECTIVES: Several studies suggest that moderate wine consumption, particularly red wine, may have benefits for cardiovascular health. Red wine contains a variety of bioactive compounds, including polyphenols like phenolic acids, which have demonstrated anti-inflammatory effects in experimental models. The aim of this study was to assess the anti-inflammatory properties of wine, measured as urinary tartaric acid, a new biomarker of wine consumption. DESIGN, SETTINGS, AND PARTICIPANTS: One-year longitudinal study that included 217 participants from the PREDIMED trial. MEASUREMENTS: Plasma inflammatory biomarkers and urinary tartaric acid were analyzed using xMAP technology and high-performance liquid chromatography, respectively. Multivariable regression analyses were performed to assess the relationship between variations over 1-year in urinary tartaric acid concentrations and 1-year changes in serum inflammatory molecules, including adhesion cell molecules, interleukine-6, tumour necrosis factor alpha, and monocyte chemotactic protein 1. Three categories were built according to tertiles of 1-y changes in urinary tartaric acid. RESULTS: Using a ROC curve, urinary tartaric acid was corroborated as a reliable biomarker of wine consumption (AUC = 0.818 (95% CI: 0.76; 0.87). In the continuous analysis, participants with higher increases in tartaric acid significantly reduced their concentrations in soluble vascular adhesion molecule (sVCAM-1) after 1-year of follow-up (-0.20 (-0.38; -9,93) ng/mL per 1-SD increment, p-value = 0.031). Moreover, tertiles 2 and 3 of 1-year changes in tartaric acid presented a significant reduction in soluble intercellular cell adhesion molecule (sICAM-1) as compared to tertile 1 (-0.31 (-0.52; -0.10) ng/mL, p-value = 0.014 and -0.29 (-0.52; -0.07) ng/mL, p-value = 0.023, respectively). Participants in the third tertile also exhibited a reduced concentration of sVCAM-1 compared to those in the first tertile (-0.31 (-0.55; -0.06) ng/mL, p-value = 0.035). CONCLUSIONS: Our findings suggest that wine consumption is associated with lower levels of inflammation due to the anti-inflammatory properties of wine compounds.


Subject(s)
Atherosclerosis , Tartrates , Wine , Humans , Wine/analysis , Longitudinal Studies , Inflammation , Anti-Inflammatory Agents/analysis , Biomarkers
9.
Food Chem ; 444: 138516, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38306771

ABSTRACT

In this study, the phytochemical profile of fifty olive leaves (OL) extracts from Spain, Italy, Greece, Portugal, and Morocco was characterized and their anti-cholinergic, anti-inflammatory, and antioxidant activities were evaluated. Luteolin-7-O-glucoside, isoharmnentin, and apigenin were involved in the acetylcholinesterase (AChE) inhibitory activity, while oleuropein and hydroxytyrosol showed noteworthy potential. Secoiridoids contributed to the cyclooxygenase-2 inhibitory activity and antioxidant capacity. Compounds such as oleuropein, ligstroside and luteolin-7-O-glucoside, may exert an important role in the ferric reducing antioxidant capacity. It should be also highlighted the role of hydroxytyrosol, hydroxycoumarins, and verbascoside concerning the antioxidant activity. This research provides valuable insights and confirms that specific compounds within OL extracts contribute to distinct anti-cholinergic, anti-inflammatory, and anti-oxidative effects.


Subject(s)
Antioxidants , Iridoid Glucosides , Olea , Phenylethyl Alcohol/analogs & derivatives , Antioxidants/chemistry , Acetylcholinesterase , Olea/chemistry , Cyclooxygenase 2 , Plant Extracts/chemistry , Iridoids/analysis , Phytochemicals/analysis , Plant Leaves/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/analysis , Cholinergic Antagonists/analysis
10.
J Agric Food Chem ; 72(6): 2943-2962, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38301126

ABSTRACT

The antioxidant and anti-inflammatory activities of acylated and decarboxylated gomphrenins, as well as Basella alba L. fruit extract, were investigated in relation to gomphrenin, known for its high biological potential. The most abundant natural acylated gomphrenins, namely, 6'-O-E-caffeoyl-gomphrenin (malabarin) and 6'-O-E-4-coumaroyl-gomphrenin (globosin), were isolated from B. alba extract for the studies. In addition, controlled thermal decarboxylation of gomphrenin in the purified B. alba extract at 65-75 °C resulted in the formation of the most prevalent decarboxylated products, including 17-decarboxy-gomphrenin and 2,17-bidecarboxy-gomphrenin, along with their isoforms. The structures of the decarboxylated pigments were confirmed by NMR analyses. Exploring the matrix effect on pigment reactivity revealed a tremendous increase in the stability of all betacyanins after the initial stage of extract purification using a cation exchanger under various conditions. This indicates the removal of a substantial portion of the unfavorable matrix from the extract, which presumably contains reactive species that could otherwise degrade the pigments. Furthermore, the high concentration of citrates played a significant role in favoring the formation of 2-decarboxy-gomphrenin to a considerable extent. In vitro screening experiments revealed that the tested compounds demonstrated strong anti-inflammatory properties in lipopolysaccharide (LPS)-activated human macrophages. This effect encompassed the selective inhibition of cytokine and chemokine release from activated macrophages, modulation of the chemotactic activity of immune cells, and the regulation of tissue remodeling mediators' release.


Subject(s)
Betacyanins , Caryophyllales , Humans , Betacyanins/chemistry , Spinacia oleracea , Fruit/chemistry , Plant Extracts/chemistry , Chromatography, High Pressure Liquid/methods , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/analysis , Betalains/pharmacology , Betalains/chemistry
11.
Int J Mol Sci ; 25(4)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38396766

ABSTRACT

The manuscript provides an overview of recent scientific reports on the properties and range of health-promoting effects of acerola (Malpighia emarginata DC) fruits and leaves. Acerola is a natural raw material that, in its unprocessed form, is known to be a rich source of vitamin C and polyphenolic compounds. For this reason, the consumption of acerola may provide a number of health-promoting benefits, particularly related to its strong anti-free radical effects. The review discusses anti-inflammatory and anticancer effects of acerola fruit and leaves as well as its therapeutic effects on selected physiological processes in the human system. Their biochemical mechanisms are also explained. Recommendations for the consumption of acerola in the prevention of inflammatory and free radical diseases are presented. The part of the article devoted to anticancer effects of acerola describes the possibilities of using the edible parts of this raw material to obtain products and preparations of potential use in cancer prevention and therapy.


Subject(s)
Antioxidants , Malpighiaceae , Humans , Antioxidants/pharmacology , Antioxidants/analysis , Ascorbic Acid/analysis , Rutin , Fruit/chemistry , Free Radicals/analysis , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/analysis , Malpighiaceae/chemistry , Malpighiaceae/physiology
12.
Int J Mol Sci ; 25(4)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38396810

ABSTRACT

RLPa-2 (Mw 15.6 kDa) is a polysaccharide isolated from Rosa laevigata Michx. It consists of arabinose (Ara), galactose (Gal), rhamnose (Rha), glucose (Glc), xylose (Xyl), and galacturonic acid (Gal-UA) with a molar ratio of 1.00:0.91:0.39:0.34:0.25:0.20. Structural characterization was performed by methylation and NMR analysis, which indicated that RLPa-2 might comprise →6)-α-D-Galp-(1→, →4)-α-D-GalpA-(1→, α-L-Araf-(1→, →2,4)-α-D-Glcp-(1→, ß-D-Xylp, and α-L-Rhap. In addition, the bioactivity of RLPa-2 was assessed through an in vitro macrophage polarization assay. Compared to positive controls, there was a significant decrease in the expression of M1 macrophage markers (CD80, CD86) and p-STAT3/STAT3 protein. Additionally, there was a down-regulation in the production of pro-inflammatory mediators (NO, IL-6, TNF-α), indicating that M1 macrophage polarization induced with lipopolysaccharide (LPS) and interferon-γ (IFN-γ) stimulation could be inhibited by RLPa-2. These findings demonstrate that the RLPa-2 might be considered as a potential anti-inflammatory drug to reduce inflammation.


Subject(s)
Fruit , Rosa , Fruit/chemistry , Rosa/chemistry , Polysaccharides/chemistry , Macrophages , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/analysis
13.
Plant Foods Hum Nutr ; 79(1): 151-158, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38231454

ABSTRACT

Amaranth, quinoa, and buckwheat are the representatives of pseudocereals, different parts and by-products of which are used in daily nutrition and food processing industry. However, only scarce information exists on the bioactivity of their oils. Thus, oils obtained from amaranth, buckwheat, and red, yellow, and white quinoa seeds were evaluated in terms of their nutritional (fatty acid profile, squalene), cytotoxic (against normal and neoplastic gastrointestinal, prostate, and skin cells), anti-inflammatory and antiradical (interleukin 6, TNF-alpha, nitric oxide, DPPH, Total phenolics, and superoxide dismutase) potential in the in vitro model. Linoleic (42.9-52.5%) and oleic (22.5-31.1%) acids were the two main unsaturated, while palmitic acid (4.9-18.6%) was the major saturated fatty acid in all evaluated oils. Squalene was identified in all evaluated oils with the highest content in amaranth oil (7.6 g/100 g), and the lowest in buckwheat oil (2.1 g/100 g). The evaluated oils exerted a high direct cytotoxic impact on cancer cells of different origins, but also revealed anti-inflammatory and antiradical potentials. Yellow quinoa oil was the most active, especially toward skin (A375; IC50 6.3 µg/mL), gastrointestinal (HT29 IC50 4.9 µg/mL), and prostate cancer cells (LNCaP IC50 7.6 µg/mL). The observed differences in the activity between the oils from the tested quinoa varieties deserve further studies. High selectivity of the oils was noted, which indicates their safety to normal cells. The obtained results indicate that the oils are good candidates for functional foods with perspective chemopreventive potential.


Subject(s)
Seeds , Squalene , Squalene/analysis , Spectroscopy, Fourier Transform Infrared , Seeds/chemistry , Fatty Acids/analysis , Plant Oils/analysis , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/analysis
14.
Nat Prod Res ; 38(4): 701-705, 2024.
Article in English | MEDLINE | ID: mdl-36915053

ABSTRACT

Two new prenylated flavonoids named sinoflavonoids NJ and NK (1-2), along with ten known compounds were isolated from the fruits of Podophyllum hexandrum Royle. The chemical structures were determined through NMR spectroscopic data and MS analysis. Sinoflavonoid NJ (1) with an unusual 5,11-dioxabenzo[b]fluoren-10-one skeleton was firstly reported from Berberidaceae. The isolated flavonoids were tested with LPS-induced RAW 264.7 mouse macrophages model for their anti-inflammatory activity. Sinoflavonoid NJ (1) showed the most potent inhibition on nitric oxide production with IC50 value as 0.06 µM.


Subject(s)
Berberidaceae , Flavonoids , Animals , Mice , Flavonoids/chemistry , Fruit/chemistry , Berberidaceae/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/analysis
15.
Phytochem Anal ; 35(2): 336-349, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37787024

ABSTRACT

INTRODUCTION: The root of Bupleurum scorzonerifolium Willd. (BS) is officially recognized in the Chinese Pharmacopoeia. In contrast, the aerial part of BS (ABS), accounting for 80% of BS, is typically discarded, causing potential waste of medicinal resources. ABS has shown benefits in the treatment of inflammation-related diseases in China and Spain, and the material basis underlying its anti-inflammatory effects must be systematically elucidated for the rational use of ABS. OBJECTIVE: We aimed to screen and validate the anti-inflammatory quality markers (Q-markers) of ABS and to confirm the ideal time for ABS harvesting. METHODS: The chemical components and anti-inflammatory effects of ABS from 10 extracted parts were analyzed by UPLC-Q-TOF-MS/MS and in a lipopolysaccharide (LPS)-induced cell model. Anti-inflammatory substances were screened by Pearson bivariate analysis and gray correlation analysis, and the anti-inflammatory effects were verified in a zebrafish tail-cutting inflammation model. HPLC was applied to measure the Q-marker contents of ABS in different harvesting periods. RESULTS: Ten ABS extracts effectively alleviated the increase in LPS-induced proinflammatory cytokines in RAW 264.7 cells. Forty components were identified from them, among which 27 were common components. Eight components were correlated with anti-inflammatory effects, which were confirmed to reverse the expression of proinflammatory and anti-inflammatory factors in a zebrafish model. Chlorogenic acid, hypericin, rutin, quercetin, and isorhamnetin can be detected by HPLC, and the maximum contents of these five Q-markers were obtained in the sample harvested in August. CONCLUSION: The anti-inflammatory Q-markers of ABS were elucidated by chromatographic-pharmacodynamic-stoichiometric analysis, which served as a crucial basis for ABS quality control.


Subject(s)
Bupleurum , Tandem Mass Spectrometry , Mice , Animals , Zebrafish , Chromatography, High Pressure Liquid , Bupleurum/chemistry , RAW 264.7 Cells , Lipopolysaccharides/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/analysis , Inflammation/drug therapy , Plant Components, Aerial/chemistry
16.
Comput Biol Med ; 168: 107724, 2024 01.
Article in English | MEDLINE | ID: mdl-37989075

ABSTRACT

BACKGROUND: The most commonly used therapy currently for inflammatory and autoimmune diseases is nonspecific anti-inflammatory drugs, which have various hazardous side effects. Recently, some anti-inflammatory peptides (AIPs) have been found to be a substitute therapy for inflammatory diseases like rheumatoid arthritis and Alzheimer's. Therefore, the identification of these AIPs is an emerging topic that is equally important. METHODS: In this work, we have proposed an identification model for AIPs using a voting classifier. We used eight different feature descriptors and five conventional machine-learning classifiers. The eight feature encodings were concatenated to get a hybrid feature set. The five baseline models trained on the hybrid feature set were integrated via a voting classifier. Finally, a feature selection algorithm was used to select the optimal feature set for the construction of our final model, named IF-AIP. RESULTS: We tested the proposed model on two independent datasets. On independent data 1, the IF-AIP model shows an improvement of 3%-5.6% in terms of accuracies and 6.7%-10.8% in terms of MCC compared to the existing methods. On the independent dataset 2, our model IF-AIP shows an overall improvement of 2.9%-5.7% in terms of accuracy and 8.3%-8.6% in terms of MCC score compared to the existing methods. A comparative performance analysis was conducted between the proposed model and existing methods using a set of 24 novel peptide sequences. Notably, the IF-AIP method exhibited exceptional accuracy, correctly identifying all 24 peptides as AIPs. The source code, pre-trained models, and all datasets are made available at https://github.com/Mir-Saima/IF-AIP.


Subject(s)
Machine Learning , Peptides , Algorithms , Anti-Inflammatory Agents/analysis , Software
17.
Food Chem ; 438: 137976, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-37980870

ABSTRACT

Pansy and viola edible flowers were grown hydroponically with different levels of Mg and Mn. The nutritional composition was determined using standard methods. Free sugars, fatty acids, organic acids, tocopherols, and phenolic compounds were analyzed using various HPLC and GC devises. The extract's antimicrobial, antioxidant, cytotoxicity, and anti-inflammatory activity were assessed. The results indicated that Mg enrichment negatively affected plant growth and mineral accumulation but improved photosynthetic performance. The edible flowers contained significant amounts of protein, low levels of fat, and varying sugar contents, such as glucose and fructose. Various fatty acids and phenolic compounds were identified, with different concentrations depending on the treatment. The flowers exhibited antioxidant potential, antimicrobial activity, cytotoxic effects, and anti-inflammatory properties. The correlations between the investigated parameters not only expand knowledge on Mg and Mn interaction but also catalyze significant advancements in sustainable agriculture and food health, fostering a healthier and more conscious future.


Subject(s)
Anti-Infective Agents , Viola , Antioxidants/chemistry , Viola/chemistry , Magnesium/analysis , Manganese/analysis , Flowers/chemistry , Phenols/analysis , Fatty Acids/analysis , Anti-Infective Agents/pharmacology , Anti-Infective Agents/analysis , Anti-Inflammatory Agents/analysis , Plant Extracts/chemistry
18.
Molecules ; 28(23)2023 Nov 25.
Article in English | MEDLINE | ID: mdl-38067498

ABSTRACT

Pollen, a remarkably versatile natural compound collected by bees for its abundant source of proteins and nutrients, represents a rich reservoir of diverse bioactive compounds with noteworthy chemical and therapeutic potential. Its extensive biological effects have been known and exploited since ancient times. Today, there is an increased interest in finding natural compounds against oxidative stress, a factor that contributes to various diseases. Recent research has unraveled a multitude of biological activities associated with bee pollen, ranging from antioxidant, anti-inflammatory, antimicrobial, and antifungal properties to potential antiviral and anticancer applications. Comprehending the extensive repertoire of biological properties across various pollen sources remains challenging. By investigating a spectrum of pollen types and their chemical composition, this review produces an updated analysis of the bioactive constituents and the therapeutic prospects they offer. This review emphasizes the necessity for further exploration and standardization of diverse pollen sources and bioactive compounds that could contribute to the development of innovative therapies.


Subject(s)
Anti-Infective Agents , Antioxidants , Bees , Animals , Antioxidants/chemistry , Anti-Infective Agents/analysis , Pollen/chemistry , Oxidative Stress , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/analysis
19.
Zhongguo Zhong Yao Za Zhi ; 48(20): 5498-5508, 2023 Oct.
Article in Chinese | MEDLINE | ID: mdl-38114142

ABSTRACT

In order to solve the problem of weak correlation between quality control components and efficacy of Glycyrrhizae Radix et Rhizoma, this study detected the interaction between small molecular chemical components of Glycyrrhizae Radix et Rhizoma and total proteins of various organs of mice by fluorescence quenching method to screen potential active components. The 27 chemical components in Glycyrrhizae Radix et Rhizoma were detected by HPLC and their deletion rates in 34 batches of Glycyrrhizae Radix et Rhizoma were calculated. Combined with the principle of component effectiveness and measurability, the potential quality markers(Q-markers) of Glycyrrhizae Radix et Rhizoma were screened. RAW264.7 macrophage injury model was induced by microplastics. The cell viability and nitric oxide content were detected by CCK-8 and Griess methods. The levels of inflammatory factors(TNF-α, IL-1ß, IL-6, CRP) and oxidative stress markers(SOD, MDA, GSH) were detected by the ELISA method to verify the activity of Q-markers. It was found that the interaction strength between different chemical components and organ proteins in Glycyrrhizae Radix et Rhizoma was different, reflecting different organ selectivity and 18 active components were screened out. Combined with the signal-to-noise ratio of the HPLC chromatographic peaks and between-run stability of the components, seven chemical components such as liquiritin apioside, liquiritin, isoliquiritin apioside, isoliquiritin, liquiritigenin, isoliquiritigenin and ammonium glycyrrhizinate were finally screened as potential Q-markers of Glycyrrhizae Radix et Rhizoma. In vitro experiments showed that Q-markers of Glycyrrhizae Radix et Rhizoma could dose-dependently alleviate RAW264.7 cell damage induced by microplastics, inhibit the secretion of inflammatory factors, and reduce oxidative stress. Under the same total dose, the combination of various chemical components could synergistically enhance anti-inflammatory and antioxidant effects compared with the single use. This study identified Q-markers related to the anti-inflammatory and antioxidant effects of Glycyrrhizae Radix et Rhizoma, which can provide a reference for improving the quality control standards of Glycyrrhizae Radix et Rhizoma.


Subject(s)
Drugs, Chinese Herbal , Glycyrrhiza , Mice , Animals , Antioxidants/analysis , Microplastics/analysis , Plastics/analysis , Rhizome/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/analysis , Glycyrrhiza/chemistry , Anti-Inflammatory Agents/analysis
20.
Sci Rep ; 13(1): 22409, 2023 12 16.
Article in English | MEDLINE | ID: mdl-38104182

ABSTRACT

Chronic immobilization stress plays a key role in several neuropsychiatric disorders. This investigation assessed the possible ameliorative effect of chia seed oil (CSO) against the neurodisturbance-induced in rats by chronic immobilization. Rats were randomly allocated into control, CSO (1 ml/kg b.wt./orally), restrained (6 h/day), CSO pre-restraint, and CSO post-restraint for 60 days. Results revealed a significant reduction in serum corticosterone level, gene expression of corticotrophin-releasing factor, pro-inflammatory cytokines, and oxidative biomarkers in restrained rats treated with CSO. The histopathological findings revealed restoring necrosis and neuronal loss in CSO-treated-restraint rats. The immunohistochemical evaluation revealed a significant reduction in the immuno-expression of caspase-3, nuclear factor kappa B, interleukin-6, and cyclooxygenase-2 (COX-2), and an elevation of calbindin-28k and synaptophysin expression compared to non-treated restraint rats. The molecular docking showed the CSO high affinity for several target proteins, including caspase-3, COX-2, corticotropin-releasing hormone binding protein, corticotropin-releasing factor receptors 1 and 2, interleukin-1 receptor types 1 and 2, interleukin-6 receptor subunits alpha and beta. In conclusion, CSO emerges as a promising candidate against stress-induced brain disruptions by suppressing inflammatory/oxidative/apoptotic signaling pathways due to its numerous antioxidant and anti-inflammatory components, mainly α-linolenic acid. Future studies are necessary to evaluate the CSO therapeutic impacts in human neurodisturbances.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Humans , Rats , Animals , Antioxidants/analysis , Caspase 3 , Cyclooxygenase 2/analysis , Molecular Docking Simulation , Anti-Inflammatory Agents/analysis , Signal Transduction , Seeds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL