Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 16.905
Filter
1.
Hum Vaccin Immunother ; 20(1): 2374147, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-39090779

ABSTRACT

Entamoeba histolytica, the causative agent of amebiasis, is one of the top three parasitic causes of mortality worldwide. However, no vaccine exists against amebiasis. Using a lead candidate vaccine containing the LecA fragment of Gal-lectin and GLA-3M-052 liposome adjuvant, we immunized rhesus macaques via intranasal or intramuscular routes. The vaccine elicited high-avidity functional humoral responses as seen by the inhibition of amebic attachment to mammalian target cells by plasma and stool antibodies. Importantly, antigen-specific IFN-γ-secreting peripheral blood mononuclear cells (PBMCs) and IgG/IgA memory B cells (BMEM) were detected in immunized animals. Furthermore, antigen-specific antibody and cellular responses were maintained for at least 8 months after the final immunization as observed by robust LecA-specific BMEM as well as IFN-γ+ PBMC responses. Overall, both intranasal and intramuscular immunizations elicited a durable and functional response in systemic and mucosal compartments, which supports advancing the LecA+GLA-3M-052 liposome vaccine candidate to clinical testing.


Subject(s)
Administration, Intranasal , Antibodies, Protozoan , Entamoeba histolytica , Entamoebiasis , Interferon-gamma , Leukocytes, Mononuclear , Liposomes , Macaca mulatta , Protozoan Vaccines , Animals , Entamoeba histolytica/immunology , Liposomes/immunology , Liposomes/administration & dosage , Protozoan Vaccines/immunology , Protozoan Vaccines/administration & dosage , Antibodies, Protozoan/blood , Antibodies, Protozoan/immunology , Leukocytes, Mononuclear/immunology , Entamoebiasis/prevention & control , Entamoebiasis/immunology , Interferon-gamma/immunology , Interferon-gamma/metabolism , Injections, Intramuscular , Immunogenicity, Vaccine , Adjuvants, Vaccine/administration & dosage , Adjuvants, Immunologic/administration & dosage , B-Lymphocytes/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin A/immunology , Immunoglobulin A/blood , Antigens, Protozoan/immunology , Immunity, Humoral , Immunologic Memory , Protozoan Proteins/immunology
2.
Parasitol Res ; 123(8): 290, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39096359

ABSTRACT

Neosporosis is a proven disease of farm animals and dogs caused by Neospora caninum. This cross-sectional study investigates N. caninum prevalence and seroprevalence among 268 dogs. Nc5 gene PCR was carried out on dog faeces and confirmed by sequencing. Seroprevalence was detected using an indirect fluorescent antibody test (IFAT). Three age groups, gender, locality (Amman, Irbid, and Zarqa Governorates), dog type (stray, pet, and breeding), place of living (indoor/outdoor), food type (raw/cooked), having diarrhoea, having abortion in the area, and having animals nearby were tested as independent variables for associations with positivity to N. caninum using univariate and multivariable logistic regression analyses. The true prevalence of N. caninum was 34.3% (95% CI 28.4, 40.5) using the Nc5-PCR test. The true seroprevalence rate of N. caninum among dogs in Jordan was 47.9% (95% CI 41.4, 54.5) using IFAT. The sequenced isolates of Nc5-PCR products (n = 85) matched three N. caninum strains, namely, NcHareGre (n = 70, 82.4%, 95% CI 72.6-89), NC MS2 (n = 14, 16.5%, 95% CI 9.3-26.1), and L218 (n = 1, 1.2%, 95% CI 0.03-6.4). The three strains were isolated previously from three different countries and continents. N. caninum shedding is associated with abortion among dogs and animals in the area (odds ratio = 3.6). In Amman and Zarqa, living indoors reduced seroprevalence at 0.45, 0.24, and 0.02 odds ratios, respectively. Jordan shares three molecular N. caninum strains with three different countries and continents.


Subject(s)
Coccidiosis , Dog Diseases , Feces , Neospora , Animals , Dogs , Neospora/genetics , Neospora/immunology , Neospora/isolation & purification , Dog Diseases/epidemiology , Dog Diseases/parasitology , Coccidiosis/epidemiology , Coccidiosis/veterinary , Coccidiosis/parasitology , Seroepidemiologic Studies , Jordan/epidemiology , Cross-Sectional Studies , Female , Male , Feces/parasitology , Prevalence , Antibodies, Protozoan/blood , Polymerase Chain Reaction/veterinary , Fluorescent Antibody Technique, Indirect/veterinary
3.
Trop Biomed ; 41(2): 190-195, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-39154272

ABSTRACT

The Plasmodium secreted protein with an altered thrombospondin repeat (SPATR) has been known to play an important role in the malaria parasite's invasion into host erythrocytes. This protein is immunogenic and has been considered as one of the potential vaccine candidates against malaria parasite infection. Thus far, only a handful immunological studies have been carried out on P. knowlesi SPATR (PkSPATR), and none of these studies investigated the immunoprotective properties of the protein. In the present study, the ability of anti-PkSPATR antibodies to inhibit invasion of human erythrocytes was assessed in an in vitro merozoite invasion inhibition assay. The antibodies were harvested from the serum of a rabbit which was immunised with recombinat PkSPATR. Results from the merozoite invasion inhibition assay revealed significant antibody invasion inhibitory activity in a concentration dependent manner (concentration range: 0.375 - 3.00 mg/ml) with inhibition rate ranging from 20% to 32%. Future studies, such as anti-PkSPATR antibodies inhibitory effect on sporozoite invasion of human liver cells, need to be carried out to assess the potential of PkSPATR as a knowlesi malaria vaccine candidate.


Subject(s)
Antibodies, Protozoan , Erythrocytes , Merozoites , Plasmodium knowlesi , Protozoan Proteins , Plasmodium knowlesi/immunology , Humans , Erythrocytes/parasitology , Rabbits , Animals , Antibodies, Protozoan/immunology , Protozoan Proteins/immunology , Merozoites/immunology , Thrombospondins/immunology , Malaria Vaccines/immunology
4.
BMC Infect Dis ; 24(1): 834, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39152395

ABSTRACT

BACKGROUND: Toxoplasma gondii (T. gondii) is a ubiquitous protozoan parasite on our planet that causes toxoplasmosis. This study evaluated the seroprevalence and related risk factors for T. gondii infection in a population referred to healthcare centers in Meshkin-Shahr, Northwest Iran. METHODS: A total of 400 blood samples were randomly collected from the general population and assessed using the anti-Toxoplasma antibodies, Immunoglobulin G and M (IgG and IgM) Enzyme-linked immunosorbent assay (ELISA) Kits in two steps before and during the coronavirus disease 2019 (COVID-19) pandemic, 2019-2020. The results were analyzed through logistic regression via SPSS 26 software. RESULTS: Before the COVID-19 pandemic, anti-toxoplasma antibodies were detected in 39% of individuals (IgG: 38%, IgM: 0.5%, and IgG-IgM: 0.5%). Among the eleven risk factors evaluated, contact with soil and people awareness were significantly associated with T. gondii infection (p < 0.05). However, factors such as females, 20-39 age groups, junior high schools, housewives, rural areas, raw meat or vegetable consumption, vegetable or fruits washed by water, not detergent, and cat owners did not show a significant relationship with seropositivity (p > 0.05). After the outbreak of the COVID-19 pandemic, the overall seroprevalence for anti-T. gondii antibody increased to 49.7% (IgG: 47.7%, IgM: 0.5%, and IgG and IgM: 1.5%). Among these patients, 26% were positive for COVID-19. Additionally, before the COVID-19 pandemic, 40 samples were negative for anti-T. gondii antibodies but later became positive. The crude and adjusted models suggested that toxoplasmosis may be a possible risk factor for increased susceptibility to COVID-19, with an odds ratio (OR) of 1.28 (95% confidence interval (CI), 0.82-1.99; P < 0.05). Conversely, a non-significant protective effect against latent toxoplasmosis was observed in COVID-19-positive individuals (OR = 0.99; 95% CI, 0.51-1.92; P > 0.05), and COVID-19 positivity did not increase the levels of anti-T. gondii IgG antibodies. CONCLUSIONS: The general population in this region had a moderate seroprevalence of T. gondii. The increased number of COVID-19-positive patients with latent toxoplasmosis highlights the need to pay attention to the early diagnosis and proper treatment of toxoplasmosis in these patients and implement preventive programs in these areas for future possible viral infections.


Subject(s)
Antibodies, Protozoan , COVID-19 , Immunoglobulin G , Immunoglobulin M , SARS-CoV-2 , Toxoplasma , Toxoplasmosis , Humans , COVID-19/epidemiology , COVID-19/immunology , Iran/epidemiology , Seroepidemiologic Studies , Toxoplasmosis/epidemiology , Female , Male , Adult , Toxoplasma/immunology , Middle Aged , Young Adult , Immunoglobulin G/blood , Risk Factors , Immunoglobulin M/blood , Antibodies, Protozoan/blood , SARS-CoV-2/immunology , Adolescent , Aged , Child , Prevalence , Enzyme-Linked Immunosorbent Assay , Child, Preschool , Pandemics
5.
BMC Vet Res ; 20(1): 369, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39152437

ABSTRACT

BACKGROUND: Toxoplasma gondii is a zoonotic protozoan parasite with a heteroxenus life cycle that involves felids as the definitive hosts and any warm-blooded animal, including humans, as intermediate hosts. Cats are key players in parasite transmission as they are capable of shedding high numbers of oocysts in their feces that contaminate the environment. METHODS: The study was performed on 31 domestic cats (31.23 ± 27.18 months old) originating from rural and urban areas (5.17:1) in the center and north-west Romania. Feces (n = 31), blood (n = 28), and heart samples (n = 27) were collected. Fecal samples were analyzed by flotation technique, and PCR (529 bp repetitive element). Fecal samples with T. gondii oocysts were bioassayed in mice. Serum samples were analyzed by modified agglutination test and ImmunoComb for the detection of specific anti-T. gondii IgG antibodies. Heart samples were bioassayed in mice, and analyzed by PCR. Toxoplasma gondii positive samples were genotyped by nPCR-RFLP targeting eleven genetic loci (SAG1, SAG2, alt-SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1, and Apico). RESULTS: Toxoplasma gondii oocysts were found in 2 out of 31 fecal samples collected from a 3-months old stray kitten, and a 4-years old female. In total, 17 out of 27 sera were positive for T. gondii IgG antibodies. The antibody titers in MAT ranged from 1:6 to 1:384. Toxoplasma gondii DNA was detected in 7 out of 27 heart samples, and four of them were positive also by bioassay. Six T. gondii DNA samples from bioassayed mice could be assigned to ToxoDB PCR-RFLP genotype #1 or #3 (Type II) and one T. gondii DNA from heart digest to genotype #2 (Type III). Both of these genotypes are common in Europe. CONCLUSIONS: Our results revealed that the infection with T. gondii is still high in cats from Romania. The oocysts shedded by these cats represent an important source of infection for intermediate hosts, including humans. Further studies on a wider range of cases are necessary for a more exhaustive definition of the T. gondii genotypes circulating in Romania.


Subject(s)
Cat Diseases , Feces , Genotype , Toxoplasma , Toxoplasmosis, Animal , Animals , Cats , Toxoplasma/genetics , Toxoplasma/isolation & purification , Romania/epidemiology , Toxoplasmosis, Animal/epidemiology , Toxoplasmosis, Animal/parasitology , Cat Diseases/parasitology , Cat Diseases/epidemiology , Feces/parasitology , Mice , Female , Male , Antibodies, Protozoan/blood
6.
J Med Primatol ; 53(4): e12729, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39099076

ABSTRACT

Anti-Toxoplasma gondii antibodies were investigated in 125 Saimiri spp. kept at a research institute. A total of 12% of primates tested positive, all of which were Saimiri sciureus. These results highlight the need to minimize the possibility of this protozoan's circulation, which can lead to fulminant infection in these animals.


Subject(s)
Antibodies, Protozoan , Monkey Diseases , Saimiri , Toxoplasma , Toxoplasmosis, Animal , Animals , Brazil/epidemiology , Antibodies, Protozoan/blood , Monkey Diseases/parasitology , Female , Seroepidemiologic Studies , Male
7.
Front Immunol ; 15: 1416669, 2024.
Article in English | MEDLINE | ID: mdl-39131160

ABSTRACT

Background: Production of anti-phosphatidylserine (anti-PS) antibodies has been associated with malaria and can aggravate pathology. How these autoantibodies develop during early childhood in a malaria context is not known. We examined levels of anti-PS IgG and IgM antibodies in a longitudinal cohort of mother-baby pairs during birth, in the infants at 2.5, 6 months, and in mothers and their babies at 9 months postpartum. Results: There was no difference between levels of anti-PS IgG in cord blood and the mothers' peripheral blood at birth. However, anti-PS IgM levels were significantly higher in the mothers compared to the infants' cord blood, and IgM levels were steadily increasing during the first 9 months of the infants' life. In infants that had the highest anti-PS IgM levels at birth, there was a decline until 6 months with a rise at 9 months. Infants that possessed high anti-PS IgG at birth also exhibited a progressive decline in levels. When anti-PS were correlated to different fractions of B-cells, there were several correlations with P. falciparum specific atypical B cells both at birth and at 2.5 months for the infants, especially for anti-PS IgM. Anti-PS also correlated strongly to C1q-fixing antibodies at birth. Conclusion: These results show that anti-PS IgG acquired by mothers could be transferred transplacentally and that IgM antibodies targeting PS are acquired during the first year of life. These results have increased the knowledge about autoimmune responses associated with infections in early life and is critical for a comprehensive understanding of malaria vaccine functionality in endemic areas.


Subject(s)
Immunoglobulin G , Immunoglobulin M , Phosphatidylserines , Humans , Immunoglobulin M/blood , Immunoglobulin M/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Female , Phosphatidylserines/immunology , Infant , Uganda , Infant, Newborn , Adult , Plasmodium falciparum/immunology , Male , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Malaria, Falciparum/epidemiology , Immunity, Maternally-Acquired , Autoantibodies/immunology , Autoantibodies/blood , Antibodies, Protozoan/immunology , Antibodies, Protozoan/blood , Mothers , Fetal Blood/immunology , B-Lymphocytes/immunology , Longitudinal Studies
8.
Parasitol Res ; 123(8): 298, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39141116

ABSTRACT

Bovine neosporosis is a widespread parasitic disease associated with significant economic losses. Its effects on the reproductive performance of cows have resulted in losses that run into the hundreds of millions of US dollars in dairy industries in various countries (Reichel et al., Int J Parasitol 43:133-142, 2013). Due to outdated and scant information on the occurrence of Neospora caninum infection in South Africa, the study aimed to determine the seroprevalence and risk factors associated with infection in dairy cattle in South Africa. A total of 1401 blood samples were randomly collected from cattle on 48 dairy farms in seven of the nine provinces in South Africa. A close-ended questionnaire was used in a cross-sectional study to obtain farm-level and animal-level data. Serological testing was done using a commercial IDvet Screen® Neospora caninum Indirect ELISA. An overall seroprevalence, adjusted for test sensitivity and specificity, of 2.3% (95% CI, 1.3-4.1) was detected and 48% (23/48) of sampled farms had at least one animal testing positive. The highest seroprevalence of N. caninum was in the KwaZulu-Natal province with 7.5% (95% CI, 3.8-14.3), and the lowest in Western Cape with 0.1% (95% CI, 0-1.2). The highest within-farm seroprevalence of 25% was detected on a farm in the North West Province. In a multivariable logistic regression model, the odds of N. caninum seropositivity were higher in Holstein-Friesian cattle when compared to other breeds. Good hygiene was identified as a protective factor. Cattle left out on pasture had increased odds of testing positive for N. caninum compared to those that were penned. The odds of testing seropositive for N. caninum was higher on farms that practised segregation of cattle into different age groups. The purchase of replacement animals was a significant risk factor, as open herds had increased odds of N. caninum seropositivity. Cattle on farms that did not have a specific calving location were more likely to be seropositive. This is the first such study in South Africa and shows that N. caninum is widely distributed in the country at a low seroprevalence, but it may be a cause of concern on certain farms.


Subject(s)
Antibodies, Protozoan , Cattle Diseases , Coccidiosis , Neospora , Animals , Cattle , Coccidiosis/epidemiology , Coccidiosis/veterinary , Coccidiosis/parasitology , South Africa/epidemiology , Seroepidemiologic Studies , Neospora/immunology , Neospora/isolation & purification , Cattle Diseases/epidemiology , Cattle Diseases/parasitology , Risk Factors , Cross-Sectional Studies , Antibodies, Protozoan/blood , Female , Enzyme-Linked Immunosorbent Assay/veterinary , Dairying , Surveys and Questionnaires
9.
Int J Mol Sci ; 25(15)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39125875

ABSTRACT

Parasites have been associated with possible anticancer activity, including Trypanosoma cruzi, which has been linked to inhibiting the growth of solid tumors. To better understand this antitumor effect, we investigated the association of anti-T. cruzi antibodies with B cells of the acute lymphoblastic leukemia (ALL) SUPB15 cell line. The antibodies were generated in rabbits. IgGs were purified by affinity chromatography. Two procedures (flow cytometry (CF) and Western blot(WB)) were employed to recognize anti-T. cruzi antibodies on SUPB15 cells. We also used CF to determine whether the anti-T. cruzi antibodies could suppress SUPB15 cells. The anti-T. cruzi antibodies recognized 35.5% of the surface antigens of SUPB15. The complement-dependent cytotoxicity (CDC) results demonstrate the cross-suppression of anti-T. cruzi antibodies on up to 8.4% of SUPB15 cells. For the WB analysis, a band at 100 kDa with high intensity was sequenced using mass spectrometry, identifying the protein as nucleolin. This protein may play a role in the antitumor effect on T. cruzi. The anti-T. cruzi antibodies represent promising polyclonal antibodies that have the effect of tumor-suppressive cross-linking on cancer cells, which should be further investigated.


Subject(s)
Antibodies, Protozoan , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Trypanosoma cruzi , Trypanosoma cruzi/immunology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology , Humans , Cell Line, Tumor , Animals , Rabbits , Antibodies, Protozoan/immunology , RNA-Binding Proteins/immunology , RNA-Binding Proteins/metabolism , Nucleolin , Phosphoproteins/immunology , Phosphoproteins/metabolism
10.
Parasit Vectors ; 17(1): 340, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39135121

ABSTRACT

BACKGROUND: The Gran Chaco ecoregion is a well-known hotspot of several neglected tropical diseases (NTDs) including Chagas disease, soil-transmitted helminthiasis and multiparasitic infections. Interspecific interactions between parasite species can modify host susceptibility, pathogenesis and transmissibility through immunomodulation. Our objective was to test the association between human co-infection with intestinal parasites and host parasitaemia, infectiousness to the vector and immunological profiles in Trypanosoma cruzi-seropositive individuals residing in an endemic region of the Argentine Chaco. METHODS: We conducted a cross-sectional serological survey for T. cruzi infection along with an intestinal parasite survey in two adjacent rural villages. Each participant was tested for T. cruzi and Strongyloides stercoralis infection by serodiagnosis, and by coprological tests for intestinal parasite detection. Trypanosoma cruzi bloodstream parasite load was determined by quantitative PCR (qPCR), host infectiousness by artificial xenodiagnosis and serum human cytokine levels by flow cytometry. RESULTS: The seroprevalence for T. cruzi was 16.1% and for S. stercoralis 11.5% (n = 87). We found 25.3% of patients with Enterobius vermicularis. The most frequent protozoan parasites were Blastocystis spp. (39.1%), Giardia lamblia (6.9%) and Cryptosporidium spp. (3.4%). Multiparasitism occurred in 36.8% of the examined patients. Co-infection ranged from 6.9% to 8.1% for T. cruzi-seropositive humans simultaneously infected with at least one protozoan or helminth species, respectively. The relative odds of being positive by qPCR or xenodiagnosis (i.e. infectious) of 28 T. cruzi-seropositive patients was eight times higher in people co-infected with at least one helminth species than in patients with no such co-infection. Trypanosoma cruzi parasite load and host infectiousness were positively associated with helminth co-infection in a multiple regression analysis. Interferon-gamma (IFN-γ) response, measured in relation to interleukin (IL)-4 among humans infected with T. cruzi only, was 1.5-fold higher than for T. cruzi-seropositive patients co-infected with helminths. The median concentration of IL-4 was significantly higher in T. cruzi-seropositive patients with a positive qPCR test than in qPCR-negative patients. CONCLUSIONS: Our results show a high level of multiparasitism and suggest that co-infection with intestinal helminths increased T. cruzi parasitaemia and upregulated the Th2-type response in the study patients.


Subject(s)
Chagas Disease , Coinfection , Helminthiasis , Intestinal Diseases, Parasitic , Trypanosoma cruzi , Humans , Trypanosoma cruzi/immunology , Trypanosoma cruzi/genetics , Trypanosoma cruzi/isolation & purification , Coinfection/parasitology , Coinfection/epidemiology , Coinfection/immunology , Chagas Disease/epidemiology , Chagas Disease/complications , Chagas Disease/parasitology , Chagas Disease/blood , Chagas Disease/immunology , Animals , Adult , Cross-Sectional Studies , Male , Female , Intestinal Diseases, Parasitic/epidemiology , Intestinal Diseases, Parasitic/parasitology , Intestinal Diseases, Parasitic/complications , Intestinal Diseases, Parasitic/immunology , Middle Aged , Helminthiasis/complications , Helminthiasis/parasitology , Helminthiasis/epidemiology , Helminthiasis/immunology , Young Adult , Adolescent , Argentina/epidemiology , Seroepidemiologic Studies , Strongyloides stercoralis/immunology , Strongyloides stercoralis/isolation & purification , Parasitemia/parasitology , Parasitemia/epidemiology , Th2 Cells/immunology , Child , Strongyloidiasis/epidemiology , Strongyloidiasis/parasitology , Strongyloidiasis/complications , Strongyloidiasis/immunology , Strongyloidiasis/blood , Aged , Cytokines/blood , Antibodies, Protozoan/blood
11.
Vaccine ; 42(21): 126178, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39096765

ABSTRACT

American Tegumentary Leishmaniasis (ATL) is a disease of high severity and incidence in Brazil, in addition to being a worldwide concern in public health. Leishmania amazonensis is one of the etiological agents of ATL, and the inefficiency of control measures, associated with the high toxicity of the treatment and the lack of effective immunoprophylactic strategies, makes the development of vaccines indispensable and imminent. In this light, the present study proposes to elaborate a chimeric protein (rChiP), based on the fusion of multiple epitopes of CD4+/CD8+ T cells, identified in the immunoproteome of the parasites L. amazonensis and L. braziliensis. The designed chimeric protein was tested in the L. amazonensis murine model of infection using the following formulations: 25 µg of the rChiP in saline (rChiP group) and 25 µg of the rChiP plus 25 µg of MPLA-PHAD® (rChiP+MPLA group). After completing immunization, CD4+ and CD8+ T cells, stimulated with SLa-Antigen or rChiP, showed an increased production of nitric oxide and intracytoplasmic pro-inflammatory cytokines, in addition to the generation of central and effector memory T cells. rChiP and rChiP+MPLA formulations were able to promote an effective protection against L. amazonensis infection determined by a reduction in the development of skin lesions and lower parasitic burden. Reduction in the development of skin lesions and lower parasitic burden in the vaccinated groups were associated with an increase of nitrite, CD4+/CD8+IFN-γ+TNF-α+ and CD4+/CD8+CD44highCD62Lhigh/low T cells, IgGTotal, IgG2a, and lower rates of IgG1 and CD4+/CD8+IL-10+. This data suggests that proposed formulations could be considered potential tools to prevent ATL.


Subject(s)
Adjuvants, Immunologic , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Epitopes, T-Lymphocyte , Immunologic Memory , Leishmaniasis Vaccines , Leishmaniasis, Cutaneous , Animals , Leishmaniasis, Cutaneous/prevention & control , Leishmaniasis, Cutaneous/immunology , CD8-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , Epitopes, T-Lymphocyte/immunology , Mice , Leishmaniasis Vaccines/immunology , Female , Adjuvants, Immunologic/administration & dosage , Mice, Inbred BALB C , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/genetics , Leishmania braziliensis/immunology , Lipid A/analogs & derivatives , Lipid A/immunology , Antibodies, Protozoan/immunology , Cytokines/metabolism , Cytokines/immunology , Disease Models, Animal , Antigens, Protozoan/immunology
12.
Parasit Vectors ; 17(1): 348, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39160608

ABSTRACT

BACKGROUND: Leishmaniosis caused by Leishmania infantum, L. major and L. tropica is endemic in Morocco. Growing evidence of both human and canine Leishmania infections in urban centres has been reported. Since many forms of the disease are zoonotic, veterinarians play an important role in leishmaniosis control by intervening at the parasite host level. This study aimed to bring together One Health principles to connect canine and feline leishmaniosis epidemiology within urban centres of Morocco (Rabat and Fez) and assess the level of awareness of Moroccan veterinarians about facing this threat. METHODS: A molecular survey was conducted for Leishmania DNA detection in canine (n = 155) and feline (n = 32) whole-blood samples. Three conventional polymerase chain reaction (PCR) protocols were implemented. The first PCR aimed at identifying infected animals by targeting Leishmania spp. kinetoplast minicircle DNA (kDNA). The second and third PCR targeted the Leishmania internal transcribed spacer region (ITS-1) and the Leishmania small subunit ribosomal RNA (SSUrRNA) gene, respectively, aiming at identification of the infecting species after Sanger sequencing-positive amplicons. Total immunoglobulin G (IgG) against Leishmania spp. was evaluated in 125 dogs by enzyme-linked immunosorbent assays (ELISA) using an in-house protocol, including three Leishmania-specific antigens (SPLA, rKDDR and LicTXNPx). Sera from 25 cats were screened for total IgG to Leishmania spp. by an indirect immunofluorescence antibody test (IFAT). An online questionnaire was presented to Moroccan veterinarians addressing their knowledge and practices towards animal leishmaniosis. RESULTS: Overall, 19.4% of the dogs tested positive for Leishmania kDNA and ITS-1 and sequencing revealed infection with L. infantum among PCR-positive dogs. These animals presented a wide range of ELISA seropositivity results (16.7%, 34.9% and 51.6%) according to the tested antigens (rKDDR, SPLA and LicTXNPx, respectively). Use of kDNA-PCR revealed 12.5% cats positive to Leishmania spp. otherwise found to be seronegative by IFAT. CONCLUSIONS: A considerable prevalence of infection was identified in dogs from urban centres of Morocco. Additionally, this is the first report of feline infection with Leishmania spp. in this country and in urban settings. Moroccan veterinarians are aware that animal leishmaniosis is endemic in Morocco, representing a public health threat, and are knowledgeable about canine leishmaniosis diagnosis and treatment.


Subject(s)
Cat Diseases , Dog Diseases , Leishmaniasis , Animals , Morocco/epidemiology , Dogs , Cats , Dog Diseases/epidemiology , Dog Diseases/parasitology , Cat Diseases/parasitology , Cat Diseases/epidemiology , Leishmaniasis/veterinary , Leishmaniasis/epidemiology , Leishmaniasis/transmission , Veterinarians , Humans , DNA, Protozoan/genetics , DNA, Protozoan/blood , Antibodies, Protozoan/blood , Leishmania/genetics , Leishmania/immunology , Leishmania/isolation & purification , Leishmania/classification , Polymerase Chain Reaction , Male , Immunoglobulin G/blood , Female , Leishmania infantum/genetics , Leishmania infantum/immunology , Leishmania infantum/isolation & purification , Zoonoses/parasitology , Zoonoses/epidemiology , Zoonoses/transmission
13.
Parasit Vectors ; 17(1): 346, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39160611

ABSTRACT

BACKGROUND: Cats are now recognized as competent hosts for Leishmania infantum and a blood source for sand fly vectors. Although canine leishmaniosis (CanL) is endemic in Mediterranean Basin countries, large-scale epidemiological studies are lacking for feline leishmaniosis (FeL). This study aimed to assess the prevalence of L. infantum infections, associated risk factors, clinical signs, and clinicopathological abnormalities in domestic cat populations from six Mediterranean Basin countries. METHODS: From 2019 to 2022, blood and serum samples of cats (n = 2067) living in Italy (n = 300), Greece (n = 297), Portugal (n = 295), France (n = 231), Israel (n = 313), and Spain (n = 631) were collected along with animal data (i.e., age, sex, breed, housing conditions, and geographical origin), clinical signs, and laboratory blood test parameters. Cats were grouped according to their age as kittens (up to 1 year), young (older than 1 and younger than 7 years), mature (between 7 and 10 years), and senior (older than 10 years). Serum samples were tested for L. infantum by immunofluorescence antibody test (IFAT) and enzyme-linked immunosorbent assay (ELISA), and blood samples of seropositive cats were tested for L. infantum kinetoplast deoxyribonucleic acid (kDNA). Viral infection by feline immunodeficiency virus (FIV) and feline leukemia virus (FeLV) was molecularly addressed in all cats enrolled. Statistical analysis was performed to evaluate the association between the risk of L. infantum infection and independent variables, and among co-infection of L. infantum with FIV and/or FeLV, clinical signs, and clinicopathological abnormalities. RESULTS: Overall, 17.3% (358/2067) of cats scored positive for L. infantum by serological tests. Specifically, 24.7% were from Portugal, 23.2% from Greece, 16.6% from Israel, 15% from Spain, 13.3% from France, and 12.6% from Italy. Leishmania infantum DNA was detected in 15 seropositive animals. Housing condition and FIV infection proved to be risk factors for FeL. Leishmania seropositivity was significantly associated with weight loss, lymphadenomegaly, gingivostomatitis, and oral ulcers, as well as with reduced albumin and albumin/globulin ratio, increased total globulins and total proteins, leukocytosis, and thrombocytosis. CONCLUSIONS: This study provides, for the first time, a large-scale epidemiological survey on FeL and its clinical presentation, revealing that L. infantum circulates among domestic cats, especially shelter/free-roaming and FIV-infected animals, living in CanL endemic countries of the Mediterranean Basin.


Subject(s)
Cat Diseases , Leishmania infantum , Leishmaniasis, Visceral , Animals , Cats , Cat Diseases/epidemiology , Cat Diseases/parasitology , Cat Diseases/virology , Leishmania infantum/isolation & purification , Leishmania infantum/genetics , Male , Female , Leishmaniasis, Visceral/epidemiology , Leishmaniasis, Visceral/veterinary , Leishmaniasis, Visceral/parasitology , Mediterranean Region/epidemiology , Risk Factors , Prevalence , Spain/epidemiology , Greece/epidemiology , Portugal/epidemiology , Antibodies, Protozoan/blood , Leukemia Virus, Feline/isolation & purification , Leukemia Virus, Feline/genetics , France/epidemiology , Italy/epidemiology , Leishmaniasis/epidemiology , Leishmaniasis/veterinary , Immunodeficiency Virus, Feline/isolation & purification , Israel/epidemiology
14.
Acta Trop ; 257: 107302, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38959992

ABSTRACT

Toxoplasma gondii is an important protozoan pathogen, which can cause severe diseases in the newborns and immunocompromised individuals. Developing an effective vaccine against Toxoplasma infection is a critically important global health priority. Immunofluorescence staining analysis revealed that TgSAG2 and TgSRS2 are membrane associated and displayed on the surface of the parasite. Immunizations with pBud-SAG2, pBud-SRS2 and pBud-SAG2-SRS2 DNA vaccines significantly increased the production of specific IgG antibodies. Immunization with pBud-SAG2-SRS2 elicited cellular immune response with higher concentrations of IFN-γ and IL-4 compared to the control group. Antigen-specific lymphocyte proliferations in the pBud-SRS2 and pBud-SAG2-SRS2 groups were significantly higher compared to that in the control group. Furthermore, 30 % of mice immunized with pBud-SAG2-SRS2 survived after the challenge infection with virulent T. gondii RH tachyzoites. This study revealed that immunization with pBud-SAG2-SRS2 induced potent immune responses, and has the potential as a promising vaccine candidate for the control of T. gondii infection.


Subject(s)
Antibodies, Protozoan , Antigens, Protozoan , Immunoglobulin G , Protozoan Proteins , Protozoan Vaccines , Toxoplasma , Toxoplasmosis, Animal , Vaccines, DNA , Animals , Vaccines, DNA/immunology , Vaccines, DNA/genetics , Vaccines, DNA/administration & dosage , Antigens, Protozoan/immunology , Antigens, Protozoan/genetics , Protozoan Proteins/immunology , Protozoan Proteins/genetics , Toxoplasma/immunology , Toxoplasma/genetics , Antibodies, Protozoan/blood , Protozoan Vaccines/immunology , Protozoan Vaccines/administration & dosage , Protozoan Vaccines/genetics , Mice , Immunoglobulin G/blood , Female , Toxoplasmosis, Animal/prevention & control , Toxoplasmosis, Animal/immunology , Mice, Inbred BALB C , Interferon-gamma/immunology , Disease Models, Animal , Cell Proliferation , Interleukin-4/immunology , Survival Analysis
15.
PeerJ ; 12: e17632, 2024.
Article in English | MEDLINE | ID: mdl-38948214

ABSTRACT

Background: The integration of diagnostic methods holds promise for advancing the surveillance of malaria transmission in both endemic and non-endemic regions. Serological assays emerge as valuable tools to identify and delimit malaria transmission, serving as a complementary method to rapid diagnostic tests (RDT) and thick smear microscopy. Here, we evaluate the potential of antibodies directed against peptides encompassing the entire amino acid sequence of the PvMSP-1 Sal-I strain as viable serological biomarkers for P. vivax exposure. Methods: We screened peptides encompassing the complete amino acid sequence of the Plasmodium vivax Merozoite Surface Protein 1 (PvMSP-1) Sal-I strain as potential biomarkers for P. vivax exposure. Here, immunodominant peptides specifically recognized by antibodies from individuals infected with P. vivax were identified using the SPOT-synthesis technique followed by immunoblotting. Two 15-mer peptides were selected based on their higher and specific reactivity in immunoblotting assays. Subsequently, peptides p70 and p314 were synthesized in soluble form using SPPS (Solid Phase Peptide Synthesis) and tested by ELISA (IgG, and subclasses). Results: This study unveils the presence of IgG antibodies against the peptide p314 in most P. vivax-infected individuals from the Brazilian Amazon region. In silico B-cell epitope prediction further supports the utilization of p314 as a potential biomarker for evaluating malaria transmission, strengthened by its amino acid sequence being part of a conserved block of PvMSP-1. Indeed, compared to patients infected with P. falciparum and uninfected individuals never exposed to malaria, P. vivax-infected patients have a notably higher recognition of p314 by IgG1 and IgG3.


Subject(s)
Antibodies, Protozoan , Biomarkers , Malaria, Vivax , Merozoite Surface Protein 1 , Plasmodium vivax , Humans , Malaria, Vivax/immunology , Malaria, Vivax/blood , Malaria, Vivax/parasitology , Malaria, Vivax/transmission , Malaria, Vivax/diagnosis , Merozoite Surface Protein 1/immunology , Plasmodium vivax/immunology , Biomarkers/blood , Antibodies, Protozoan/immunology , Antibodies, Protozoan/blood , Immunoglobulin G/immunology , Immunoglobulin G/blood , Adult , Female , Male , Middle Aged , Peptides/immunology , Enzyme-Linked Immunosorbent Assay/methods , Young Adult , Adolescent , Amino Acid Sequence
16.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 36(3): 279-285, 2024 Jun 13.
Article in Chinese | MEDLINE | ID: mdl-38952314

ABSTRACT

OBJECTIVE: To prepare and characterize the mouse polyclonal antibody against the dense granule protein 24 (GRA24) of Toxoplasma gondii, and explore its preliminary applications. METHODS: The GRA24 coding sequences of different T. gondii strains were aligned using the MEGA-X software, and the dominant peptide of the GRA24 protein was analyzed with the Protean software. The base sequence encoding this peptide was amplified using PCR assay and ligated into the pET-28a vector, and the generated GRA24 truncated protein was transformed into Escherichia coli BL21. After induction by isopropyl-beta-D-thiogalactopyranoside (IPTG), the expression and purification of the recombinant GRA24 protein was analyzed using sodium dodecyl sulfate - polyacrylamide gel electrophoresis (SDS-PAGE). BALB/c mice were immunized by subcutaneous injection with the purified recombinant GRA24 truncated protein to generate the polyclonal antibody, and the titer of the polyclonal antibody was measured using enzyme linked immunosorbent assay (ELISA). The specificity of the polyclonal antibody was tested using Western blotting, and the intracellular localization of the polyclonal antibody was investigated using immunofluorescence assay (IFA). RESULTS: SDS-PAGE showed successful construction of the recombinant expression plasmid, and Coomassie brilliant blue staining showed the generation of the high-purity recombinant GRA24 truncated protein. ELISA measured that the titer of the polyclonal antibody against the GRA24 truncated protein was higher than 1:208 400, and Western blotting showed that the polyclonal antibody was effective to recognize the endogenous GRA24 proteins of different T. gondii strains and specifically recognize the recombinant GRA24 truncated protein. Indirect IFA showed that the GRA24 protein secreted 16 hour following T. gondii invasion in host cells. CONCLUSIONS: The polyclonal antibody against the T. gondii GRA24 protein has been successfully prepared, which has a widespread applicability, high titers and a high specificity. This polyclonal antibody is available for Western blotting and IFA, which provides the basis for investigating the function of the GRA24 protein.


Subject(s)
Antibodies, Protozoan , Mice, Inbred BALB C , Protozoan Proteins , Toxoplasma , Animals , Toxoplasma/immunology , Toxoplasma/genetics , Protozoan Proteins/immunology , Protozoan Proteins/genetics , Mice , Antibodies, Protozoan/immunology , Female , Recombinant Proteins/immunology , Antibody Specificity , Antigens, Protozoan/immunology , Antigens, Protozoan/genetics
17.
Infect Dis Poverty ; 13(1): 53, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978124

ABSTRACT

BACKGROUND: Serological screening tests play a crucial role to diagnose gambiense human African trypanosomiasis (gHAT). Presently, they preselect individuals for microscopic confirmation, but in future "screen and treat" strategies they will identify individuals for treatment. Variability in reported specificities, the development of new rapid diagnostic tests (RDT) and the hypothesis that malaria infection may decrease RDT specificity led us to evaluate the specificity of 5 gHAT screening tests. METHODS: During active screening, venous blood samples from 1095 individuals from Côte d'Ivoire and Guinea were tested consecutively with commercial (CATT, HAT Sero-K-SeT, Abbott Bioline HAT 2.0) and prototype (DCN HAT RDT, HAT Sero-K-SeT 2.0) gHAT screening tests and with a malaria RDT. Individuals with ≥ 1 positive gHAT screening test underwent microscopy and further immunological (trypanolysis with T.b. gambiense LiTat 1.3, 1.5 and 1.6; indirect ELISA/T.b. gambiense; T.b. gambiense inhibition ELISA with T.b. gambiense LiTat 1.3 and 1.5 VSG) and molecular reference laboratory tests (PCR TBRN3, 18S and TgsGP; SHERLOCK 18S Tids, 7SL Zoon, and TgsGP; Trypanozoon S2-RT-qPCR 18S2, 177T, GPI-PLC and TgsGP in multiplex; RT-qPCR DT8, DT9 and TgsGP in multiplex). Microscopic trypanosome detection confirmed gHAT, while other individuals were considered gHAT free. Differences in fractions between groups were assessed by Chi square and differences in specificity between 2 tests on the same individuals by McNemar. RESULTS: One gHAT case was diagnosed. Overall test specificities (n = 1094) were: CATT 98.9% (95% CI: 98.1-99.4%); HAT Sero-K-SeT 86.7% (95% CI: 84.5-88.5%); Bioline HAT 2.0 82.1% (95% CI: 79.7-84.2%); DCN HAT RDT 78.2% (95% CI: 75.7-80.6%); and HAT Sero-K-SeT 2.0 78.4% (95% CI: 75.9-80.8%). In malaria positives, gHAT screening tests appeared less specific, but the difference was significant only in Guinea for Abbott Bioline HAT 2.0 (P = 0.03) and HAT Sero-K-Set 2.0 (P = 0.0006). The specificities of immunological and molecular laboratory tests in gHAT seropositives were 98.7-100% (n = 399) and 93.0-100% (n = 302), respectively. Among 44 reference laboratory test positives, only the confirmed gHAT patient and one screening test seropositive combined immunological and molecular reference laboratory test positivity. CONCLUSIONS: Although a minor effect of malaria cannot be excluded, gHAT RDT specificities are far below the 95% minimal specificity stipulated by the WHO target product profile for a simple diagnostic tool to identify individuals eligible for treatment. Unless specificity is improved, an RDT-based "screen and treat" strategy would result in massive overtreatment. In view of their inconsistent results, additional comparative evaluations of the diagnostic performance of reference laboratory tests are indicated for better identifying, among screening test positives, those at increased suspicion for gHAT. TRIAL REGISTRATION: The trial was retrospectively registered under NCT05466630 in clinicaltrials.gov on July 15 2022.


Subject(s)
Sensitivity and Specificity , Trypanosoma brucei gambiense , Trypanosomiasis, African , Humans , Trypanosomiasis, African/diagnosis , Trypanosomiasis, African/blood , Cote d'Ivoire , Trypanosoma brucei gambiense/immunology , Trypanosoma brucei gambiense/isolation & purification , Adult , Guinea , Prospective Studies , Male , Adolescent , Female , Young Adult , Middle Aged , Serologic Tests/methods , Child , Enzyme-Linked Immunosorbent Assay/methods , Aged , Child, Preschool , Antibodies, Protozoan/blood
18.
Transpl Int ; 37: 13203, 2024.
Article in English | MEDLINE | ID: mdl-39055345

ABSTRACT

There is a need to reconsider the acceptance of organs from donors considered suboptimal, in the absence of data. Toxoplasma antibody-positive donors (TPD) constitute one such group. The objective of our study was to compare graft survival in deceased donor renal transplant (Tx) recipients, stratified by Toxoplasma IgG status, using the Organ Procurement and Transplantation Network (OPTN) database. A log-linear event history regression model for graft failure categorized by Toxoplasma IgG status, adjusting for confounders was applied to first kidney-only Tx recipients from 2018 to 2022. Of the 51,422 Tx, 4,317 (8.4%) were from TPD. Acute rejection and graft failure (5% each) were similar between groups. Crude graft failure was 7.3 failures per 100 person-years for TPD recipients compared to 6.5 failures per 100 person-years for the Toxoplasma-negative group (p 0.008). The crude failure rate ratio was 1.14 with an adjusted hazard rate ratio of 1.04 (95% CI: 0.94, 1.15, p 0.39). In renal Tx recipients, TPD graft recipients have comparable survival to Tx from Toxoplasma-negative recipients. While caution and close monitoring of recipients post-Tx for surveillance of disseminated toxoplasmosis are still warranted, our study suggests that patients can be successfully managed using TPD organs.


Subject(s)
Databases, Factual , Graft Rejection , Graft Survival , Kidney Transplantation , Tissue Donors , Tissue and Organ Procurement , Toxoplasma , Toxoplasmosis , Humans , Toxoplasma/immunology , Male , Female , Middle Aged , Adult , Treatment Outcome , Antibodies, Protozoan/blood
19.
Parasit Vectors ; 17(1): 305, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39010122

ABSTRACT

BACKGROUND: Chagas disease (CD), a neglected parasitic disease caused by Trypanosoma cruzi, poses a significant health threat in Latin America and has emerged globally because of human migration. Trypanosoma cruzi infects humans and over 100 other mammalian species, including dogs, which are important sentinels for assessing the risk of human infection. Nonetheless, the serodiagnosis of T. cruzi in dogs is still impaired by the absence of commercial tests. In this study, we investigated the diagnostic accuracy of four chimeric recombinant T. cruzi IBMP antigens (IBMP-8.1, IBMP-8.2, IBMP-8.3, and IBMP-8.4) for detecting anti-T. cruzi antibodies in dogs, using latent class analysis (LCA). METHODS: We examined 663 canine serum samples, employing indirect ELISA with the chimeric antigens. LCA was utilized to establish a latent variable as a gold standard for T. cruzi infection, revealing distinct response patterns for each antigen. RESULTS: The IBMP (Portuguese acronym for the Molecular Biology Institute of Paraná) antigens achieved area under the ROC curve (AUC) values ranging from 90.9% to 97.3%. The highest sensitivity was attributed to IBMP-8.2 (89.8%), while IBMP-8.1, IBMP-8.3, and IBMP-8.4 achieved 73.5%, 79.6%, and 85.7%, respectively. The highest specificity was observed for IBMP-8.4 (98.6%), followed by IBMP-8.2, IBMP-8.3, and IBMP-8.1 with specificities of 98.3%, 94.4%, and 92.7%, respectively. Predictive values varied according to prevalence, indicating higher effectiveness in endemic settings. CONCLUSIONS: Our findings underscore the remarkable diagnostic performance of IBMP-8.2 and IBMP-8.4 for the serodiagnosis of Trypanosoma cruzi in dogs, representing a promising tool for the diagnosis of CD in dogs. These chimeric recombinant antigens may not only enhance CD surveillance strategies but also hold broader implications for public health, contributing to the global fight against this neglected tropical disease.


Subject(s)
Antibodies, Protozoan , Antigens, Protozoan , Chagas Disease , Dog Diseases , Enzyme-Linked Immunosorbent Assay , Sensitivity and Specificity , Serologic Tests , Trypanosoma cruzi , Animals , Dogs , Chagas Disease/diagnosis , Chagas Disease/veterinary , Chagas Disease/parasitology , Trypanosoma cruzi/immunology , Trypanosoma cruzi/genetics , Dog Diseases/diagnosis , Dog Diseases/parasitology , Antigens, Protozoan/immunology , Antigens, Protozoan/genetics , Serologic Tests/methods , Serologic Tests/veterinary , Enzyme-Linked Immunosorbent Assay/methods , Enzyme-Linked Immunosorbent Assay/veterinary , Antibodies, Protozoan/blood , Recombinant Proteins/immunology , Recombinant Proteins/genetics
20.
Rev Esc Enferm USP ; 58: e20230408, 2024.
Article in English, Portuguese | MEDLINE | ID: mdl-39028847

ABSTRACT

OBJECTIVE: To conduct a serological screening for toxoplasmosis in the heel prick test and to evaluate its epidemiological aspects in newborns and postpartum women in Jataí, Goiás. METHOD: Cross-sectional epidemiological study for the biological screening of newborns in Jataí, Goiás. RESULTS: The study participants amounted to 228 newborns, whose samples were collected between the third and seventh day of life. IgG antibodies against Toxoplasma gondii were detected in 40.79% (93/228) of the samples; out of these, 23.6% (22/93) had high IgG antibody titers, leading to the collection of two other peripheral blood samples and the detection of a decrease in these titers. CONCLUSION: The findings show the importance of strengthening actions in primary health care to prevent infection and training health professionals in this area to equip them with information regarding cases of reinfection and reactivation of infection in pregnant women, minimizing risks for babies.


Subject(s)
Neonatal Screening , Toxoplasmosis, Congenital , Humans , Cross-Sectional Studies , Toxoplasmosis, Congenital/diagnosis , Toxoplasmosis, Congenital/epidemiology , Toxoplasmosis, Congenital/prevention & control , Brazil/epidemiology , Infant, Newborn , Female , Neonatal Screening/methods , Male , Adult , Antibodies, Protozoan/blood , Young Adult , Immunoglobulin G/blood , Toxoplasma/immunology
SELECTION OF CITATIONS
SEARCH DETAIL