Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.164
Filter
1.
Drug Resist Updat ; 75: 101098, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38833804

ABSTRACT

Breakthroughs in actual clinical applications have begun through vaccine-based cancer immunotherapy, which uses the body's immune system, both humoral and cellular, to attack malignant cells and fight diseases. However, conventional vaccine approaches still face multiple challenges eliciting effective antigen-specific immune responses, resulting in immunotherapy resistance. In recent years, biomimetic nanovaccines have emerged as a promising alternative to conventional vaccine approaches by incorporating the natural structure of various biological entities, such as cells, viruses, and bacteria. Biomimetic nanovaccines offer the benefit of targeted antigen-presenting cell (APC) delivery, improved antigen/adjuvant loading, and biocompatibility, thereby improving the sensitivity of immunotherapy. This review presents a comprehensive overview of several kinds of biomimetic nanovaccines in anticancer immune response, including cell membrane-coated nanovaccines, self-assembling protein-based nanovaccines, extracellular vesicle-based nanovaccines, natural ligand-modified nanovaccines, artificial antigen-presenting cells-based nanovaccines and liposome-based nanovaccines. We also discuss the perspectives and challenges associated with the clinical translation of emerging biomimetic nanovaccine platforms for sensitizing cancer cells to immunotherapy.


Subject(s)
Antigen-Presenting Cells , Cancer Vaccines , Immunotherapy , Nanoparticles , Neoplasms , Humans , Neoplasms/therapy , Neoplasms/immunology , Immunotherapy/methods , Cancer Vaccines/administration & dosage , Cancer Vaccines/immunology , Nanoparticles/administration & dosage , Antigen-Presenting Cells/immunology , Biomimetics/methods , Biomimetic Materials/administration & dosage , Animals , Liposomes , Nanovaccines
2.
J Biotechnol ; 391: 57-63, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38851397

ABSTRACT

Antigen-presenting cells (APCs) play an important role in virus infection control by bridging innate and adaptive immune responses. Macrophages and dendritic cells (DCs) possess various surface receptors to recognize/internalize antigens, and antibody binding can enhance pathogen-opsonizing uptake by these APCs via interaction of antibody fragment crystallizable (Fc) domains with Fc receptors, evoking profound pathogen control in certain settings. Here, we examined phagocytosis-enhancing potential of Fc domains directly oriented on a retroviral virion/virus-like particle (VLP) surface. We generated an expression vector coding a murine Fc fragment fused to the transmembrane region (TM) of a retroviral envelope protein, deriving expression of the Fc-TM fusion protein on the transfected cell surface and production of virions incorporating the chimeric Fc upon co-transfection. Incubation of Fc-displaying simian immunodeficiency virus (SIV) with murine J774 macrophages and bone marrow-derived DCs derived Fc receptor-dependent enhanced uptake, being visualized by imaging cytometry. Alternative preparation of a murine leukemia virus (MLV) backbone-based Fc-displaying VLP loading an influenza virus hemagglutinin (HA) antigen resulted in enhanced HA internalization by macrophages, stating antigen compatibility of the design. Results show that the Fc-TM fusion molecule can be displayed on certain viruses/VLPs and may be utilized as a molecular adjuvant to facilitate APC antigen uptake.


Subject(s)
Antigen-Presenting Cells , Dendritic Cells , Immunoglobulin Fc Fragments , Virion , Animals , Mice , Immunoglobulin Fc Fragments/genetics , Immunoglobulin Fc Fragments/metabolism , Immunoglobulin Fc Fragments/immunology , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/metabolism , Virion/metabolism , Virion/genetics , Dendritic Cells/immunology , Dendritic Cells/metabolism , Macrophages/metabolism , Macrophages/immunology , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/immunology , Simian Immunodeficiency Virus/immunology , Simian Immunodeficiency Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Cell Line , Leukemia Virus, Murine/genetics , Phagocytosis , Humans
3.
HLA ; 103(6): e15541, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38923358

ABSTRACT

Complications due to HCMV infection or reactivation remain a challenging clinical problem in immunocompromised patients, mainly due to insufficient or absent T-cell functionality. Knowledge of viral targets is crucial to improve monitoring of high-risk patients and optimise antiviral T-cell therapy. To expand the epitope spectrum, genetically-engineered dendritic cells (DCs) and fibroblasts were designed to secrete soluble (s)HLA-A*11:01 and infected with an HCMV mutant lacking immune evasion molecules (US2-6 + 11). More than 700 HLA-A*11:01-restricted epitopes, including more than 50 epitopes derived from a broad range of HCMV open-reading-frames (ORFs) were identified by mass spectrometry and screened for HLA-A*11:01-binding using established prediction tools. The immunogenicity of the 24 highest scoring new candidates was evaluated in vitro in healthy HLA-A*11:01+/HCMV+ donors. Thus, four subdominant epitopes and one immunodominant epitope, derived from the anti-apoptotic protein UL36 and ORFL101C (A11SAL), were identified. Their HLA-A*11:01 complex stability was verified in vitro. In depth analyses revealed highly proliferative and cytotoxic memory T-cell responses against A11SAL, with T-cell responses comparable to the immunodominant HLA-A*02:01-restricted HCMVpp65NLV epitope. A11SAL-specific T cells were also detectable in vivo in immunosuppressed transplant patients and shown to be effective in an in vitro HCMV-infection model, suggesting their crucial role in inhibiting viral replication and improvement of patient's outcome. The developed in vitro pipeline is the first to utilise genetically-engineered DCs to identify naturally presented immunodominant HCMV-derived epitopes. It therefore offers advantages over in silico predictions, is transferable to other HLA alleles, and will significantly expand the repertoire of viral targets to improve therapeutic options.


Subject(s)
Cytomegalovirus Infections , Cytomegalovirus , Dendritic Cells , Epitopes, T-Lymphocyte , Immunodominant Epitopes , Humans , Cytomegalovirus/immunology , Cytomegalovirus Infections/immunology , Immunodominant Epitopes/immunology , Dendritic Cells/immunology , Epitopes, T-Lymphocyte/immunology , HLA-A11 Antigen/immunology , HLA-A11 Antigen/genetics , Fibroblasts/immunology , Fibroblasts/virology , Antigen-Presenting Cells/immunology
4.
Traffic ; 25(6): e12950, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38923715

ABSTRACT

Processes such as cell migration, phagocytosis, endocytosis, and exocytosis refer to the intense exchange of information between the internal and external environment in the cells, known as vesicular trafficking. In eukaryotic cells, these essential cellular crosstalks are controlled by Rab GTPases proteins through diverse adaptor proteins like SNAREs complex, coat proteins, phospholipids, kinases, phosphatases, molecular motors, actin, or tubulin cytoskeleton, among others, all necessary for appropriate mobilization of vesicles and distribution of molecules. Considering these molecular events, Rab GTPases are critical components in specific biological processes of immune cells, and many reports refer primarily to macrophages; therefore, in this review, we address specific functions in immune cells, concretely in the mechanism by which the GTPase contributes in dendritic cells (DCs) and, T/B lymphocytes.


Subject(s)
T-Lymphocytes , rab GTP-Binding Proteins , Humans , rab GTP-Binding Proteins/metabolism , Animals , T-Lymphocytes/metabolism , T-Lymphocytes/immunology , Dendritic Cells/metabolism , Dendritic Cells/immunology , Antigen-Presenting Cells/metabolism , Antigen-Presenting Cells/immunology
5.
Proc Natl Acad Sci U S A ; 121(25): e2322264121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38865265

ABSTRACT

Despite the tremendous clinical potential of nucleic acid-based vaccines, their efficacy to induce therapeutic immune response has been limited by the lack of efficient local gene delivery techniques in the human body. In this study, we develop a hydrogel-based organic electronic device (µEPO) for both transdermal delivery of nucleic acids and in vivo microarrayed cell electroporation, which is specifically oriented toward one-step transfection of DNAs in subcutaneous antigen-presenting cells (APCs) for cancer immunotherapy. The µEPO device contains an array of microneedle-shaped electrodes with pre-encapsulated dry DNAs. Upon a pressurized contact with skin tissue, the electrodes are rehydrated, electrically triggered to release DNAs, and then electroporate nearby cells, which can achieve in vivo transfection of more than 50% of the cells in the epidermal and upper dermal layer. As a proof-of-concept, the µEPO technique is employed to facilitate transdermal delivery of neoantigen genes to activate antigen-specific immune response for enhanced cancer immunotherapy based on a DNA vaccination strategy. In an ovalbumin (OVA) cancer vaccine model, we show that high-efficiency transdermal transfection of APCs with OVA-DNAs induces robust cellular and humoral immune responses, including antigen presentation and generation of IFN-γ+ cytotoxic T lymphocytes with a more than 10-fold dose sparing over existing intramuscular injection (IM) approach, and effectively inhibits tumor growth in rodent animals.


Subject(s)
Electroporation , Immunotherapy , Vaccines, DNA , Animals , Vaccines, DNA/administration & dosage , Vaccines, DNA/immunology , Electroporation/methods , Mice , Immunotherapy/methods , Administration, Cutaneous , Neoplasms/therapy , Neoplasms/immunology , Cancer Vaccines/immunology , Cancer Vaccines/administration & dosage , Ovalbumin/immunology , Ovalbumin/administration & dosage , Antigen-Presenting Cells/immunology , Female , Mice, Inbred C57BL , Humans , Vaccination/methods
6.
Adv Drug Deliv Rev ; 210: 115329, 2024 07.
Article in English | MEDLINE | ID: mdl-38729265

ABSTRACT

Autoimmune diseases are burdensome conditions that affect a significant fraction of the global population. The hallmark of autoimmune disease is a host's immune system being licensed to attack its tissues based on specific antigens. There are no cures for autoimmune diseases. The current clinical standard for treating autoimmune diseases is the administration of immunosuppressants, which weaken the immune system and reduce auto-inflammatory responses. However, people living with autoimmune diseases are subject to toxicity, fail to mount a sufficient immune response to protect against pathogens, and are more likely to develop infections. Therefore, there is a concerted effort to develop more effective means of targeting immunomodulatory therapies to antigen-presenting cells, which are involved in modulating the immune responses to specific antigens. In this review, we highlight approaches that are currently in development to target antigen-presenting cells and improve therapeutic outcomes in autoimmune diseases.


Subject(s)
Antigen-Presenting Cells , Autoimmune Diseases , Autoimmunity , Immunotherapy , Humans , Antigen-Presenting Cells/immunology , Autoimmune Diseases/immunology , Autoimmune Diseases/therapy , Immunotherapy/methods , Animals , Autoimmunity/immunology
7.
Nano Lett ; 24(19): 5808-5815, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38710049

ABSTRACT

In multicellular organisms, individual cells are coordinated through complex communication networks to accomplish various physiological tasks. Aiming to establish new biological functions in the multicellular community, we used DNA as the building block to develop a cascade of nongenetic reaction circuits to establish a dynamic cell-cell communication network. Utilizing membrane-anchored amphiphilic DNA tetrahedra (TDN) as the nanoscaffold, reaction circuits were incorporated into three unrelated cells in order to uniquely regulate their sense-and-response behaviors. As a proof-of-concept, this step enabled these cells to simulate significant biological events involved in T cell-mediated anticancer immunity. Such events included cancer-associated antigen recognition and the presentation of antigen-presenting cells (APCs), APC-facilitated T cell activation and dissociation, and T cell-mediated cancer targeting and killing. By combining the excellent programmability and molecular recognition ability of DNA, our cell-surface reaction circuits hold promise for mimicking and manipulating many biological processes.


Subject(s)
Antigen-Presenting Cells , Cell Communication , DNA , DNA/chemistry , Humans , Antigen-Presenting Cells/immunology , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Lymphocyte Activation , Neoplasms/pathology , Neoplasms/genetics
8.
Front Immunol ; 15: 1392316, 2024.
Article in English | MEDLINE | ID: mdl-38711516

ABSTRACT

Streptococcus pneumoniae remains a significant global threat, with existing vaccines having important limitations such as restricted serotype coverage and high manufacturing costs. Pneumococcal lipoproteins are emerging as promising vaccine candidates due to their surface exposure and conservation across various serotypes. While prior studies have explored their potential in mice, data in a human context and insights into the impact of the lipid moiety remain limited. In the present study, we examined the immunogenicity of two pneumococcal lipoproteins, DacB and MetQ, both in lipidated and non-lipidated versions, by stimulation of primary human immune cells. Immune responses were assessed by the expression of common surface markers for activation and maturation as well as cytokines released into the supernatant. Our findings indicate that in the case of MetQ lipidation was crucial for activation of human antigen-presenting cells such as dendritic cells and macrophages, while non-lipidated DacB demonstrated an intrinsic potential to induce an innate immune response. Nevertheless, immune responses to both proteins were enhanced by lipidation. Interestingly, following stimulation of dendritic cells with DacB, LipDacB and LipMetQ, cytokine levels of IL-6 and IL-23 were significantly increased, which are implicated in triggering potentially important Th17 cell responses. Furthermore, LipDacB and LipMetQ were able to induce proliferation of CD4+ T cells indicating their potential to induce an adaptive immune response. These findings contribute valuable insights into the immunogenic properties of pneumococcal lipoproteins, emphasizing their potential role in vaccine development against pneumococcal infections.


Subject(s)
Adaptive Immunity , Bacterial Proteins , Cytokines , Streptococcus pneumoniae , Humans , Streptococcus pneumoniae/immunology , Cytokines/metabolism , Bacterial Proteins/immunology , Lipoproteins/immunology , Lipoproteins/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/metabolism , Pneumococcal Vaccines/immunology , Pneumococcal Infections/immunology , Pneumococcal Infections/prevention & control , Macrophages/immunology , Macrophages/metabolism , Cells, Cultured
9.
Front Immunol ; 15: 1386160, 2024.
Article in English | MEDLINE | ID: mdl-38779658

ABSTRACT

The study of peptide repertoires presented by major histocompatibility complex (MHC) molecules and the identification of potential T-cell epitopes contribute to a multitude of immunopeptidome-based treatment approaches. Epitope mapping is essential for the development of promising epitope-based approaches in vaccination as well as for innovative therapeutics for autoimmune diseases, infectious diseases, and cancer. It also plays a critical role in the immunogenicity assessment of protein therapeutics with regard to safety and efficacy concerns. The main challenge emerges from the highly polymorphic nature of the human leukocyte antigen (HLA) molecules leading to the requirement of a peptide mapping strategy for a single HLA allele. As many autoimmune diseases are linked to at least one specific antigen, we established FASTMAP, an innovative strategy to transiently co-transfect a single HLA allele combined with a disease-specific antigen into a human cell line. This approach allows the specific identification of HLA-bound peptides using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Using FASTMAP, we found a comparable spectrum of endogenous peptides presented by the most frequently expressed HLA alleles in the world's population compared to what has been described in literature. To ensure a reliable peptide mapping workflow, we combined the HLA alleles with well-known human model antigens like coagulation factor VIII, acetylcholine receptor subunit alpha, protein structures of the SARS-CoV-2 virus, and myelin basic protein. Using these model antigens, we have been able to identify a broad range of peptides that are in line with already published and in silico predicted T-cell epitopes of the specific HLA/model antigen combination. The transient co-expression of a single affinity-tagged MHC molecule combined with a disease-specific antigen in a human cell line in our FASTMAP pipeline provides the opportunity to identify potential T-cell epitopes/endogenously processed MHC-bound peptides in a very cost-effective, fast, and customizable system with high-throughput potential.


Subject(s)
Epitope Mapping , Epitopes, T-Lymphocyte , HLA-E Antigens , Proteomics , Proteomics/methods , HLA-E Antigens/analysis , Epitopes, T-Lymphocyte/analysis , Epitope Mapping/methods , Epitope Mapping/standards , Autoimmune Diseases/diagnosis , Autoimmune Diseases/immunology , Cell Line , Humans , Liquid Chromatography-Mass Spectrometry , Peptides/isolation & purification , Antigen-Presenting Cells/immunology , Artificial Cells/immunology
10.
Theranostics ; 14(6): 2290-2303, 2024.
Article in English | MEDLINE | ID: mdl-38646651

ABSTRACT

Background: Neoantigen nanovaccine has been recognized as a promising treatment modality for personalized cancer immunotherapy. However, most current nanovaccines are carrier-dependent and the manufacturing process is complicated, resulting in potential safety concerns and suboptimal codelivery of neoantigens and adjuvants to antigen-presenting cells (APCs). Methods: Here we report a facile and general methodology for nanoassembly of peptide and oligonucleotide by programming neoantigen peptide with a short cationic module at N-terminus to prepare nanovaccine. The programmed peptide can co-assemble with CpG oligonucleotide (TLR9 agonist) into monodispersed nanostructures without the introduction of artificial carrier. Results: We demonstrate that the engineered nanovaccine promoted the codelivery of neoantigen peptides and adjuvants to lymph node-residing APCs and instigated potent neoantigen-specific T-cell responses, eliciting neoantigen-specific antitumor immune responses with negligible systemic toxicity. Furthermore, the antitumor T-cell immunity is profoundly potentiated when combined with anti-PD-1 therapy, leading to significant inhibition or even complete regression of established melanoma and MC-38 colon tumors. Conclusions: Collectively, this work demonstrates the feasibility and effectiveness of personalized cancer nanovaccine preparation with high immunogenicity and good biosafety by programming neoantigen peptide for nanoassembly with oligonucleotides without the aid of artificial carrier.


Subject(s)
Antigens, Neoplasm , Cancer Vaccines , Peptides , Cancer Vaccines/immunology , Cancer Vaccines/administration & dosage , Animals , Mice , Antigens, Neoplasm/immunology , Peptides/immunology , Peptides/chemistry , Mice, Inbred C57BL , Oligodeoxyribonucleotides/administration & dosage , Oligodeoxyribonucleotides/immunology , Oligodeoxyribonucleotides/chemistry , Antigen-Presenting Cells/immunology , Cell Line, Tumor , Immunotherapy/methods , Humans , Female , T-Lymphocytes/immunology , Nanostructures/chemistry , Colonic Neoplasms/immunology , Colonic Neoplasms/therapy , Colonic Neoplasms/drug therapy
11.
Adv Mater ; 36(25): e2402532, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38563503

ABSTRACT

Due to inherent differences in cellular composition and metabolic behavior with host cells, tumor-harbored bacteria can discriminatorily affect tumor immune landscape. However, the mechanisms by which intracellular bacteria affect antigen presentation process between tumor cells and antigen-presenting cells (APCs) are largely unknown. The invasion behavior of attenuated Salmonella VNP20009 (VNP) into tumor cells is investigated and an attempt is made to modulate this behavior by modifying positively charged polymers on the surface of VNP. It is found that non-toxic chitosan oligosaccharide (COS) modified VNP (VNP@COS) bolsters the formation of gap junction between tumor cells and APCs by enhancing the ability of VNP to infect tumor cells. On this basis, a bacterial biohybrid is designed to promote in situ antigen cross-presentation through intracellular bacteria induced gap junction. This bacterial biohybrid also enhances the expression of major histocompatibility complex class I molecules on the surface of tumor cells through the incorporation of Mdivi-1 coupled with VNP@COS. This strategic integration serves to heighten the immunogenic exposure of tumor antigens; while, preserving the cytotoxic potency of T cells. A strategy is proposed to precisely controlling the function and local effects of microorganisms within tumors.


Subject(s)
Antigen Presentation , Chitosan , Gap Junctions , Salmonella , Humans , Chitosan/chemistry , Cell Line, Tumor , Gap Junctions/metabolism , Salmonella/immunology , Animals , Cross-Priming , Mice , Oligosaccharides/chemistry , Neoplasms/immunology , Neoplasms/pathology , Antigen-Presenting Cells/immunology , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens Class I/immunology
12.
J Control Release ; 369: 475-492, 2024 May.
Article in English | MEDLINE | ID: mdl-38569943

ABSTRACT

Skin is the body's largest organ and serves as a protective barrier from physical, thermal, and mechanical environmental challenges. Alongside, the skin hosts key immune system players, such as the professional antigen-presenting cells (APCs) like the Langerhans cells in the epidermis and circulating macrophages in the blood. Further, the literature supports that the APCs can be activated by antigen or vaccine delivery via multiple routes of administration through the skin. Once activated, the stimulated APCs drain to the associated lymph nodes and gain access to the lymphatic system. This further allows the APCs to engage with the adaptive immune system and activate cellular and humoral immune responses. Thus, vaccine delivery via skin offers advantages such as reliable antigen delivery, superior immunogenicity, and convenient delivery. Several preclinical and clinical studies have demonstrated the significance of vaccine delivery using various routes of administration via skin. However, such vaccines often employ adjuvant/(s), along with the antigen of interest. Adjuvants augment the immune response to a vaccine antigen and improve the therapeutic efficacy. Due to these reasons, adjuvants have been successfully used with infectious disease vaccines, cancer immunotherapy, and immune-mediated diseases. To capture these developments, this review will summarize preclinical and clinical study results of vaccine delivery via skin in the presence of adjuvants. A focused discussion regarding the FDA-approved adjuvants will address the experiences of using such adjuvant-containing vaccines. In addition, the challenges and regulatory concerns with these adjuvants will be discussed. Finally, the review will share the prospects of adjuvant-containing vaccines delivered via skin.


Subject(s)
Adjuvants, Immunologic , Administration, Cutaneous , Skin , Vaccination , Vaccines , Humans , Animals , Vaccination/methods , Adjuvants, Immunologic/administration & dosage , Skin/immunology , Vaccines/administration & dosage , Vaccines/immunology , Antigen-Presenting Cells/immunology
13.
J Food Sci ; 89(6): 3802-3815, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38685880

ABSTRACT

The relationship between allergic inflammation and gut microbiota has been elucidated, and the effect of probiotics on immune disorders has been studied as well. Identifying the role of probiotics in individual diseases and immune responses and selecting and applying specific microorganisms based on these findings can be an effective strategy for using probiotics. Herein, lactobacilli isolated from kimchi were investigated in depth, focusing on their immune regulatory effects and the mechanisms involved. Lactic acid bacteria (LAB) effectively diminished the increased secretion of T helper 2 cytokines, such as IL-4, IL-5, and IL-13, from ovalbumin (OVA)-sensitized mouse splenocytes. The gene expression of GATA3, IL-4, IL-5, IL-9, and IL-13 was confirmed to be regulated by LAB. LAB also suppressed IL-2 production and STAT5 phosphorylation. An IL-10-neutralizing antibody attenuated these effects, indicating that LAB-induced upregulation of IL-10 in antigen-presenting cells was responsible at least partially for the increased IL-2 production and STAT5 phosphorylation in CD4+ T cells. In conclusion, the current study identified one immunomodulatory mechanism that allows LAB to regulate allergic immune reactions and the potential of LAB from kimchi to modulate various immune reactions.


Subject(s)
Antigen-Presenting Cells , Interleukin-10 , Lactobacillus plantarum , STAT5 Transcription Factor , Th2 Cells , STAT5 Transcription Factor/metabolism , Animals , Interleukin-10/metabolism , Phosphorylation , Mice , Th2 Cells/immunology , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/metabolism , Inflammation , Probiotics/pharmacology , Mice, Inbred BALB C , Fermented Foods/microbiology , Interleukin-4/metabolism , Female , Ovalbumin , Spleen/immunology , Spleen/metabolism , Interleukin-5/metabolism , Cytokines/metabolism , Interleukin-2/metabolism
14.
J Colloid Interface Sci ; 667: 1-11, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38615618

ABSTRACT

A major challenge in combining cancer immunotherapy is the efficient delivery of multiple types of immunological stimulators to elicit a robust anti-tumor immune response and reprogram the immunosuppressive tumor microenvironment (TME). Here, we developed a DNA nanodevice that was generated by precisely assembling three types of immunological stimulators. The doxorubicin (Dox) component induced immunogenic cell death (ICD) in tumor cells and enhanced phagocytosis of antigen-presenting cells (APCs). Exogenous double-stranded DNA (dsDNA) could act as a molecular adjuvant to activate the stimulator of interferon genes (STING) signaling in APCs by engulfing dying tumor cells. Interleukin (IL)-12 and small hairpin programmed cell death-ligand 1 (shPD-L1) transcription templates were designed to regulate TME. Additionally, for targeted drug delivery, multiple cyclo[Arg-Gly-Asp-(d-Phe)-Cys] (cRGD) peptide units on DNA origami were employed. The incorporation of disulfide bonds allowed the release of multiple modules in response to intracellular glutathione (GSH) in tumors. The nanodevice promoted the infiltration of CD8+ and CD4+ cells into the tumor and generated a highly inflamed TME, thereby enhancing the effectiveness of cancer immunotherapy. Our research results indicate that the nanodevice we constructed can effectively inhibit tumor growth and prevent lung metastasis without obvious systemic toxicity, providing a promising strategy for cancer combination treatment.


Subject(s)
DNA , Doxorubicin , Immunotherapy , DNA/chemistry , Doxorubicin/pharmacology , Doxorubicin/chemistry , Doxorubicin/administration & dosage , Mice , Animals , Tumor Microenvironment/drug effects , Humans , Drug Delivery Systems , Mice, Inbred C57BL , Mice, Inbred BALB C , Cell Line, Tumor , Antigen-Presenting Cells/immunology , Nanoparticles/chemistry , Neoplasms/therapy , Neoplasms/drug therapy , Neoplasms/immunology , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/administration & dosage , Particle Size
15.
Mol Ther ; 32(5): 1266-1283, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38569556

ABSTRACT

Carrier-free naked mRNA vaccines may reduce the reactogenicity associated with delivery carriers; however, their effectiveness against infectious diseases has been suboptimal. To boost efficacy, we targeted the skin layer rich in antigen-presenting cells (APCs) and utilized a jet injector. The jet injection efficiently introduced naked mRNA into skin cells, including APCs in mice. Further analyses indicated that APCs, after taking up antigen mRNA in the skin, migrated to the lymph nodes (LNs) for antigen presentation. Additionally, the jet injection provoked localized lymphocyte infiltration in the skin, serving as a physical adjuvant for vaccination. Without a delivery carrier, our approach confined mRNA distribution to the injection site, preventing systemic mRNA leakage and associated systemic proinflammatory reactions. In mouse vaccination, the naked mRNA jet injection elicited robust antigen-specific antibody production over 6 months, along with germinal center formation in LNs and the induction of both CD4- and CD8-positive T cells. By targeting the SARS-CoV-2 spike protein, this approach provided protection against viral challenge. Furthermore, our approach generated neutralizing antibodies against SARS-CoV-2 in non-human primates at levels comparable to those observed in mice. In conclusion, our approach offers a safe and effective option for mRNA vaccines targeting infectious diseases.


Subject(s)
COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , mRNA Vaccines , Animals , Mice , SARS-CoV-2/immunology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , mRNA Vaccines/immunology , COVID-19/prevention & control , COVID-19/immunology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Viral/immunology , Female , Antigen-Presenting Cells/immunology , RNA, Messenger/genetics , RNA, Messenger/immunology , CD8-Positive T-Lymphocytes/immunology , Antibodies, Neutralizing/immunology , Humans , Vaccination/methods
16.
Molecules ; 29(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38675621

ABSTRACT

Allogeneic hematopoietic cell transplantation (allo-HCT) is a highly effective, well-established treatment for patients with various hematologic malignancies and non-malignant diseases. The therapeutic benefits of allo-HCT are mediated by alloreactive T cells in donor grafts. However, there is a significant risk of graft-versus-host disease (GvHD), in which the donor T cells recognize recipient cells as foreign and attack healthy organs in addition to malignancies. We previously demonstrated that targeting JAK1/JAK2, mediators of interferon-gamma receptor (IFNGR) and IL-6 receptor signaling, in donor T cells using baricitinib and ruxolitinib results in a significant reduction in GvHD after allo-HCT. Furthermore, we showed that balanced inhibition of JAK1/JAK2 while sparing JAK3 is important for the optimal prevention of GvHD. Thus, we have generated novel JAK1/JAK2 inhibitors, termed WU derivatives, by modifying baricitinib. Our results show that WU derivatives have the potential to mitigate GvHD by upregulating regulatory T cells and immune reconstitution while reducing the frequencies of antigen-presenting cells (APCs) and CD80 expression on these APCs in our preclinical mouse model of allo-HCT. In addition, WU derivatives effectively downregulated CXCR3 and T-bet in primary murine T cells. In summary, we have generated novel JAK inhibitors that could serve as alternatives to baricitinib or ruxolitinib.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Pyrazoles , Transplantation, Homologous , Animals , Mice , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/drug effects , Antigen-Presenting Cells/metabolism , Azetidines/pharmacology , Disease Models, Animal , Graft vs Host Disease/prevention & control , Graft vs Host Disease/drug therapy , Hematopoietic Stem Cell Transplantation/adverse effects , Janus Kinase 1/antagonists & inhibitors , Janus Kinase 1/metabolism , Janus Kinase 2/metabolism , Janus Kinase 2/antagonists & inhibitors , Janus Kinase Inhibitors/pharmacology , Mice, Inbred C57BL , Purines/pharmacology , Pyrazoles/pharmacology , Sulfonamides/pharmacology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects
17.
Arch Toxicol ; 98(7): 2173-2183, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38616237

ABSTRACT

This study investigated the immunotoxic effects of the mycotoxin nivalenol (NIV) using antigen-presenting cells and a mouse model of atopic dermatitis (AD). In vitro experiments were conducted using a mouse macrophage cell line (RAW 264.7) and mouse dendritic cell line (DC 2.4). After cells were exposed to NIV (0.19-5 µmol) for 24 h, the production of pro-inflammatory cytokines (IL-1ß, IL-6, and TNFα) was quantified. To further investigate the inflammatory cytokine production pathway, the possible involvement of mitogen-activated protein kinase (MAPK) pathways, such as ERK1/2, p-38, and JNK, in NIV exposure was analyzed using MAPK inhibitors and phosphorylation analyses. In addition, the pro-inflammatory effects of oral exposure to NIV at low concentrations (1 or 5 ppm) were evaluated in an NC/Nga mouse model of hapten-induced AD. In vitro experiments demonstrated that exposure to NIV significantly enhanced the production of TNFα. In addition, it also directly induced the phosphorylation of MAPK, indicated by the inhibition of TNFα production following pretreatment with MAPK inhibitors. Oral exposure to NIV significantly exacerbated the symptoms of AD, including a significant increase in helper T cells and IgE-produced B cells in auricular lymph nodes and secretion of pro-inflammatory cytokines, such as IL-4, IL-5, and IL-13, compared with the vehicle control group. Our findings indicate that exposure to NIV directly enhanced the phosphorylation of ERK1/2, p-38, and JNK, resulting in a significant increase in TNFα production in antigen-presenting cells, which is closely related to the development of atopic dermatitis.


Subject(s)
Cytokines , Dermatitis, Atopic , Trichothecenes , Animals , Dermatitis, Atopic/chemically induced , Dermatitis, Atopic/immunology , Trichothecenes/toxicity , Trichothecenes/administration & dosage , Mice , Administration, Oral , Cytokines/metabolism , RAW 264.7 Cells , Mitogen-Activated Protein Kinases/metabolism , Antigen-Presenting Cells/drug effects , Antigen-Presenting Cells/immunology , MAP Kinase Signaling System/drug effects , Disease Models, Animal , Dendritic Cells/drug effects , Dendritic Cells/metabolism , Dendritic Cells/immunology , Phosphorylation , Male , Tumor Necrosis Factor-alpha/metabolism , Female
18.
Nat Biomed Eng ; 8(5): 593-610, 2024 May.
Article in English | MEDLINE | ID: mdl-38641710

ABSTRACT

Intracellular DNA sensors regulate innate immunity and can provide a bridge to adaptive immunogenicity. However, the activation of the sensors in antigen-presenting cells (APCs) by natural agonists such as double-stranded DNAs or cyclic nucleotides is impeded by poor intracellular delivery, serum stability, enzymatic degradation and rapid systemic clearance. Here we show that the hydrophobicity, electrostatic charge and secondary conformation of helical polypeptides can be optimized to stimulate innate immune pathways via endoplasmic reticulum stress in APCs. One of the three polypeptides that we engineered activated two major intracellular DNA-sensing pathways (cGAS-STING (for cyclic guanosine monophosphate-adenosine monophosphate synthase-stimulator of interferon genes) and Toll-like receptor 9) preferentially in APCs by promoting the release of mitochondrial DNA, which led to the efficient priming of effector T cells. In syngeneic mouse models of locally advanced and metastatic breast cancers, the polypeptides led to potent DNA-sensor-mediated antitumour responses when intravenously given as monotherapy or with immune checkpoint inhibitors. The activation of multiple innate immune pathways via engineered cationic polypeptides may offer therapeutic advantages in the generation of antitumour immune responses.


Subject(s)
Antigen-Presenting Cells , Immunity, Innate , Peptides , Animals , Immunity, Innate/drug effects , Peptides/chemistry , Peptides/pharmacology , Mice , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/drug effects , Humans , Female , Cations/chemistry , Mice, Inbred C57BL , Cell Line, Tumor , Toll-Like Receptor 9/metabolism , Breast Neoplasms/immunology , Breast Neoplasms/drug therapy , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/chemistry
19.
J Cell Sci ; 137(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38682259

ABSTRACT

SARS-CoV-2 interferes with antigen presentation by downregulating major histocompatibility complex (MHC) II on antigen-presenting cells, but the mechanism mediating this process is unelucidated. Herein, analysis of protein and gene expression in human antigen-presenting cells reveals that MHC II is downregulated by the SARS-CoV-2 main protease, NSP5. This suppression of MHC II expression occurs via decreased expression of the MHC II regulatory protein CIITA. CIITA downregulation is independent of the proteolytic activity of NSP5, and rather, NSP5 delivers HDAC2 to the transcription factor IRF3 at an IRF-binding site within the CIITA promoter. Here, HDAC2 deacetylates and inactivates the CIITA promoter. This loss of CIITA expression prevents further expression of MHC II, with this suppression alleviated by ectopic expression of CIITA or knockdown of HDAC2. These results identify a mechanism by which SARS-CoV-2 limits MHC II expression, thereby delaying or weakening the subsequent adaptive immune response.


Subject(s)
Histocompatibility Antigens Class II , Histone Deacetylase 2 , Nuclear Proteins , Promoter Regions, Genetic , SARS-CoV-2 , Trans-Activators , Humans , Antigen Presentation/genetics , Antigen-Presenting Cells/metabolism , Antigen-Presenting Cells/immunology , COVID-19/virology , COVID-19/immunology , COVID-19/genetics , COVID-19/metabolism , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/genetics , Down-Regulation/genetics , HEK293 Cells , Histocompatibility Antigens Class II/metabolism , Histocompatibility Antigens Class II/genetics , Histone Deacetylase 2/metabolism , Histone Deacetylase 2/genetics , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-3/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Promoter Regions, Genetic/genetics , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/immunology , Trans-Activators/metabolism , Trans-Activators/genetics , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/genetics
20.
Immunology ; 172(3): 375-391, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38471664

ABSTRACT

Persistent human papillomavirus (HPV) infection is associated with multiple malignancies. Developing therapeutic vaccines to eliminate HPV-infected and malignant cells holds significant value. In this study, we introduced a lipid nanoparticle encapsulated mRNA vaccine expressing tHA-mE7-mE6. Mutations were introduced into E6 and E7 of HPV to eliminate their tumourigenicity. A truncated influenza haemagglutinin protein (tHA), which binds to the CD209 receptor on the surface of dendritic cells (DCs), was fused with mE7-mE6 in order to allow efficient uptake of antigen by antigen presenting cells. The tHA-mE7-mE6 (mRNA) showed higher therapeutic efficacy than mE7-mE6 (mRNA) in an E6 and E7+ tumour model. The treatment resulted in complete tumour regression and prevented tumour formation. Strong CD8+ T-cell immune response was induced, contributing to preventing and curing of E6 and E7+ tumour. Antigen-specific CD8+ T were found in spleens, peripheral blood and in tumours. In addition, the tumour infiltration of DC and NK cells were increased post therapy. In conclusion, this study described a therapeutic mRNA vaccine inducing strong anti-tumour immunity in peripheral and in tumour microenvironment, holding promising potential to treat HPV-induced cancer and to prevent cancer recurrence.


Subject(s)
Cancer Vaccines , Dendritic Cells , Oncogene Proteins, Viral , Papillomavirus E7 Proteins , Papillomavirus Infections , Papillomavirus Vaccines , mRNA Vaccines , Animals , Papillomavirus Infections/immunology , Papillomavirus Infections/prevention & control , Papillomavirus E7 Proteins/immunology , Cancer Vaccines/immunology , Oncogene Proteins, Viral/immunology , Oncogene Proteins, Viral/genetics , Papillomavirus Vaccines/immunology , Dendritic Cells/immunology , Humans , Mice , Female , CD8-Positive T-Lymphocytes/immunology , Mice, Inbred C57BL , Nanoparticles , Antigen-Presenting Cells/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Killer Cells, Natural/immunology , Repressor Proteins/immunology , Repressor Proteins/genetics , Neoplasms/therapy , Neoplasms/immunology , RNA, Messenger/genetics , Cell Line, Tumor , Liposomes
SELECTION OF CITATIONS
SEARCH DETAIL
...