Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 19.299
Filter
1.
Pediatr Rheumatol Online J ; 22(1): 70, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090639

ABSTRACT

BACKGROUND: The interferon-gamma (IFN-γ) release assay (IGRA) is an important laboratory diagnosis for latent Mycobacterium tuberculosis (TB) infection. The TB-IGRA measures the release of IFN-γ from peripheral blood cells, who are exposed to TB antigen (Ag), mitogen (MT), or negative/nil control (NL) in vitro. While, an exceptional higher TB Ag-NL level will reflect an elevation of peripheral lymphocytes released IFN-γ in a same condition. Therefore, we found that the elevated levels of TB Ag-NL could become a new biomarker for the diagnosis and treatment of pediatric systemic lupus erythematosus (SLE) patients. METHODS: We have analyzed the clinical data of 776 children who are underwent TB-IGRA testing in the Department of Allergy and Rheumatology of Guangzhou Women and Children's Medical Center from 2018 to 2020. To investigate the association between TB Ag-NL and SLE, we have analyzed the clinical data of 47 SLE patients and TB Ag-NL testing results, and then evaluated the association between TB Ag-NL and SLE disease activity. RESULTS: The TB Ag-NL levels were significantly higher in patients with active SLE than those in inactive SLE (p = 0.0002). The TB Ag-NL levels were positively correlated with the SLE disease activity index (SLEDAI) and laboratory diagnosis parameters. The mean value of TB Ag-NL in SLE patients (0.04191 ± 0.07955, IU/mL) were significantly higher than those in patients with juvenile dermatomyositis (JDM) (0.0158 ± 0.0337, IU/mL, p = 0.036), juvenile idiopathic arthritis (JIA) (0.0162 ± 0.0388, IU/mL, p = 0.001), and healthy controls (HC) (0.0001 ± 0.0027, IU/mL, p = 0.0003). Therefore, the elevated TB Ag-NL levels could serve as a potential diagnostic biomarker of SLE, especially for the active SLE. CONCLUSION: The detection of IFN-γ release levels by the TB-IGRA may be useful to assess SLE disease activity in pediatric patients with active SLE.


Subject(s)
Biomarkers , Interferon-gamma Release Tests , Lupus Erythematosus, Systemic , Humans , Lupus Erythematosus, Systemic/diagnosis , Lupus Erythematosus, Systemic/blood , Female , Child , Male , Biomarkers/blood , Interferon-gamma Release Tests/methods , Adolescent , Interferon-gamma/blood , Latent Tuberculosis/diagnosis , Antigens, Bacterial/immunology , Child, Preschool
2.
BMJ Open ; 14(8): e083157, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39117418

ABSTRACT

OBJECTIVES: To assess the utility of Helicobacter pylori antibody testing, we evaluated the correlation between the H. pylori antibody titre and H. pylori-associated pathogenicity and the changes in antibody titre after H. pylori eradication therapy. DESIGN: A retrospective observational cohort study. SETTING AND PARTICIPANTS: From 2004 to 2016, medical check-ups were performed in different regions of Japan. In total, 324 subjects infected with H. pylori who received H. pylori eradication therapy were enrolled; H. pylori was eradicated in 266 of these subjects. We examined the associations between H. pylori antibody titre with pepsinogen and the presence or absence of H. pylori-associated pathogenic proteins, such as cytotoxin-associated gene A and vacuolating cytotoxin gene A, at baseline and after H. pylori eradication therapy. RESULTS: The H.pylori antibody titre showed a positive correlation with pepsinogen II and a negative correlation with the pepsinogen I/II ratio. Moreover, the H.pylori antibody titre significantly correlated with the positive rates of H. pylori-associated pathogenic protein before eradication therapy. Antibody titres decreased after eradication, the pepsinogen I/II ratio increased and the H. pylori-associated pathogenic protein-positive rate decreased in patients with successful eradication. The determination of eradication using the decline in antibody titre 6 months after eradication therapy was useful (area under the receiver operating characteristic curve: 0.98). CONCLUSIONS: Our data indicate that the H. pylori antibody titre may represent the degree of pathogenicity. The H. pylori antibody titre was associated with attenuation of pathogenicity in patients with H. pylori eradication, indicating the clinical utility of H. pylori antibody testing.


Subject(s)
Antibodies, Bacterial , Helicobacter Infections , Helicobacter pylori , Pepsinogen A , Humans , Helicobacter pylori/immunology , Retrospective Studies , Helicobacter Infections/drug therapy , Helicobacter Infections/immunology , Helicobacter Infections/microbiology , Male , Female , Japan , Antibodies, Bacterial/blood , Middle Aged , Aged , Pepsinogen A/blood , Adult , Anti-Bacterial Agents/therapeutic use , Bacterial Proteins/immunology , Pepsinogen C/blood , Antigens, Bacterial/immunology
3.
Nat Commun ; 15(1): 6712, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39112489

ABSTRACT

Development of a vaccine against gonorrhoea is a global priority, driven by the rise in antibiotic resistance. Although Neisseria gonorrhoeae (Ng) infection does not induce substantial protective immunity, highly exposed individuals may develop immunity against re-infection with the same strain. Retrospective epidemiological studies have shown that vaccines containing Neisseria meningitidis (Nm) outer membrane vesicles (OMVs) provide a degree of cross-protection against Ng infection. We conducted a clinical trial (NCT04297436) of 4CMenB (Bexsero, GSK), a licensed Nm vaccine containing OMVs and recombinant antigens, comprising a single arm, open label study of two doses with 50 adults in coastal Kenya who have high exposure to Ng. Data from a Ng antigen microarray established that serum IgG and IgA reactivities against the gonococcal homologs of the recombinant antigens in the vaccine peaked at 10 but had declined by 24 weeks. For most reactive OMV-derived antigens, the reverse was the case. A cohort of similar individuals with laboratory-confirmed gonococcal infection were compared before, during, and after infection: their reactivities were weaker and differed from the vaccinated cohort. We conclude that the cross-protection of the 4CMenB vaccine against gonorrhoea could be explained by cross-reaction against a diverse selection of antigens derived from the OMV component.


Subject(s)
Antibodies, Bacterial , Gonorrhea , Immunoglobulin A , Immunoglobulin G , Neisseria gonorrhoeae , Vaccination , Humans , Gonorrhea/immunology , Gonorrhea/prevention & control , Neisseria gonorrhoeae/immunology , Adult , Immunoglobulin A/immunology , Immunoglobulin A/blood , Immunoglobulin G/blood , Immunoglobulin G/immunology , Male , Female , Antibodies, Bacterial/immunology , Antibodies, Bacterial/blood , Kenya/epidemiology , Meningococcal Vaccines/immunology , Meningococcal Vaccines/administration & dosage , Young Adult , Antigens, Bacterial/immunology , Neisseria meningitidis/immunology , Antibody Formation/immunology , Cross Protection/immunology , Middle Aged
4.
J Med Microbiol ; 73(8)2024 Aug.
Article in English | MEDLINE | ID: mdl-39133547

ABSTRACT

Introduction. Tuberculosis (TB), an infectious disease caused by Mycobacterium tuberculosis (M. tb), remains a significant global public health concern. It is crucial to develop more effective vaccines for TB in order to achieve global control of the disease. Extracellular vesicles (EVs) are spherical membrane-bound structures released by pathogens and host cells. During the course of an infection, both pathogen- and host-derived EVs are produced and play important roles in determining the course of the infection. EVs offer intriguing tools as potential vaccines due to their ability to deliver multiple pathogen or host antigens.Hypothesis /Gap Statement. We hypothesized that EVs derived from M. tb and EVs from M. tb-infected macrophages may serve as potential vaccine candidates against M. tb infection.Aim. This study aims to compare the immunogenicity and immune protection between M. tb EVs and M. tb-infected macrophage-derived EVs.Methodology. In this study, EVs were extracted from culture supernatants of M. tb and M. tb-infected macrophages, respectively. Mass spectrometry was employed to explore the antigen composition of H37Rv-Mφ-EVs and H37Rv-EVs. Cytokine profiling and antibody response assays were used to analyse the immunogenicity offered by EVs. Additionally, we used histological examination to evaluate and protective efficacy of the EVs.Results. Our results demonstrated that mice immunized by EVs released from M. tb-infected macrophages induced stronger inflammatory cytokine response than M. tb. Moreover, EVs from M. tb-infected macrophages reinforced T-cell activation and antibody response compared to M. tb EVs. Proteomic analysis revealed that EVs from M. tb-infected macrophages containing immunodominant cargos have stronger binding ability with major histocompatibility complex molecules, which may contribute to the protection from M. tb infection. Indeed, immunization of EVs released from M. tb-infected macrophages significantly reduced the bacterial load and better protection against M. tb infection than EVs from M. tb. Importantly, the selected antigens (Ag85B, ESAT-6 and the Rv0580c) from EVs of M. tb-infected macrophages exhibited effective immunogenicity.Conclusion. Our results suggested that EVs derived from M. tb-infected macrophages might serve as a proper antigenic library for vaccine candidates against M. tb challenge.


Subject(s)
Antigens, Bacterial , Extracellular Vesicles , Macrophages , Mycobacterium tuberculosis , Tuberculosis Vaccines , Tuberculosis , Extracellular Vesicles/immunology , Mycobacterium tuberculosis/immunology , Animals , Antigens, Bacterial/immunology , Tuberculosis Vaccines/immunology , Tuberculosis Vaccines/administration & dosage , Mice , Macrophages/immunology , Macrophages/microbiology , Tuberculosis/prevention & control , Tuberculosis/immunology , Tuberculosis/microbiology , Cytokines/metabolism , Female
5.
Methods Mol Biol ; 2843: 195-216, 2024.
Article in English | MEDLINE | ID: mdl-39141302

ABSTRACT

Engineered outer membrane vesicles (OMVs) derived from Gram-negative bacteria are a promising vaccine technology for developing immunity against diverse pathogens. However, antigen display on OMVs can be challenging to control and highly variable due to bottlenecks in protein expression and localization to the bacterial host cell's outer membrane, especially for bulky and complex antigens. Here, we describe methods related to a universal vaccine technology called AvidVax (avidin-based vaccine antigen crosslinking) for rapid and simplified assembly of antigens on the exterior of OMVs during vaccine development. The AvidVax platform involves remodeling the OMV surface with multiple copies of a synthetic antigen-binding protein (SNAP), which is an engineered fusion protein comprised of an outer membrane scaffold protein linked to a biotin-binding protein. The resulting SNAPs enable efficient decoration of OMVs with a molecularly diverse array of biotinylated subunit antigens, including globular and membrane proteins, glycans and glycoconjugates, haptens, lipids, nucleic acids, and short peptides. We detail the key steps in the AvidVax vaccine production pipeline including preparation and isolation of SNAP-OMVs, biotinylation and enrichment of vaccine antigens, and formulation and characterization of antigen-loaded SNAP-OMVs.


Subject(s)
Antigens, Bacterial , Biotinylation , Extracellular Vesicles , Extracellular Vesicles/immunology , Extracellular Vesicles/metabolism , Antigens, Bacterial/immunology , Antigens, Bacterial/genetics , Bacterial Vaccines/immunology , Bacterial Outer Membrane Proteins/immunology , Bacterial Outer Membrane Proteins/metabolism , Bacterial Outer Membrane Proteins/genetics , Vaccine Development , Bacterial Outer Membrane/metabolism , Bacterial Outer Membrane/immunology
6.
Front Immunol ; 15: 1411490, 2024.
Article in English | MEDLINE | ID: mdl-39139570

ABSTRACT

Immunotherapy has revolutionized cancer treatment by leveraging the immune system's innate capabilities to combat malignancies. Despite the promise of tumor antigens in stimulating anti-tumor immune responses, their clinical utility is hampered by limitations in eliciting robust and durable immune reactions, exacerbated by tumor heterogeneity and immune evasion mechanisms. Recent insights into the immunogenic properties of host homologous microbial antigens have sparked interest in their potential for augmenting anti-tumor immunity while minimizing off-target effects. This review explores the therapeutic potential of microbial antigen peptides in tumor immunotherapy, beginning with an overview of tumor antigens and their challenges in clinical translation. We further explore the intricate relationship between microorganisms and tumor development, elucidating the concept of molecular mimicry and its implications for immune recognition of tumor-associated antigens. Finally, we discuss methodologies for identifying and characterizing microbial antigen peptides, highlighting their immunogenicity and prospects for therapeutic application.


Subject(s)
Antigens, Bacterial , Antigens, Neoplasm , Immunotherapy , Neoplasms , Humans , Antigens, Neoplasm/immunology , Neoplasms/immunology , Neoplasms/therapy , Immunotherapy/methods , Animals , Antigens, Bacterial/immunology , Cancer Vaccines/immunology , Cancer Vaccines/therapeutic use , Molecular Mimicry/immunology
7.
Trop Biomed ; 41(2): 214-219, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-39154276

ABSTRACT

Leprosy continues to pose a significant challenge to public health, particularly in certain global regions. Accurate diagnosis and understanding of the disease's etiology are crucial for effective management and prevention. This study aimed to explore the contribution of Natural resistance-associated macrophage protein 1 (NRAMP1) and its genetic variations, as well as the levels of anti-PGL-1 antibodies, to the pathology of multibacillary leprosy in affected individuals and their household contacts. The study included 23 multibacillary leprosy patients and 28 household contacts. NRAMP1 protein expression and anti-PGL-1 IgG and IgM levels were measured using PCR and ELISA techniques, respectively. Genotypic variants of the NRAMP1 gene were also examined. Statistical analyses, including Mann-Whitney tests and univariate logistic regression, were employed to evaluate the data. Significant differences were observed in NRAMP1 protein expression and IgG and IgM levels between the patient and household contact groups. The study also highlighted the role of the NRAMP1 gene and its D543N and 3'UTR polymorphisms in leprosy susceptibility. No significant differences were observed in the genotype variants of INT4 between the two groups. These findings emphasize the potential of integrating PCR technology with serological tests to enhance diagnostic precision in leprosy. They also suggest the need for further research to clarify the role of NRAMP1 and its polymorphisms in leprosy susceptibility and resistance.


Subject(s)
Antibodies, Bacterial , Antigens, Bacterial , Cation Transport Proteins , Glycolipids , Immunoglobulin M , Leprosy, Multibacillary , Humans , Male , Leprosy, Multibacillary/genetics , Female , Adult , Immunoglobulin M/blood , Antibodies, Bacterial/blood , Cation Transport Proteins/genetics , Middle Aged , Antigens, Bacterial/immunology , Antigens, Bacterial/genetics , Immunoglobulin G/blood , Young Adult , Genotype , Adolescent , Family Characteristics , Gene Expression , Mycobacterium leprae/immunology , Mycobacterium leprae/genetics
8.
Front Immunol ; 15: 1440935, 2024.
Article in English | MEDLINE | ID: mdl-39108269

ABSTRACT

Tuberculosis (TB) remains one of the gravest global health challenges. Mycobacterium tuberculosis (M. tuberculosis), the causative agent, employs sophisticated immune evasion and pathogenesis strategies. Its capability to thrive within immune cells and incite robust inflammatory responses prolongs infection and dissemination. Mycobacterial advanced adaptations facilitate navigation through the human immune system and present a variable antigenic profile throughout different infection stages. Investigating these strategies unfolds targeted approaches to effective vaccine development against TB. This review delves into the most advanced and exhaustive insights into the immune evasion tactics and pathogenic processes of M. tuberculosis across various infection stages. The knowledge distilled from this analysis holds the promise of guiding the creation of innovative TB vaccines and translating theoretical groundwork into practical immunological defenses.


Subject(s)
Antigens, Bacterial , Mycobacterium tuberculosis , Tuberculosis Vaccines , Tuberculosis , Humans , Tuberculosis Vaccines/immunology , Mycobacterium tuberculosis/immunology , Tuberculosis/immunology , Tuberculosis/prevention & control , Antigens, Bacterial/immunology , Animals , Vaccine Development , Immune Evasion , Host-Pathogen Interactions/immunology
9.
Ann Med ; 56(1): 2386636, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39097794

ABSTRACT

Mycoplasma pneumoniae (MP) is the cause of Mycoplasma pneumoniae pneumonia (MPP) in children and adolescents, with the clinical manifestations highlighted by intermittent irritating cough, accompanied by headache, fever and muscle pain. This paper aimed to study the research status and focal points in MP infection, especially the common laboratory diagnostic methods and clinical treatment of Mycoplasma pneumoniae. Laboratory diagnostic methods include molecular assay, serological antibody detection, rapid antigen detection and isolation and culture. Polymerase chain reaction (PCR) is the gold standard with high sensitivity and specificity. The serological antibody can detect various immune antibodies qualitatively or quantitatively in serum. Rapid antigen can be detected faster, with no equipment environment requirements, which can be used for the early diagnosis of MP infection. While the culture growth cycle is long and insensitive, not recommended for routine diagnosis. Macrolides were the preferred drug for children with MPP, while the drug resistance rate was rising in China. Tetracycline can be substituted but was not recommended for children under 8 years of age, quinolone drugs are not necessary, severe MPP can be combined with glucocorticoids, involving the nervous or immune system can choose gamma globulin. Other treatments for MPP including symptomatic treatment which can alleviate symptoms, improve lung function and improve prognosis. A safe and effective vaccine needed to be developed which can provide protective immunity to children and will reduce the incidence of MPP.


Subject(s)
Anti-Bacterial Agents , Mycoplasma pneumoniae , Pneumonia, Mycoplasma , Humans , Child , Pneumonia, Mycoplasma/diagnosis , Pneumonia, Mycoplasma/drug therapy , Mycoplasma pneumoniae/isolation & purification , Mycoplasma pneumoniae/immunology , Anti-Bacterial Agents/therapeutic use , Adolescent , Child, Preschool , Polymerase Chain Reaction , Antibodies, Bacterial/blood , Macrolides/therapeutic use , Antigens, Bacterial/immunology
10.
Immunohorizons ; 8(8): 511-526, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39093310

ABSTRACT

Glycoconjugate vaccines elicit robust anti-polysaccharide Ab response by recruiting T-cell help. Multiple doses of glycoconjugate vaccine are required to induce long-lasting immunity. The characteristics of anti-polysaccharide Ab response have been reported previously. However, the effect of glycoconjugate booster immunization on anti-polysaccharide and anti-carrier protein Ab repertoire remains poorly understood. In this study, we used clinically relevant pneumococcal capsular polysaccharide type 14 (PCP14) conjugated with cross-reactive material 197 (CRM197) as a model glycoconjugate Ag (PCP14-CRM197). We performed a comprehensive sequence analysis of mouse mAbs generated against PCP14 and CRM197 following immunization with one or three doses of PCP14-CRM197. Analysis of the paired Ig H and L chain transcripts revealed that anti-PCP14 Ab repertoire is extremely restricted. The reoccurrence of five replacement mutations at identical positions in anti-polysaccharide mAbs generated from different mice provided evidence for Ag-driven selection in PCP14-specific B cells. Convergent evolution was observed wherein distinct V(D)J rearrangements resulted in identical or nearly identical CDR3 in anti-PCP14 mAbs. Abs that lacked DH encoded amino acids dominated the anti-PCP14 Ab response. In contrast, anti-CRM197 Ab response was quite diverse, with fewer mutations compared with the anti-PCP14 mAbs, suggesting that conjugation of the polysaccharide to a carrier protein interferes with the development of carrier protein-specific Ab responses. Our findings provide molecular insights into the maturation of Ab responses driven by booster doses of glycoconjugate. This has fundamental implications for the design of glycoconjugate vaccines, especially where the development of Ab response against the carrier protein is also crucial.


Subject(s)
Antibodies, Bacterial , B-Lymphocytes , Bacterial Proteins , Glycoconjugates , Animals , Mice , Glycoconjugates/immunology , B-Lymphocytes/immunology , Bacterial Proteins/immunology , Bacterial Proteins/genetics , Antibodies, Bacterial/immunology , Antibodies, Monoclonal/immunology , Vaccines, Conjugate/immunology , Vaccines, Conjugate/administration & dosage , Female , Polysaccharides, Bacterial/immunology , Pneumococcal Vaccines/immunology , Pneumococcal Vaccines/administration & dosage , Streptococcus pneumoniae/immunology , Mice, Inbred BALB C , Antigens, Bacterial/immunology , Immunization/methods , Immunization, Secondary
11.
Sci Rep ; 14(1): 17910, 2024 08 02.
Article in English | MEDLINE | ID: mdl-39095538

ABSTRACT

Helicobacter pylori (H. pylori) is responsible for various chronic or acute diseases, such as stomach ulcers, dyspepsia, peptic ulcers, gastroesophageal reflux, gastritis, lymphoma, and stomach cancers. Although specific drugs are available to treat the bacterium's harmful effects, there is an urgent need to develop a preventive or therapeutic vaccine. Therefore, the current study aims to create a multi-epitope vaccine against H. pylori using lipid nanoparticles. Five epitopes from five target proteins of H. pylori, namely, Urease, CagA, HopE, SabA, and BabA, were used. Immunogenicity, MHC (Major Histocompatibility Complex) bonding, allergenicity, toxicity, physicochemical analysis, and global population coverage of the entire epitopes and final construct were carefully examined. The study involved using various bioinformatic web tools to accomplish the following tasks: modeling the three-dimensional structure of a set of epitopes and the final construct and docking them with Toll-Like Receptor 4 (TLR4). In the experimental phase, the final multi-epitope construct was synthesized using the solid phase method, and it was then enclosed in lipid nanoparticles. After synthesizing the construct, its loading, average size distribution, and nanoliposome shape were checked using Nanodrop at 280 nm, dynamic light scattering (DLS), and atomic force microscope (AFM). The designed vaccine has been confirmed to be non-toxic and anti-allergic. It can bind with different MHC alleles at a rate of 99.05%. The construct loading was determined to be about 91%, with an average size of 54 nm. Spherical shapes were also observed in the AFM images. Further laboratory tests are necessary to confirm the safety and immunogenicity of the multi-epitope vaccine.


Subject(s)
Bacterial Vaccines , Computational Biology , Helicobacter pylori , Nanoparticles , Helicobacter pylori/immunology , Nanoparticles/chemistry , Bacterial Vaccines/immunology , Bacterial Vaccines/chemistry , Computational Biology/methods , Humans , Bacterial Proteins/immunology , Bacterial Proteins/chemistry , Epitopes/immunology , Epitopes/chemistry , Molecular Docking Simulation , Antigens, Bacterial/immunology , Antigens, Bacterial/chemistry , Helicobacter Infections/prevention & control , Helicobacter Infections/immunology , Toll-Like Receptor 4/immunology , Urease/immunology , Urease/chemistry , Immunoinformatics , Liposomes
12.
Elife ; 132024 Jul 24.
Article in English | MEDLINE | ID: mdl-39046772

ABSTRACT

Antimicrobial resistance (AMR) poses a significant threat to human health. Although vaccines have been developed to combat AMR, it has proven challenging to associate specific vaccine antigens with AMR. Bacterial plasmids play a crucial role in the transmission of AMR. Our recent research has identified a group of bacterial plasmids (specifically, IncHI plasmids) that encode large molecular mass proteins containing bacterial immunoglobulin-like domains. These proteins are found on the external surface of the bacterial cells, such as in the flagella or conjugative pili. In this study, we show that these proteins are antigenic and can protect mice from infection caused by an AMR Salmonella strain harboring one of these plasmids. Furthermore, we successfully generated nanobodies targeting these proteins, that were shown to interfere with the conjugative transfer of IncHI plasmids. Considering that these proteins are also encoded in other groups of plasmids, such as IncA/C and IncP2, targeting them could be a valuable strategy in combating AMR infections caused by bacteria harboring different groups of AMR plasmids. Since the selected antigens are directly linked to AMR itself, the protective effect extends beyond specific microorganisms to include all those carrying the corresponding resistance plasmids.


Subject(s)
Drug Resistance, Bacterial , Plasmids , Animals , Plasmids/genetics , Mice , Drug Resistance, Bacterial/genetics , Bacterial Proteins/genetics , Bacterial Proteins/immunology , Bacterial Proteins/metabolism , Anti-Bacterial Agents/pharmacology , Single-Domain Antibodies/immunology , Single-Domain Antibodies/genetics , Single-Domain Antibodies/pharmacology , Antigens, Bacterial/immunology , Antigens, Bacterial/genetics , Female , Salmonella/genetics , Salmonella/immunology , Salmonella/drug effects , Immunoglobulins/genetics , Immunoglobulins/immunology , Mice, Inbred BALB C
13.
BMC Immunol ; 25(1): 46, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39034396

ABSTRACT

OBJECTIVES: The pathogenic microorganisms that cause intestinal diseases can significantly jeopardize people's health. Currently, there are no authorized treatments or vaccinations available to combat the germs responsible for intestinal disease. METHODS: Using immunoinformatics, we developed a potent multi-epitope Combination (combo) vaccine versus Salmonella and enterohemorrhagic E. coli. The B and T cell epitopes were identified by performing a conservancy assessment, population coverage analysis, physicochemical attributes assessment, and secondary and tertiary structure assessment of the chosen antigenic polypeptide. The selection process for vaccine development included using several bioinformatics tools and approaches to finally choose two linear B-cell epitopes, five CTL epitopes, and two HTL epitopes. RESULTS: The vaccine had strong immunogenicity, cytokine production, immunological properties, non-toxicity, non-allergenicity, stability, and potential efficacy against infections. Disulfide bonding, codon modification, and computational cloning were also used to enhance the stability and efficacy of expression in the host E. coli. The vaccine's structure has a strong affinity for the TLR4 ligand and is very durable, as shown by molecular docking and molecular modeling. The results of the immunological simulation demonstrated that both B and T cells had a heightened response to the vaccination component. CONCLUSIONS: The comprehensive in silico analysis reveals that the proposed vaccine will likely elicit a robust immune response against pathogenic bacteria that cause intestinal diseases. Therefore, it is a promising option for further experimental testing.


Subject(s)
Epitopes, B-Lymphocyte , Epitopes, T-Lymphocyte , Vaccinology , Humans , Epitopes, T-Lymphocyte/immunology , Vaccinology/methods , Epitopes, B-Lymphocyte/immunology , Vaccines, Combined/immunology , Genomics/methods , Enterohemorrhagic Escherichia coli/immunology , Salmonella/immunology , Animals , Computational Biology/methods , Molecular Docking Simulation , Escherichia coli Vaccines/immunology , Escherichia coli Infections/prevention & control , Escherichia coli Infections/immunology , Salmonella Infections/immunology , Salmonella Infections/prevention & control , Antigens, Bacterial/immunology , Vaccine Development/methods , Bacterial Vaccines/immunology
14.
PLoS One ; 19(7): e0305034, 2024.
Article in English | MEDLINE | ID: mdl-38954719

ABSTRACT

Yersinia pestis, the causative agent of plague and a biological threat agent, presents an urgent need for novel medical countermeasures due to documented cases of naturally acquired antibiotic resistance and potential person-to-person spread during a pneumonic infection. Immunotherapy has been proposed as a way to circumvent current and future antibiotic resistance. Here, we describe the development and characterization of two affinity matured human antibodies (αF1Ig AM2 and αF1Ig AM8) that promote survival of mice after exposure to aerosolized Y. pestis. We share details of the error prone PCR and yeast display technology-based affinity maturation process that we used. The resultant matured antibodies have nanomolar affinity for Y. pestis F1 antigen, are produced in high yield, and are resilient to 37°C stress for up to 6 months. Importantly, in vitro assays using a murine macrophage cell line demonstrated that αF1Ig AM2 and αF1Ig AM8 are opsonic. Even more importantly, in vivo studies using pneumonic plague mouse models showed that 100% of the mice receiving 500 µg of IgGs αF1Ig AM2 and αF1Ig AM8 survived lethal challenge with aerosolized Y. pestis CO92. Combined, these results provide evidence of the quality and robustness of αF1Ig AM2 and αF1Ig AM8 and support their development as potential medical countermeasures against plague.


Subject(s)
Antibodies, Bacterial , Plague , Yersinia pestis , Animals , Humans , Mice , Yersinia pestis/immunology , Plague/immunology , Plague/prevention & control , Antibodies, Bacterial/immunology , Bacterial Proteins/immunology , Female , Antibody Affinity , Medical Countermeasures , Antigens, Bacterial/immunology , Disease Models, Animal
15.
Braz J Med Biol Res ; 57: e13409, 2024.
Article in English | MEDLINE | ID: mdl-38958367

ABSTRACT

Tuberculosis (TB), caused by Mycobacterium tuberculosis, remains the leading cause of mortality by a single infectious agent in the world. M. tuberculosis infection could also result in clinical chronic infection, known as latent TB infection (LTBI). Compared to the current limited treatment, several subunit vaccines showed immunotherapeutic effects and were included in clinical trials. In this study, a subunit vaccine of Ag85B with a novel mucosal adjuvant c-di-AMP (Ag85B:c-di-AMP) was delivered intranasally to a persistent M. tuberculosis H37Ra infection mouse model, which also presented the asymptomatic characteristics of LTBI. Compared with Ag85B immunization, Ag85B:c-di-AMP vaccination induced stronger humoral immune responses, significantly higher CD4+ T cells recruitment, enhanced Th1/Th2/Th17 profile response in the lung, decreased pathological lesions of the lung, and reduced M. tuberculosis load in mice. Taken together, Ag85B:c-di-AMP mucosal route immunization provided an immunotherapeutic effect on persistent M. tuberculosis H37Ra infection, and c-di-AMP, as a promising potential mucosal adjuvant, could be further used in therapeutic or prophylactic vaccine strategies for persistent M. tuberculosis infection as well as LTBI.


Subject(s)
Adjuvants, Immunologic , Disease Models, Animal , Mycobacterium tuberculosis , Tuberculosis Vaccines , Animals , Adjuvants, Immunologic/administration & dosage , Tuberculosis Vaccines/immunology , Tuberculosis Vaccines/administration & dosage , Mycobacterium tuberculosis/immunology , Mice , Female , Antigens, Bacterial/immunology , Acyltransferases/immunology , Vaccines, Subunit/immunology , Vaccines, Subunit/administration & dosage , Bacterial Proteins/immunology , Tuberculosis/immunology , Tuberculosis/prevention & control , Latent Tuberculosis/immunology , Mice, Inbred BALB C , Administration, Intranasal
16.
Vet Med Sci ; 10(4): e1532, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38952277

ABSTRACT

BACKGROUND: Antibodies have been proven effective as diagnostic agents for detecting zoonotic diseases. The variable domain of camel heavy chain antibody (VHH), as an antibody derivative, may be used as an alternative for traditional antibodies in existing immunodiagnostic reagents for detecting rapidly spreading infectious diseases. OBJECTIVES: To expedite the isolation of specific antibodies for diagnostic purposes, we constructed a semi-synthetic camel single domain antibody library based on the phage display technique platform (PDT) and verified the validity of this study. METHODS: The semi-synthetic single domain antibody sequences consist of two parts: one is the FR1-FR3 region amplified by RT-PCR from healthy camel peripheral blood lymphocytes (PBLs), and the other part is the CDR3-FR4 region synthesised as an oligonucleotide containing CDR3 randomised region. The two parts were fused by overlapping PCR, resulting in the rearranged variable domain of heavy-chain antibodies (VHHs). Y. pestis low-calcium response V protein (LcrV) is an optional biomarker to detect the Y. pestis infection. The semi-synthetic library herein was screened using recombinant (LcrV) as a target antigen. RESULTS: After four cycles of panning the library, four VHH binders targeting 1-270 aa residues of LcrV were isolated. The four VHH genes with unique sequences were recloned into an expression vector and expressed as VHH-hFc chimeric antibodies. The purified antibodies were identified and used to develop a lateral flow immunoassay (LFA) test strip using latex microspheres (LM) for the rapid and visual detection of Y. pestis infection. CONCLUSIONS: These data demonstrate the great potential of the semi-synthetic library for use in isolation of antigen-specific nanobodies and the isolated specific VHHs can be used in antigen-capture immunoassays.


Subject(s)
Antigens, Bacterial , Camelus , Single-Domain Antibodies , Yersinia pestis , Animals , Yersinia pestis/immunology , Single-Domain Antibodies/immunology , Antigens, Bacterial/immunology , Plague/diagnosis , Plague/veterinary , Plague/immunology , Immunoassay/methods , Immunoassay/veterinary , Antibodies, Bacterial/immunology
17.
Methods Mol Biol ; 2821: 111-127, 2024.
Article in English | MEDLINE | ID: mdl-38997484

ABSTRACT

Immune stimulants (adjuvants) enhance immune system recognition to provide an effective and individualized immune response when delivered with an antigen. Synthetic cyclic deca-peptides, co-administered with a toll-like receptor targeting lipopeptide, have shown self-adjuvant properties, dramatically boosting the immune response in a murine model as a subunit peptide-based vaccine containing group A Streptococcus peptide antigens.Here, we designed a novel peptide and lipid adjuvant system for the delivery of group A Streptococcus peptide antigen and a T helper peptide epitope. Following linear peptide synthesis on 2-chlorotrityl chloride resin, the linear peptide was cleaved and head-to-tail cyclized in solution. The selective arrangement of amino acids in the deca-peptide allowed for selective conjugation of lipids and/or peptide antigens following cyclisation. Using both solution-phase peptide chemistry and copper-catalyzed azide-alkyne cycloaddition reaction were covalently (and selectively) ligated lipid and/or peptide antigens onto the cyclic deca-peptide core. Subcutaneous administration of the vaccine design to mice resulted in the generation of a large number of serum immunoglobulin (Ig) G antibodies.


Subject(s)
Adjuvants, Immunologic , Immunization , Peptides, Cyclic , Vaccines, Conjugate , Animals , Mice , Peptides, Cyclic/immunology , Peptides, Cyclic/chemistry , Vaccines, Conjugate/immunology , Vaccines, Conjugate/chemistry , Vaccines, Conjugate/administration & dosage , Immunization/methods , Adjuvants, Immunologic/chemistry , Adjuvants, Immunologic/administration & dosage , Injections, Subcutaneous , Vaccines, Subunit/immunology , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/chemistry , Streptococcus pyogenes/immunology , Immunoglobulin G/immunology , Immunoglobulin G/blood , Antigens, Bacterial/immunology , Antigens, Bacterial/chemistry , Protein Subunit Vaccines
18.
J Immunotoxicol ; 21(1): 2373247, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39066679

ABSTRACT

Molecular mimicry has been proposed to be a possible mechanism of induction of autoimmunity. In some cases, it is believed that such events could lead to a disease such as Type 1 diabetes (T1D). One of the primary MHC-I epitopes in the non-obese diabetic (NOD) mouse model of T1D has been identified as a peptide from the islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP) protein. In humans, the most common MHC-I model allele is HLA-A02; based on this, the study here identified a potential HLA-A0201-restricted human IGRP epitope as YLKTNLFLFL and also found a homologous A0201-restricted peptide in an Enterococcal protein. Using cells obtained from healthy human donors, it was seen that after a 2-week incubation with the synthetic bacterial protein, healthy A0201+ donor CD8+ cells displayed increased staining for human IGRP-peptide-dextramer. On the other hand, in control cultures, no significant levels of dextramer-staining CD8+ T-cells were detectable. From these outcomes, it is possible to conclude that certain bacterial proteins may initiate CD8+ T-cell-mediated immune reaction toward homologous human antigens.


Subject(s)
Antigens, Bacterial , CD8-Positive T-Lymphocytes , Cross Reactions , Diabetes Mellitus, Type 1 , Epitopes, T-Lymphocyte , Glucose-6-Phosphatase , HLA-A2 Antigen , Humans , Diabetes Mellitus, Type 1/immunology , HLA-A2 Antigen/immunology , HLA-A2 Antigen/metabolism , Antigens, Bacterial/immunology , Glucose-6-Phosphatase/immunology , Glucose-6-Phosphatase/genetics , Cross Reactions/immunology , Epitopes, T-Lymphocyte/immunology , CD8-Positive T-Lymphocytes/immunology , Animals , Mice , Molecular Mimicry/immunology , Mice, Inbred NOD , Bacterial Proteins/immunology , Cells, Cultured
19.
Egypt J Immunol ; 31(3): 41-47, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38990061

ABSTRACT

Helicobacter pylori is Gram negative bacteria, the reason for causing peptic ulcer. There is suggestion between the presence of H. pylori in oral cavity and gastritis. The present study aimed to detect H. pylori in dental caries samples. The study included 29 dental caries patients from both sexes (13 males and 16 females), with different age groups (children and adult), and nine apparently healthy subject as a control group (2 males & 7 females). Dental caries samples were collected and investigated for this study from patients with dental caries who visited the Dental Faculty in the College of Dentistry, University of Babylon, Iraq. H. pylori antigen was detected using an enzyme linked immunosorbent assay (ELISA) technique. Of the 29 dental caries patients, 19 (65.51%) patients were positive for H. pylori antigen test. Most of them were in the age group 20-30 (9 patients) & 30-40 (8 patients). The age groups (10-20) & (40-50) years shows 100% positivity for H. pylori antigen. Also, result was recorded significant higher difference's between H. pylori positive antigen between dental caries patients and H. pylori positive antigen among control group. (t=2.697,df=5, p≤ 0.05). Pearson correlation recorded significantly higher association between the presence of H. pylori antigen and the dental caries infection among test group (r=1, p≤ 0.000), 4 (44.5%) of the 9 control subjects, without dental caries, were positive for H. pylori antigen test. In summary, the H. pylori positive antigen test was recorded in both dental caries patients (65.51%) and in the control group (62.5 %). In conclusion, H. pylori antigen was present in dental caries patients. This could indicate that the bacteria H. pylori present in dental caries samples may contribute to caries processes.


Subject(s)
Dental Caries , Helicobacter Infections , Helicobacter pylori , Humans , Helicobacter pylori/immunology , Dental Caries/microbiology , Male , Female , Adult , Helicobacter Infections/microbiology , Helicobacter Infections/diagnosis , Child , Adolescent , Middle Aged , Young Adult , Antigens, Bacterial/immunology , Enzyme-Linked Immunosorbent Assay
20.
Nat Immunol ; 25(8): 1411-1421, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38997431

ABSTRACT

A subset of individuals exposed to Mycobacterium tuberculosis (Mtb) that we refer to as 'resisters' (RSTR) show evidence of IFN-γ- T cell responses to Mtb-specific antigens despite serially negative results on clinical testing. Here we found that Mtb-specific T cells in RSTR were clonally expanded, confirming the priming of adaptive immune responses following Mtb exposure. RSTR CD4+ T cells showed enrichment of TH17 and regulatory T cell-like functional programs compared to Mtb-specific T cells from individuals with latent Mtb infection. Using public datasets, we showed that these TH17 cell-like functional programs were associated with lack of progression to active tuberculosis among South African adolescents with latent Mtb infection and with bacterial control in nonhuman primates. Our findings suggested that RSTR may successfully control Mtb following exposure and immune priming and established a set of T cell biomarkers to facilitate further study of this clinical phenotype.


Subject(s)
CD4-Positive T-Lymphocytes , Mycobacterium tuberculosis , Tuberculosis , Mycobacterium tuberculosis/immunology , Humans , Animals , Adolescent , Tuberculosis/immunology , Tuberculosis/microbiology , CD4-Positive T-Lymphocytes/immunology , Th17 Cells/immunology , Female , Macaca mulatta , Male , Phenotype , Interferon-gamma/metabolism , Interferon-gamma/immunology , Antigens, Bacterial/immunology , Latent Tuberculosis/immunology , Latent Tuberculosis/microbiology , South Africa , Young Adult , T-Lymphocytes, Regulatory/immunology , Adult
SELECTION OF CITATIONS
SEARCH DETAIL