Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.419
Filter
1.
J Nanobiotechnology ; 22(1): 388, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956618

ABSTRACT

BACKGROUND: Porcine reproductive and respiratory syndrome virus (PRRSV) is a prevalent swine pathogen, which has caused adverse impact on the global swine industry for almost 30 years. However, due to the immune suppression caused by the virus and the genetic diversity in PRRSV, no virus-targeting broad neutralizing strategy has been successfully developed yet. Antiviral peptide and nanobody have attracted extensive attention with the ease in production and the efficacy in practice. In this study, four new fusion proteins named nanobody peptide conjugates (NPCs) were developed by combining PRRSV specific non-neutralizing nanobodies with CD163-derived peptides targeting the receptor binding domain (RBD) of PRRSV proteins. RESULTS: Four NPCs were successfully constructed using two nanobodies against PRRSV N and nsp9 individually, recombining with two antiviral peptides 4H7 or 8H2 from porcine CD163 respectively. All four NPCs demonstrated specific capability of binding to PRRSV and broad inhibitory effect against various lineages of PRRSV in a dose-dependent manner. NPCs interfere with the binding of the RBD of PRRSV proteins to CD163 in the PRRSV pre-attachment stage by CD163 epitope peptides in the assistance of Nb components. NPCs also suppress viral replication during the stage of post-attachment, and the inhibitory effects depend on the antiviral functions of Nb parts in NPCs, including the interference in long viral RNA synthesis, NF-κB and IFN-ß activation. Moreover, an interaction was predicted between aa K31 and T32 sites of neutralizing domain 4H7 of NPC-N/nsp9-4H7 and the motif 171NLRLTG176 of PRRSV GP2a. The motif 28SSS30 of neutralizing domain 8H2 of NPC-N/nsp9-8H2 could also form hydrogens to bind with the motif 152NAFLP156 of PRRSV GP3. The study provides valuable insights into the structural characteristics and potential functional implications of the RBD of PRRSV proteins. Finally, as indicated in a mouse model, NPC intranasally inoculated in vivo for 12-24 h sustains the significant neutralizing activity against PRRSV. These findings inspire the potential of NPC as a preventive measure to reduce the transmission risk in the host population against respiratory infectious agents like PRRSV. CONCLUSION: The aim of the current study was to develop a peptide based bioactive compound to neutralize various PRRSV strains. The new antiviral NPC (nanobody peptide conjugate) consists of a specific nanobody targeting the viral protein and a neutralizing CD163 epitope peptide for virus blocking and provides significant antiviral activity. The study will greatly promote the antiviral drug R&D against PRRSV and enlighten a new strategy against other viral diseases.


Subject(s)
Antibodies, Neutralizing , Antigens, CD , Antigens, Differentiation, Myelomonocytic , Peptides , Porcine respiratory and reproductive syndrome virus , Receptors, Cell Surface , Single-Domain Antibodies , Porcine respiratory and reproductive syndrome virus/immunology , Porcine respiratory and reproductive syndrome virus/drug effects , Animals , Single-Domain Antibodies/immunology , Single-Domain Antibodies/pharmacology , Single-Domain Antibodies/chemistry , Swine , Antigens, Differentiation, Myelomonocytic/immunology , Antigens, Differentiation, Myelomonocytic/metabolism , Receptors, Cell Surface/immunology , Antigens, CD/immunology , Antigens, CD/metabolism , Antibodies, Neutralizing/immunology , Peptides/chemistry , Peptides/pharmacology , Peptides/immunology , Porcine Reproductive and Respiratory Syndrome/immunology , Porcine Reproductive and Respiratory Syndrome/prevention & control , Mice , Virus Replication/drug effects , Cell Line
2.
Oncoimmunology ; 13(1): 2367843, 2024.
Article in English | MEDLINE | ID: mdl-38887373

ABSTRACT

Conventional type 1 dendritic cells (cDC1) are critical regulators of anti-tumoral T-cell responses. The structure and abundance of intercellular contacts between cDC1 and CD8 T cells in cancer tissues is important to determine the outcome of the T-cell response. However, the molecular determinants controlling the stability of cDC1-CD8 interactions during cancer progression remain poorly investigated. Here, we generated a genetic model of non-small cell lung cancer crossed to a fluorescent cDC1 reporter (KP-XCR1venus) to allow the detection of cDC1-CD8T cell clusters in tumor tissues across tumor stages. We found that cDC1-CD8 clusters are abundant and productive at the early stages of tumor development but progressively diminish in advanced tumors. Transcriptional profiling and flow cytometry identified the adhesion molecule ALCAM/CD166 (Activated Leukocyte Cell Adhesion Molecule, ligand of CD6) as highly expressed by lung cDC1 and significantly downregulated in advanced tumors. Analysis of human datasets indicated that ALCAM is downregulated in non-small cell lung cancer and its expression correlates to better prognosis. Mechanistically, triggering ALCAM on lung cDC1 induces cytoskeletal remodeling and contact formation whereas its blockade prevents T-cell activation. Together, our results indicate that ALCAM is important to stabilize cDC1-CD8 interactions at early tumor stages, while its loss in advanced tumors contributes to immune evasion.


Subject(s)
Antigens, CD , CD8-Positive T-Lymphocytes , Carcinoma, Non-Small-Cell Lung , Dendritic Cells , Lung Neoplasms , Humans , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Animals , Mice , Antigens, CD/metabolism , Antigens, CD/genetics , Antigens, CD/immunology , Fetal Proteins/metabolism , Fetal Proteins/genetics , Cell Adhesion Molecules, Neuronal/metabolism , Cell Adhesion Molecules, Neuronal/genetics , Cell Communication/immunology , Activated-Leukocyte Cell Adhesion Molecule
3.
Transl Psychiatry ; 14(1): 254, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38866753

ABSTRACT

Depression is a prevalent and incapacitating condition with a significant impact on global morbidity and mortality. Although the immune system's role in its pathogenesis is increasingly recognized, there is a lack of comprehensive understanding regarding the involvement of innate and adaptive immune cells. To address this gap, we conducted a multicenter case-control study involving 121 participants matched for sex and age. These participants had either an active (or current) major depressive episode (MDE) (39 cases) or a remitted MDE (40 cases), including individuals with major depressive disorder or bipolar disorder. We compared these 79 patients to 42 healthy controls (HC), analyzing their immunological profiles. In blood samples, we determined the complete cell count and the monocyte subtypes and lymphocyte T-cell populations using flow cytometry. Additionally, we measured a panel of cytokines, chemokines, and neurotrophic factors in the plasma. Compared with HC, people endorsing a current MDE showed monocytosis (p = 0.001), increased high-sensitivity C-reactive protein (p = 0.002), and erythrocyte sedimentation rate (p = 0.003), and an altered proportion of specific monocyte subsets. CD4 lymphocytes presented increased median percentages of activation markers CD69+ (p = 0.007) and exhaustion markers PD1+ (p = 0.013) and LAG3+ (p = 0.014), as well as a higher frequency of CD4+CD25+FOXP3+ regulatory T cells (p = 0.003). Additionally, patients showed increased plasma levels of sTREM2 (p = 0.0089). These changes are more likely state markers, indicating the presence of an ongoing inflammatory response during an active MDE. The Random Forest model achieved remarkable classification accuracies of 83.8% for MDE vs. HC and 70% for differentiating active and remitted MDE. Interestingly, the cluster analysis identified three distinct immunological profiles among MDE patients. Cluster 1 has the highest number of leukocytes, mainly given by the increment in lymphocyte count and the lowest proinflammatory cytokine levels. Cluster 3 displayed the most robust inflammatory pattern, with high levels of TNFα, CX3CL1, IL-12p70, IL-17A, IL-23, and IL-33, associated with the highest level of IL-10, as well as ß-NGF and the lowest level for BDNF. This profile is also associated with the highest absolute number and percentage of circulating monocytes and the lowest absolute number and percentage of circulating lymphocytes, denoting an active inflammatory process. Cluster 2 has some cardinal signs of more acute inflammation, such as elevated levels of CCL2 and increased levels of proinflammatory cytokines such as IL-1ß, IFNγ, and CXCL8. Similarly, the absolute number of monocytes is closer to a HC value, as well as the percentage of lymphocytes, suggesting a possible initiation of the inflammatory process. The study provides new insights into the immune system's role in MDE, paving the ground for replication prospective studies targeting the development of diagnostic and prognostic tools and new therapeutic targets.


Subject(s)
Cytokines , Depressive Disorder, Major , Immunophenotyping , Monocytes , Humans , Female , Male , Case-Control Studies , Depressive Disorder, Major/immunology , Depressive Disorder, Major/blood , Adult , Middle Aged , Cytokines/blood , Cytokines/immunology , Monocytes/immunology , Bipolar Disorder/immunology , Bipolar Disorder/blood , Inflammation/immunology , Inflammation/blood , Antigens, CD/blood , Antigens, CD/immunology , Flow Cytometry
4.
Proc Natl Acad Sci U S A ; 121(24): e2403054121, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38838017

ABSTRACT

Chronic Toxoplasma gondii infection induces brain-resident CD8+ T cells (bTr), but the protective functions and differentiation cues of these cells remain undefined. Here, we used a mouse model of latent infection by T. gondii leading to effective CD8+ T cell-mediated parasite control. Thanks to antibody depletion approaches, we found that peripheral circulating CD8+ T cells are dispensable for brain parasite control during chronic stage, indicating that CD8+ bTr are able to prevent brain parasite reactivation. We observed that the retention markers CD69, CD49a, and CD103 are sequentially acquired by brain parasite-specific CD8+ T cells throughout infection and that a majority of CD69/CD49a/CD103 triple-positive (TP) CD8+ T cells also express Hobit, a transcription factor associated with tissue residency. This TP subset develops in a CD4+ T cell-dependent manner and is associated with effective parasite control during chronic stage. Conditional invalidation of Transporter associated with Antigen Processing (TAP)-mediated major histocompatibility complex (MHC) class I presentation showed that presentation of parasite antigens by glutamatergic neurons and microglia regulates the differentiation of CD8+ bTr into TP cells. Single-cell transcriptomic analyses revealed that resistance to encephalitis is associated with the expansion of stem-like subsets of CD8+ bTr. In summary, parasite-specific brain-resident CD8+ T cells are a functionally heterogeneous compartment which autonomously ensure parasite control during T. gondii latent infection and which differentiation is shaped by neuronal and microglial MHC I presentation. A more detailed understanding of local T cell-mediated immune surveillance of this common parasite is needed for harnessing brain-resident CD8+ T cells in order to enhance control of chronic brain infections.


Subject(s)
Brain , CD8-Positive T-Lymphocytes , Cell Differentiation , Toxoplasma , Toxoplasmosis , Animals , CD8-Positive T-Lymphocytes/immunology , Toxoplasma/immunology , Mice , Brain/immunology , Brain/parasitology , Cell Differentiation/immunology , Toxoplasmosis/immunology , Toxoplasmosis/parasitology , Latent Infection/immunology , Latent Infection/parasitology , Antigens, CD/metabolism , Antigens, CD/immunology , Antigens, CD/genetics , Mice, Inbred C57BL , Female
5.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167219, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38734321

ABSTRACT

Chronic infections induce CD4+ T-cells with cytotoxic functions (CD4 CTLs); at present, it is still unknown whether latent tuberculosis (LTB) and active tuberculosis (ATB) induce CD4 CTLs. Plasma and cells from four patient groups-uninfected contact (UC), LTB, and ATB (divided as sensitive [DS-TB]- or resistant [DR-TB]-drug)-were evaluated by flow cytometry, q-PCR, and proteomics. The data showed that ATB patients had an increased frequency of CD4+ T-cells and a decreased frequency of CD8+ T-cells. The latter displays an exhausted-like profile characterized by CD39, CD279, and TIM-3 expression. ATB had a high frequency of CD4 + perforin+ cells, suggesting a CD4 CTL profile. The expression (at the transcriptional level) of granzyme A, granzyme B, granulysin, and perforin, as well as the genes T-bet (Tbx21) and NKG2D (Klrk1), in enriched CD4+ T-cells, confirmed the cytotoxic signature of CD4+ T-cells during ATB (which was stronger in DS-TB than in DR-TB). Moreover, proteomic analysis revealed the presence of HSP70 (in DS-TB) and annexin A5 (in DR-TB), which are molecules that have been associated with favoring the CD4 CTL profile. Finally, we found that lipids from Mycobacterium tuberculosis increased the presence of CD4 CTLs in DR-TB patients. Our data suggest that ATB is characterized by exhausted-like CD8+ T-cells, which, together with a specific microenvironment, favor the presence of CD4 CTLs.


Subject(s)
CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Granzymes , Hepatitis A Virus Cellular Receptor 2 , Perforin , Tuberculosis , Humans , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Male , Granzymes/metabolism , Granzymes/genetics , Granzymes/immunology , Perforin/metabolism , Perforin/genetics , Perforin/immunology , Adult , Female , Hepatitis A Virus Cellular Receptor 2/metabolism , Hepatitis A Virus Cellular Receptor 2/immunology , Tuberculosis/immunology , Tuberculosis/microbiology , Latent Tuberculosis/immunology , Latent Tuberculosis/microbiology , Middle Aged , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/metabolism , Mycobacterium tuberculosis/immunology , T-Box Domain Proteins/metabolism , T-Box Domain Proteins/genetics , T-Box Domain Proteins/immunology , Antigens, CD/metabolism , Antigens, CD/immunology , Antigens, CD/genetics , NK Cell Lectin-Like Receptor Subfamily K/metabolism , NK Cell Lectin-Like Receptor Subfamily K/immunology , NK Cell Lectin-Like Receptor Subfamily K/genetics , Proteomics/methods , Antigens, Differentiation, T-Lymphocyte , Apyrase
6.
J Autoimmun ; 146: 103245, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754236

ABSTRACT

B cell responses to nucleic acid-containing self-antigens that involve intracellular nucleic acid sensors play a crucial role in autoantibody production in SLE. CD72 is an inhibitory B cell co-receptor that down-regulates BCR signaling, and prevents the development of SLE. We previously showed that CD72 recognizes the RNA-containing self-antigen Sm/RNP, a target of SLE-specific autoantibodies, and induces B cell tolerance to Sm/RNP by specifically inhibiting B cell response to this self-antigen. Here, we address whether CD72 inhibits B cell response to ribosomes because the ribosome is an RNA-containing self-antigen and is a target of SLE-specific autoantibodies as well as Sm/RNP. We demonstrate that CD72 recognizes ribosomes as a ligand, and specifically inhibits BCR signaling induced by ribosomes. Although conventional protein antigens by themselves do not induce proliferation of specific B cells, ribosomes induce proliferation of B cells reactive to ribosomes in a manner dependent on RNA. This proliferative response is down-regulated by CD72. These results suggest that ribosomes activate B cells by inducing dual signaling through BCR and intracellular RNA sensors and that CD72 inhibits B cell response to ribosomes. Moreover, CD72-/- but not CD72+/+ mice spontaneously produce anti-ribosome autoantibodies. Taken together, CD72 induces B cell self-tolerance to ribosomes by recognizing ribosomes and inhibiting RNA-dependent B cell response to this self-antigen. CD72 appears to prevent development of SLE by inhibiting autoimmune B cell responses to multiple RNA-containing self-antigens. Because these self-antigens but not protein self-antigens induce RNA-dependent B cell activation, self-tolerance to RNA-containing self-antigens may require a distinct tolerance mechanism mediated by CD72.


Subject(s)
Antigens, CD , Antigens, Differentiation, B-Lymphocyte , Autoantibodies , Autoantigens , B-Lymphocytes , Lupus Erythematosus, Systemic , Receptors, Antigen, B-Cell , Ribosomes , Signal Transduction , Animals , Ribosomes/metabolism , Ribosomes/immunology , Mice , Receptors, Antigen, B-Cell/metabolism , Receptors, Antigen, B-Cell/immunology , Autoantibodies/immunology , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/metabolism , Antigens, Differentiation, B-Lymphocyte/immunology , Antigens, Differentiation, B-Lymphocyte/metabolism , Antigens, CD/metabolism , Antigens, CD/immunology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Signal Transduction/immunology , Autoantigens/immunology , Mice, Knockout , Lymphocyte Activation/immunology , Cell Proliferation , Immune Tolerance , Humans
7.
Biomed Pharmacother ; 175: 116782, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38776682

ABSTRACT

LAG3 is an inhibitory immune checkpoint expressed on activated T and NK cells. Blocking the interaction of LAG3 with its ligands MHC-II and FGL1 renders T cells improved cytotoxicity to cancer cells. Current study generated a panel of LAG3 monoclonal antibodies (mAbs) through immunization of mice followed by phage display. Some of them bound to the D1-D2 domain of LAG3, which is known for the engagement of its ligands FGL1 and MHC-II. Three outperformers, M208, M226, and M234, showed stronger blocking activity than Relatlimab in the FGL1 binding. Furthermore, M234 showed dual inhibition of FGL1 (IC50 of 20.6 nM) and MHC-II binding (IC50 of 6.2 nM) to LAG3. In vitro functional tests showed that M234 significantly stimulated IFN-γ secretion from activated PBMC cells. In vivo studies in a mouse model of hepatocellular carcinoma xenografts demonstrated that combining M234 IgG with GPC3-targeted bispecific antibodies significantly improved efficacy. In addition, GPC3-targeted CAR-T cells secreting IL-21-M234 scFv fusion protein exhibited enhanced activity in inhibiting tumor growth and greatly increased the survival rate of mice. Taken together, M234 has potential in cancer immunotherapy and warrants further clinical trial.


Subject(s)
Antibodies, Neutralizing , Antigens, CD , Immunotherapy , Lymphocyte Activation Gene 3 Protein , Animals , Humans , Mice , Antigens, CD/immunology , Antigens, CD/metabolism , Antibodies, Neutralizing/pharmacology , Antibodies, Neutralizing/immunology , Ligands , Immunotherapy/methods , Cell Line, Tumor , Histocompatibility Antigens Class II/immunology , Histocompatibility Antigens Class II/metabolism , Xenograft Model Antitumor Assays , Liver Neoplasms/immunology , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/therapy , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/pathology , Mice, Inbred BALB C , Protein Binding , Female , Antibodies, Monoclonal/pharmacology
8.
Sci Rep ; 14(1): 10661, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38724599

ABSTRACT

We report the generation of a novel anti-LAG-3/TIGIT bispecific IgG4 antibody, ZGGS15, and evaluated its anti-tumor efficacy in mouse models as monotherapy or in combination with a PD-1 antibody. ZGGS15 exhibited strong affinities for human LAG-3 and TIGIT, with KDs of 3.05 nM and 2.65 nM, respectively. ZGGS15 has EC50s of 0.69 nM and 1.87 nM for binding to human LAG-3 and TIGIT on CHO-K1 cells, respectively. ZGGS15 competitively inhibited the binding of LAG-3 to MHC-II (IC50 = 0.77 nM) and the binding of TIGIT to CD155 (IC50 = 0.24 nM). ZGGS15 does not induce ADCC, CDC, or obvious cytokine production. In vivo results showed that ZGGS15 had better anti-tumor inhibition than single anti-LAG-3 or anti-TIGIT agents and demonstrated a synergistic effect when combined with nivolumab, with a significantly higher tumor growth inhibition of 95.80% (p = 0.001). The tumor volume inhibition rate for ZGGS15 at 2 mg/kg was 69.70%, and for ZGGS15 at 5 mg/kg plus nivolumab at 1 mg/kg, it was 94.03% (p < 0.001). Our data reveal that ZGGS15 exhibits potent anti-tumor efficacy without eliciting ADCC or CDC or causing cytokine production, therefore having a safe profile.


Subject(s)
Antibodies, Bispecific , Lymphocyte Activation Gene 3 Protein , Programmed Cell Death 1 Receptor , Receptors, Immunologic , Animals , Female , Humans , Mice , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/therapeutic use , Antigens, CD/immunology , Antigens, CD/metabolism , Cell Line, Tumor , CHO Cells , Cricetulus , Disease Models, Animal , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Receptors, Immunologic/antagonists & inhibitors , Receptors, Immunologic/metabolism , Receptors, Immunologic/immunology , Xenograft Model Antitumor Assays
9.
Cell Mol Life Sci ; 81(1): 231, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780647

ABSTRACT

CD200 is an anti-inflammatory protein that facilitates signal transduction through its receptor, CD200R, in cells, resulting in immune response suppression. This includes reducing M1-like macrophages, enhancing M2-like macrophages, inhibiting NK cell cytotoxicity, and downregulating CTL responses. Activation of CD200R has been found to modulate dendritic cells, leading to the induction or enhancement of Treg cells expressing Foxp3. However, the precise mechanisms behind this process are still unclear. Our previous study demonstrated that B cells in Peyer's patches can induce Treg cells, so-called Treg-of-B (P) cells, through STAT6 phosphorylation. This study aimed to investigate the role of CD200 in Treg-of-B (P) cell generation. To clarify the mechanisms, we used wild-type, STAT6 deficient, and IL-24 deficient T cells to generate Treg-of-B (P) cells, and antagonist antibodies (anti-CD200 and anti-IL-20RB), an agonist anti-CD200R antibody, CD39 inhibitors (ARL67156 and POM-1), a STAT6 inhibitor (AS1517499), and soluble IL-20RB were also applied. Our findings revealed that Peyer's patch B cells expressed CD200 to activate the CD200R on T cells and initiate the process of Treg-of-B (P) cells generation. CD200 and CD200R interaction triggers the phosphorylation of STAT6, which regulated the expression of CD200R, CD39, and IL-24 in T cells. CD39 regulated the expression of IL-24, which sustained the expression of CD223 and IL-10 and maintained the cell viability. In summary, the generation of Treg-of-B (P) cells by Peyer's patch B cells was through the CD200R-STAT6-CD39-IL-24 axis pathway.


Subject(s)
B-Lymphocytes , STAT6 Transcription Factor , T-Lymphocytes, Regulatory , Animals , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Mice , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , STAT6 Transcription Factor/metabolism , Mice, Inbred C57BL , Orexin Receptors/metabolism , Orexin Receptors/genetics , Antigens, CD/metabolism , Antigens, CD/genetics , Antigens, CD/immunology , Signal Transduction , Phosphorylation , Peyer's Patches/immunology , Peyer's Patches/metabolism , Peyer's Patches/cytology , Apyrase/metabolism , Apyrase/immunology , Membrane Glycoproteins
10.
J Immunol ; 213(1): 7-13, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38775415

ABSTRACT

Lymphocyte activation gene 3 (LAG3) is an inhibitory receptor that plays a critical role in controlling T cell tolerance and autoimmunity and is a major immunotherapeutic target. LAG3 is expressed on the cell surface as a homodimer but the functional relevance of this is unknown. In this study, we show that the association between the TCR/CD3 complex and a murine LAG3 mutant that cannot dimerize is perturbed in CD8+ T cells. We also show that LAG3 dimerization is required for optimal inhibitory function in a B16-gp100 tumor model. Finally, we demonstrate that a therapeutic LAG3 Ab, C9B7W, which does not block LAG3 interaction with its cognate ligand MHC class II, disrupts LAG3 dimerization and its association with the TCR/CD3 complex. These studies highlight the functional importance of LAG3 dimerization and offer additional approaches to therapeutically target LAG3.


Subject(s)
Antigens, CD , CD8-Positive T-Lymphocytes , Lymphocyte Activation Gene 3 Protein , Protein Multimerization , Animals , Mice , Antigens, CD/immunology , Antigens, CD/metabolism , Antigens, CD/genetics , CD8-Positive T-Lymphocytes/immunology , Melanoma, Experimental/immunology , Mice, Inbred C57BL , Receptor-CD3 Complex, Antigen, T-Cell/immunology , CD3 Complex/immunology , Humans , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Lymphocyte Activation/immunology , Protein Binding
11.
Front Immunol ; 15: 1378359, 2024.
Article in English | MEDLINE | ID: mdl-38779662

ABSTRACT

Skin tissue-resident memory T (Trm) cells are produced by antigenic stimulation and remain in the skin for a long time without entering the peripheral circulation. In the healthy state Trm cells can play a patrolling and surveillance role, but in the disease state Trm cells differentiate into various phenotypes associated with different diseases, exhibit different localizations, and consequently have local protective or pathogenic roles, such as disease recurrence in vitiligo and maintenance of immune homeostasis in melanoma. The most common surface marker of Trm cells is CD69/CD103. However, the plasticity of tissue-resident memory T cells after colonization remains somewhat uncertain. This ambiguity is largely due to the variation in the functionality and ultimate destination of Trm cells produced from memory cells differentiated from diverse precursors. Notably, the presence of Trm cells is not stationary across numerous non-lymphoid tissues, most notably in the skin. These cells may reenter the blood and distant tissue sites during the recall response, revealing the recycling and migration potential of the Trm cell progeny. This review focuses on the origin and function of skin Trm cells, and provides new insights into the role of skin Trm cells in the treatment of autoimmune skin diseases, infectious skin diseases, and tumors.


Subject(s)
Cell Plasticity , Homeostasis , Immunologic Memory , Memory T Cells , Skin Diseases , Skin , Humans , Homeostasis/immunology , Memory T Cells/immunology , Memory T Cells/metabolism , Skin/immunology , Skin/pathology , Cell Plasticity/immunology , Animals , Skin Diseases/immunology , Antigens, CD/metabolism , Antigens, CD/immunology
12.
Xenotransplantation ; 31(3): e12863, 2024.
Article in English | MEDLINE | ID: mdl-38751087

ABSTRACT

Overexpression of human CD200 (hCD200) in porcine endothelial cells (PECs) has been reported to suppress xenogeneic immune responses of human macrophages against porcine endothelial cells. The current study aimed to address whether the above-mentioned beneficial effect of hCD200 is mediated by overcoming the molecular incompatibility between porcine CD200 (pCD200) and hCD200 receptor or simply by increasing the expression levels of CD200 without any molecular incompatibility across the two species. We overexpressed hCD200 or pCD200 using lentiviral vectors with V5 marker in porcine endothelial cells and compared their suppressive activity against U937-derived human macrophage-like cells (hMCs) and primary macrophages. In xenogeneic coculture of porcine endothelial cells and human macrophage-like cells or macrophages, hCD200-porcine endothelial cells suppressed phagocytosis and cytotoxicity of human macrophages to a greater extent than pCD200-porcine endothelial cells. Secretion of tumor necrosis factor-α, interleukin-1ß, and monocyte chemoattractant protein-1 from human macrophages and expression of M1 phenotypes (inducible nitric oxide synthase, dectin-1, and CD86) were also suppressed by hCD200 to a greater extent than pCD200. Furthermore, in signal transduction downstream of CD200 receptor, hCD200 induced Dok2 phosphorylation and suppressed IκB phosphorylation to a greater extent than pCD200. The above data supported the possibility of a significant molecular incompatibility between pCD200 and human CD200 receptor, suggesting that the beneficial effects of hCD200 overexpression in porcine endothelial cells could be mediated by overcoming the molecular incompatibility across the species barrier rather than by simple overexpression effects of CD200.


Subject(s)
Antigens, CD , Endothelial Cells , Macrophages , Transplantation, Heterologous , Animals , Humans , Antigens, CD/immunology , Antigens, CD/metabolism , Antigens, CD/genetics , Swine , Macrophages/immunology , Macrophages/metabolism , Transplantation, Heterologous/methods , Endothelial Cells/immunology , Phagocytosis , Orexin Receptors/genetics , Orexin Receptors/metabolism , Orexin Receptors/immunology , Coculture Techniques
13.
Nat Immunol ; 25(5): 834-846, 2024 May.
Article in English | MEDLINE | ID: mdl-38561495

ABSTRACT

Cancer remains one of the leading causes of mortality worldwide, leading to increased interest in utilizing immunotherapy strategies for better cancer treatments. In the past decade, CD103+ T cells have been associated with better clinical prognosis in patients with cancer. However, the specific immune mechanisms contributing toward CD103-mediated protective immunity remain unclear. Here, we show an unexpected and transient CD61 expression, which is paired with CD103 at the synaptic microclusters of T cells. CD61 colocalization with the T cell antigen receptor further modulates downstream T cell antigen receptor signaling, improving antitumor cytotoxicity and promoting physiological control of tumor growth. Clinically, the presence of CD61+ tumor-infiltrating T lymphocytes is associated with improved clinical outcomes, mediated through enhanced effector functions and phenotype with limited evidence of cellular exhaustion. In conclusion, this study identified an unconventional and transient CD61 expression and pairing with CD103 on human immune cells, which potentiates a new target for immune-based cellular therapies.


Subject(s)
Antigens, CD , Apyrase , Integrin alpha Chains , Receptors, Antigen, T-Cell , Signal Transduction , Animals , Humans , Mice , Antigens, CD/metabolism , Antigens, CD/immunology , Cell Line, Tumor , Cytotoxicity, Immunologic , Integrin alpha Chains/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Neoplasms/immunology , Neoplasms/therapy , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/immunology , Signal Transduction/immunology , T-Lymphocytes, Cytotoxic/immunology
14.
J Immunol ; 212(12): 1904-1912, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38668728

ABSTRACT

NK cells have been shown to exhibit inflammatory and immunoregulatory functions in a variety of healthy and diseased settings. In the context of chronic viral infection and cancer, distinct NK cell populations that inhibit adaptive immune responses have been observed. To understand how these cells arise and further characterize their immunosuppressive role, we examined in vitro conditions that could polarize human NK cells into an inhibitory subset. TGF-ß1 has been shown to induce regulatory T cells in vitro and in vivo; we therefore investigated if TGF-ß1 could also induce immunosuppressive NK-like cells. First, we found that TGF-ß1/IL-15, but not IL-15 alone, induced CD103+CD49a+ NK-like cells from peripheral blood NK cells, which expressed markers previously associated with inhibitory CD56+ innate lymphoid cells, including high expression of GITR and CD101. Moreover, supernatant from ascites collected from patients with ovarian carcinoma also induced CD103+CD49a+ NK-like cells in vitro in a TGF-ß-dependent manner. Interestingly, TGF-ß1/IL-15-induced CD103+CD56+ NK-like cells suppressed autologous CD4+ T cells in vitro by reducing absolute number, proliferation, and expression of activation marker CD25. Collectively, these findings provide new insight into how NK cells may acquire an inhibitory phenotype in TGF-ß1-rich environments.


Subject(s)
Interleukin-15 , Killer Cells, Natural , Transforming Growth Factor beta1 , Humans , Killer Cells, Natural/immunology , Interleukin-15/immunology , Interleukin-15/metabolism , Transforming Growth Factor beta1/metabolism , Female , Antigens, CD/metabolism , Antigens, CD/immunology , Ovarian Neoplasms/immunology , Ovarian Neoplasms/pathology , Integrin alpha Chains/metabolism , Integrin alpha Chains/immunology , CD56 Antigen/metabolism , Cells, Cultured , Lymphocyte Subsets/immunology , Lymphocyte Subsets/metabolism , Lymphocyte Activation/immunology
15.
Infect Immun ; 92(5): e0011324, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38624215

ABSTRACT

Malaria, one of the major infectious diseases in the world, is caused by the Plasmodium parasite. Plasmodium antigens could modulate the inflammatory response by binding to macrophage membrane receptors. As an export protein on the infected erythrocyte membrane, Plasmodium surface-related antigen (SRA) participates in the erythrocyte invasion and regulates the immune response of the host. This study found that the F2 segment of P. yoelii SRA activated downstream MAPK and NF-κB signaling pathways by binding to CD68 on the surface of the macrophage membrane and regulating the inflammatory response. The anti-PySRA-F2 antibody can protect mice against P. yoelii, and the pro-inflammatory responses such as IL-1ß, TNF-α, and IL-6 after infection with P. yoelii are attenuated. These findings will be helpful for understanding the involvement of the pathogenic mechanism of malaria with the exported protein SRA.


Subject(s)
Antigens, CD , Antigens, Protozoan , Macrophages , Malaria , Plasmodium yoelii , Animals , Female , Humans , Mice , Antigens, CD/metabolism , Antigens, CD/immunology , Antigens, Differentiation, Myelomonocytic/metabolism , Antigens, Differentiation, Myelomonocytic/immunology , Antigens, Protozoan/immunology , Antigens, Protozoan/metabolism , Antigens, Surface/immunology , Antigens, Surface/metabolism , Cell Membrane/metabolism , Cell Membrane/immunology , Inflammation/immunology , Inflammation/metabolism , Macrophages/immunology , Macrophages/metabolism , Macrophages/parasitology , Malaria/immunology , Malaria/parasitology , NF-kappa B/metabolism , NF-kappa B/immunology , Plasmodium yoelii/immunology , Protein Binding , Signal Transduction
16.
J Autoimmun ; 146: 103228, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38642507

ABSTRACT

CD6 is a glycoprotein expressed on CD4 and CD8 T cells involved in immunoregulation. CD318 has been identified as a CD6 ligand. The role of CD318 in T cell immunity is restricted as it has only been investigated in a few mice autoimmune models but not in human diseases. CD318 expression was thought to be limited to mesenchymal-epithelial cells and, therefore, contribute to CD6-mediated T cell activation in the CD318-expressing tissue rather than through interaction with antigen-presenting cells. Here, we report CD318 expression in a subpopulation of CD318+ myeloid dendritic (mDC), whereas the other peripheral blood populations were CD318 negative. However, CD318 can be induced by activation: a subset of monocytes treated with LPS and IFNγ and in vitro monocyte derived DCs were CD318+. We also showed that recombinant CD318 inhibited T cell function. Strikingly, CD318+ DCs suppressed the proliferation of autoreactive T cells specific for GAD65, a well-known targeted self-antigen in Type 1 Diabetes (T1D). Our study provides new insight into the role of the CD318/CD6 axis in the immunopathogenesis of inflammation, suggesting a novel immunoregulatory role of CD318 in T cell-mediated autoimmune diseases and identifying a potential novel immune checkpoint inhibitor as a target for intervention in T1D which is an unmet therapeutic need.


Subject(s)
Antigens, CD , Autoantigens , Dendritic Cells , Diabetes Mellitus, Type 1 , Islets of Langerhans , Lymphocyte Activation , Humans , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/metabolism , Lymphocyte Activation/immunology , Autoantigens/immunology , Antigens, CD/metabolism , Antigens, CD/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Islets of Langerhans/immunology , Islets of Langerhans/metabolism , Antigens, Differentiation, T-Lymphocyte/metabolism , Antigens, Differentiation, T-Lymphocyte/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Cells, Cultured , Glutamate Decarboxylase
17.
Immun Inflamm Dis ; 12(4): e1255, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38652012

ABSTRACT

BACKGROUND: Natural killer (NK) cells, CD3- lymphocytes, are critical players in cancer immune surveillance. This study aimed to assess two types of CD3- NK cell classifications (subsets), that is, convectional subsets (based on CD56 and CD16 expression) and new subsets (based on CD56, CD27, and CD11b expression), and their functional molecules in the peripheral blood of patients with breast cancer (BC) in comparison with healthy donors (HDs). METHODS: Thirty untreated females with BC and 20 age-matched healthy women were enrolled. Peripheral blood samples were collected and directly incubated with fluorochrome-conjugated antibodies against CD3, CD56, CD16, CD27, CD11b, CD96, NKG2C, NKG2D, NKp44, CXCR3, perforin, and granzyme B. Red blood cells were then lysed using lysing solution, and the stained cells were acquired on four-color flow cytometer. RESULT: Our results indicated 15% of lymphocytes in peripheral blood of patients with BC and HDs had NK cells phenotype. However, the frequency of total NK cells (CD3-CD56+), and NK subsets (based on conventional and new classifications) was not significantly different between patients and HDs. We observed mean fluorescent intensity (MFI) of CXCR3 in total NK cells (p = .02) and the conventional cytotoxic (CD3-CD56dim CD16+) NK cells (p = .03) were significantly elevated in the patients with BC compared to HDs. Despite this, the MFI of granzyme B expression in conventional regulatory (CD3-CD56brightCD16- /+) NK cells and CD3-CD56-CD16+ NK cells (p = .03 and p = .004, respectively) in the patients was lower than healthy subjects. CONCLUSION: The higher expression of chemokine receptor CXCR3 on total NK cells in patients with BC may be associated with increased chemotaxis-related NK cell infiltration. However, lower expression of granzyme B in conventional regulatory NK cells and CD3-CD56-CD16+ NK cells in the patients compared to HDs suggests reduced cytotoxic activity of the NK cells in BC. These results might demonstrate accumulating NK subsets with a dysfunctional phenotype in the peripheral blood of patients with BC.


Subject(s)
Breast Neoplasms , Killer Cells, Natural , Humans , Female , Breast Neoplasms/immunology , Breast Neoplasms/blood , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Middle Aged , Adult , Aged , Flow Cytometry , Immunophenotyping , Lymphocyte Subsets/immunology , Lymphocyte Subsets/metabolism , Granzymes/blood , Antigens, CD/blood , Antigens, CD/immunology
18.
Int Immunopharmacol ; 132: 112023, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38603859

ABSTRACT

BACKGROUND: Eosinophils and basophils are implicated in allergic reactions, and the molecule CD200 on B cells may have regulatory functions. Assessing the associations between the expression of CD200 on B lymphocytes and eosinophils and basophils helps unravel the complex immune interactions in atopic dermatitis, aiding in targeted therapeutic approaches. OBJECTIVE: The aim of our study is to evaluate the association between the count of eosinophils, basophils, CD16+ eosinophils, CD203+ basophils, the expression of activation marker CD200 on B cells and on their subsets in patients suffering from atopic dermatitis with and without dupilumab and in control group. MATERIALS AND METHODS: Altogether we examined 75 subjects: 45 patients suffering from atopic dermatitis -32 patients without dupilumab treatment, 13 patients with dupilumab treatment and 30 subjects as a control group. Immunophenotype was examined by flow cytometry in which monoclonal antibodies with fluorescent molecules were used. For statistical analysis we used non-parametric Kruskal-Wallis one-factor analysis of variance with post-hoc by Dunn's test with Bonferroni modification and the Spearman's rank correlation coefficient with calculation of R2 (%, percent of Variation Explained). RESULTS: In patients with dupilumab therapy we confirmed the association between absolute eosinophils and expression of molecule CD200 on total B lymphocytes (in 23.9 %), non-switched (in 27.2 %), naive (in 25 %) and memory (in 20.3 %) B lymphocytes and between relative eosinophils and expression of CD200 on total B lymphocytes (in 22.8 % %), non-switched (in 29 %), naive (in 21.3 %) and memory (in 22.3 %) B lymphocytes. This association is low in AD patients without dupilumab and even non linear in control healthy subjects. CONCLUSION: The higher association between eosinophils and expression of CD200 molecule on memory, naive and non switched B lymphocytes in AD patients under dupilumab therapy suggests that activation of B lymphocytes is caused by IL-4, whose production involves eosinophils and the CD200 molecule on B lymphocytes.


Subject(s)
Antibodies, Monoclonal, Humanized , Antigens, CD , B-Lymphocytes , Basophils , Dermatitis, Atopic , Eosinophils , Humans , Dermatitis, Atopic/immunology , Dermatitis, Atopic/drug therapy , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/pharmacology , Basophils/immunology , Eosinophils/immunology , Eosinophils/drug effects , Male , Female , Adult , Antigens, CD/metabolism , Antigens, CD/immunology , Pilot Projects , B-Lymphocytes/immunology , B-Lymphocytes/drug effects , Middle Aged , Young Adult , Leukocyte Count
19.
J Immunol ; 212(11): 1706-1713, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38619286

ABSTRACT

Mucosal-Associated Invariant T (MAIT) cells are a population of innate T cells that play a critical role in host protection against bacterial and viral pathogens. Upon activation, MAIT cells can rapidly respond via both TCR-dependent and -independent mechanisms, resulting in robust cytokine production. The metabolic and nutritional requirements for optimal MAIT cell effector responses are still emerging. Iron is an important micronutrient and is essential for cellular fitness, in particular cellular metabolism. Iron is also critical for many pathogenic microbes, including those that activate MAIT cells. However, iron has not been investigated with respect to MAIT cell metabolic or functional responses. In this study, we show that human MAIT cells require exogenous iron, transported via CD71 for optimal metabolic activity in MAIT cells, including their production of ATP. We demonstrate that restricting iron availability by either chelating environmental iron or blocking CD71 on MAIT cells results in impaired cytokine production and proliferation. These data collectively highlight the importance of a CD71-iron axis for human MAIT cell metabolism and functionality, an axis that may have implications in conditions where iron availability is limited.


Subject(s)
Antigens, CD , Cytokines , Iron , Lymphocyte Activation , Mucosal-Associated Invariant T Cells , Receptors, Transferrin , Humans , Mucosal-Associated Invariant T Cells/immunology , Iron/metabolism , Receptors, Transferrin/metabolism , Receptors, Transferrin/immunology , Antigens, CD/metabolism , Antigens, CD/immunology , Lymphocyte Activation/immunology , Cytokines/metabolism , Cell Proliferation , Cells, Cultured , Adenosine Triphosphate/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...