Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 23.063
1.
Proc Natl Acad Sci U S A ; 121(24): e2403054121, 2024 Jun 11.
Article En | MEDLINE | ID: mdl-38838017

Chronic Toxoplasma gondii infection induces brain-resident CD8+ T cells (bTr), but the protective functions and differentiation cues of these cells remain undefined. Here, we used a mouse model of latent infection by T. gondii leading to effective CD8+ T cell-mediated parasite control. Thanks to antibody depletion approaches, we found that peripheral circulating CD8+ T cells are dispensable for brain parasite control during chronic stage, indicating that CD8+ bTr are able to prevent brain parasite reactivation. We observed that the retention markers CD69, CD49a, and CD103 are sequentially acquired by brain parasite-specific CD8+ T cells throughout infection and that a majority of CD69/CD49a/CD103 triple-positive (TP) CD8+ T cells also express Hobit, a transcription factor associated with tissue residency. This TP subset develops in a CD4+ T cell-dependent manner and is associated with effective parasite control during chronic stage. Conditional invalidation of Transporter associated with Antigen Processing (TAP)-mediated major histocompatibility complex (MHC) class I presentation showed that presentation of parasite antigens by glutamatergic neurons and microglia regulates the differentiation of CD8+ bTr into TP cells. Single-cell transcriptomic analyses revealed that resistance to encephalitis is associated with the expansion of stem-like subsets of CD8+ bTr. In summary, parasite-specific brain-resident CD8+ T cells are a functionally heterogeneous compartment which autonomously ensure parasite control during T. gondii latent infection and which differentiation is shaped by neuronal and microglial MHC I presentation. A more detailed understanding of local T cell-mediated immune surveillance of this common parasite is needed for harnessing brain-resident CD8+ T cells in order to enhance control of chronic brain infections.


Brain , CD8-Positive T-Lymphocytes , Cell Differentiation , Toxoplasma , Toxoplasmosis , Animals , CD8-Positive T-Lymphocytes/immunology , Toxoplasma/immunology , Mice , Brain/immunology , Brain/parasitology , Cell Differentiation/immunology , Toxoplasmosis/immunology , Toxoplasmosis/parasitology , Latent Infection/immunology , Latent Infection/parasitology , Antigens, CD/metabolism , Antigens, CD/immunology , Antigens, CD/genetics , Mice, Inbred C57BL , Female
2.
Iran J Allergy Asthma Immunol ; 23(2): 220-230, 2024 Apr 07.
Article En | MEDLINE | ID: mdl-38822516

During epithelial to mesenchymal transition, the ability of cancer cells to transform and metastasize is primarily determined by N-cadherin-mediated migration and invasion. This study aimed to evaluate whether the N-cadherin promoter can induce diphtheria toxin expression as a suicide gene in epithelial to mesenchymal transition (EMT)-induced cancer cells and whether this can be used as potential gene therapy. To investigate the expression of diphtheria toxin under the N-cadherin promoter, the promoter was synthesized, and was cloned upstream of diphtheria toxin in a pGL3-Basic vector. The A-549 cells was transfected by electroporation. After induction of EMT by TGF-ß and hypoxia treatment, the relative expression of diphtheria toxin, mesenchymal genes such as N-cadherin and Vimentin, and epithelial genes such as E-cadherin and ß-catenin were measured by real-time PCR. MTT assay was also performed to measure cytotoxicity. Finally, cell motility was assessed by the Scratch test. After induction of EMT in transfected cells, the expression of mesenchymal markers such as Vimentin and N-cadherin significantly decreased, and the expression of ß-catenin increased. In addition, the MTT assay showed promising toxicity results after induction of EMT with TGF-ß in transfected cells, but toxicity was less effective in hypoxia. The scratch test results also showed that cell movement was successfully prevented in EMT-transfected cells and thus confirmed EMT occlusion. Our findings indicate that by using structures containing diphtheria toxin downstream of a specific EMT promoter such as the N-cadherin promoter, the introduced toxin can kill specifically and block EMT in cancer cells.


Cadherins , Diphtheria Toxin , Epithelial-Mesenchymal Transition , Promoter Regions, Genetic , Humans , A549 Cells , Antigens, CD/genetics , Antigens, CD/metabolism , beta Catenin/metabolism , beta Catenin/genetics , Cadherins/genetics , Cadherins/metabolism , Cell Movement/genetics , Cell Movement/drug effects , Diphtheria Toxin/genetics , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Genes, Transgenic, Suicide , Promoter Regions, Genetic/genetics , Vimentin/genetics , Vimentin/metabolism
3.
PLoS One ; 19(5): e0302628, 2024.
Article En | MEDLINE | ID: mdl-38723000

Blood vessels permit the selective passage of molecules and immune cells between tissues and circulation. Uncontrolled inflammatory responses from an infection can increase vascular permeability and edema, which can occasionally lead to fatal organ failure. We identified mexenone as a vascular permeability blocker by testing 2,910 compounds in the Clinically Applied Compound Library using the lipopolysaccharide (LPS)-induced vascular permeability assay. Mexenone suppressed the LPS-induced downregulation of junctional proteins and phosphorylation of VE-cadherin in Bovine Aortic Endothelial Cells (BAECs). The injection of mexenone 1 hr before LPS administration completely blocked LPS-induced lung vascular permeability and acute lung injury in mice after 18hr. Our results suggest that mexenone-induced endothelial cell (EC) barrier stabilization could be effective in treating sepsis patients.


Endothelial Cells , Lipopolysaccharides , Sepsis , Animals , Sepsis/drug therapy , Sepsis/chemically induced , Sepsis/metabolism , Mice , Cattle , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Capillary Permeability/drug effects , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Acute Lung Injury/prevention & control , Male , Cadherins/metabolism , Mice, Inbred C57BL , Antigens, CD/metabolism
4.
Acta Neuropathol Commun ; 12(1): 73, 2024 May 07.
Article En | MEDLINE | ID: mdl-38715119

BACKGROUND: Neuroinflammation and Alzheimer's disease (AD) co-pathology may contribute to disease progression and severity in dementia with Lewy bodies (DLB). This study aims to clarify whether a different pattern of neuroinflammation, such as alteration in microglial and astroglial morphology and distribution, is present in DLB cases with and without AD co-pathology. METHODS: The morphology and load (% area of immunopositivity) of total (Iba1) and reactive microglia (CD68 and HLA-DR), reactive astrocytes (GFAP) and proteinopathies of alpha-synuclein (KM51/pser129), amyloid-beta (6 F/3D) and p-tau (AT8) were assessed in a cohort of mixed DLB + AD (n = 35), pure DLB (n = 15), pure AD (n = 16) and control (n = 11) donors in limbic and neocortical brain regions using immunostaining, quantitative image analysis and confocal microscopy. Regional and group differences were estimated using a linear mixed model analysis. RESULTS: Morphologically, reactive and amoeboid microglia were common in mixed DLB + AD, while homeostatic microglia with a small soma and thin processes were observed in pure DLB cases. A higher density of swollen astrocytes was observed in pure AD cases, but not in mixed DLB + AD or pure DLB cases. Mixed DLB + AD had higher CD68-loads in the amygdala and parahippocampal gyrus than pure DLB cases, but did not differ in astrocytic loads. Pure AD showed higher Iba1-loads in the CA1 and CA2, higher CD68-loads in the CA2 and subiculum, and a higher astrocytic load in the CA1-4 and subiculum than mixed DLB + AD cases. In mixed DLB + AD cases, microglial load associated strongly with amyloid-beta (Iba1, CD68 and HLA-DR), and p-tau (CD68 and HLA-DR), and minimally with alpha-synuclein load (CD68). In addition, the highest microglial activity was found in the amygdala and CA2, and astroglial load in the CA4. Confocal microscopy demonstrated co-localization of large amoeboid microglia with neuritic and classic-cored plaques of amyloid-beta and p-tau in mixed DLB + AD cases. CONCLUSIONS: In conclusion, microglial activation in DLB was largely associated with AD co-pathology, while astrocytic response in DLB was not. In addition, microglial activity was high in limbic regions, with prevalent AD pathology. Our study provides novel insights into the molecular neuropathology of DLB, highlighting the importance of microglial activation in mixed DLB + AD.


Alzheimer Disease , Astrocytes , Lewy Body Disease , Microglia , Neuroinflammatory Diseases , Humans , Lewy Body Disease/pathology , Lewy Body Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/metabolism , Female , Male , Aged , Aged, 80 and over , Neuroinflammatory Diseases/pathology , Neuroinflammatory Diseases/metabolism , Microglia/pathology , Microglia/metabolism , Astrocytes/pathology , Astrocytes/metabolism , alpha-Synuclein/metabolism , tau Proteins/metabolism , Antigens, CD/metabolism , Amyloid beta-Peptides/metabolism , Middle Aged , Antigens, Differentiation, Myelomonocytic/metabolism , Brain/pathology , Brain/metabolism , CD68 Molecule
5.
BMC Oral Health ; 24(1): 518, 2024 May 02.
Article En | MEDLINE | ID: mdl-38698370

BACKGROUND: Fusobacterium nucleatum (F. nucleatum) is a microbial risk factor whose presence increases the risk of oral squamous cell carcinoma (OSCC) progression. However, whether it can promote the proliferation of OSCC cells remains unknown. METHODS: In this study, we investigated F. nucleatum effect on OSCC cell proliferation using in vitro and in vivo experiments. RESULTS: Our results showed that F. nucleatum promoted OSCC cell proliferation, doubling the cell count after 72 h (CCK-8 assay). Cell cycle analysis revealed G2/M phase arrest. F. nucleatum interaction with CDH1 triggered phosphorylation, upregulating downstream protein ß-catenin and activating cyclinD1 and Myc. Notably, F. nucleatum did not affect noncancerous cells, unrelated to CDH1 expression levels in CAL27 cells. Overexpression of phosphorylated CDH1 in 293T cells did not upregulate ß-catenin and cycle-related genes. In vivo BALB/c nude experiments showed increased tumor volume and Ki-67 proliferation index after F. nucleatum intervention. CONCLUSION: Our study suggests that F. nucleatum promotes OSCC cell proliferation through the CDH1/ß-catenin pathway, advancing our understanding of its role in OSCC progression and highlighting its potential as a therapeutic target.


Cadherins , Carcinoma, Squamous Cell , Cell Proliferation , Fusobacterium nucleatum , Mice, Inbred BALB C , Mice, Nude , Mouth Neoplasms , beta Catenin , Cadherins/metabolism , Mouth Neoplasms/pathology , Mouth Neoplasms/metabolism , Mouth Neoplasms/microbiology , beta Catenin/metabolism , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/microbiology , Humans , Animals , Mice , Cell Line, Tumor , Antigens, CD/metabolism , Signal Transduction
6.
Front Cell Infect Microbiol ; 14: 1395716, 2024.
Article En | MEDLINE | ID: mdl-38716195

Objective: The relationship between macrophages and the gut microbiota in patients with atherosclerosis remains poorly defined, and effective biological markers are lacking. This study aims to elucidate the interplay between gut microbial communities and macrophages, and to identify biomarkers associated with the destabilization of atherosclerotic plaques. The goal is to enhance our understanding of the underlying molecular pathways and to pave new avenues for diagnostic approaches and therapeutic strategies in the disease. Methods: This study employed Weighted Gene Co-expression Network Analysis (WGCNA) and differential expression analysis on atherosclerosis datasets to identify macrophage-associated genes and quantify the correlation between these genes and gut microbiota gene sets. The Random Forest algorithm was utilized to pinpoint PLEK, IRF8, BTK, CCR1, and CD68 as gut microbiota-related macrophage genes, and a nomogram was constructed. Based on the top five genes, a Non-negative Matrix Factorization (NMF) algorithm was applied to construct gut microbiota-related macrophage clusters and analyze their potential biological alterations. Subsequent single-cell analyses were conducted to observe the expression patterns of the top five genes and the interactions between immune cells. Finally, the expression profiles of key molecules were validated using clinical samples from atherosclerosis patients. Results: Utilizing the Random Forest algorithm, we ultimately identified PLEK, IRF8, CD68, CCR1, and BTK as gut microbiota-associated macrophage genes that are upregulated in atherosclerotic plaques. A nomogram based on the expression of these five genes was constructed for use as an auxiliary tool in clinical diagnosis. Single-cell analysis confirmed the specific expression of gut microbiota-associated macrophage genes in macrophages. Clinical samples substantiated the high expression of PLEK in unstable atherosclerotic plaques. Conclusion: Gut microbiota-associated macrophage genes (PLEK, IRF8, CD68, CCR1, and BTK) may be implicated in the pathogenesis of atherosclerotic plaques and could serve as diagnostic markers to aid patients with atherosclerosis.


Algorithms , Atherosclerosis , Biomarkers , Gastrointestinal Microbiome , Machine Learning , Macrophages , Plaque, Atherosclerotic , Receptors, CCR1 , Single-Cell Analysis , Humans , Macrophages/metabolism , Macrophages/microbiology , Plaque, Atherosclerotic/microbiology , Biomarkers/metabolism , Single-Cell Analysis/methods , Receptors, CCR1/metabolism , Receptors, CCR1/genetics , Atherosclerosis/microbiology , Atherosclerosis/genetics , Antigens, Differentiation, Myelomonocytic/metabolism , Agammaglobulinaemia Tyrosine Kinase/genetics , Agammaglobulinaemia Tyrosine Kinase/metabolism , Antigens, CD/metabolism , Antigens, CD/genetics , Gene Expression Profiling , Gene Regulatory Networks , CD68 Molecule , Interferon Regulatory Factors
7.
J Cell Biol ; 223(6)2024 Jun 03.
Article En | MEDLINE | ID: mdl-38700903

Collectively migrating cells consist of leaders and followers with different features. In this issue, Kim et al. (https://doi.org/10.1083/jcb.202401057) characterize the leader and follower cells in collective glioma migration and uncover important roles of YAP1/TAZ-mediated regulation of N-cadherin in the leader cells.


Cadherins , Glioma , Humans , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Antigens, CD/metabolism , Antigens, CD/genetics , Cadherins/metabolism , Cadherins/genetics , Cell Movement , Glioma/metabolism , Glioma/pathology , Glioma/genetics , Protein Transport , Transcription Factors/metabolism , Transcription Factors/genetics , YAP-Signaling Proteins/metabolism
8.
Oncoimmunology ; 13(1): 2346359, 2024.
Article En | MEDLINE | ID: mdl-38737794

Immune exhaustion is a hallmark of ovarian cancer. Using multiparametric flow cytometry, the study aimed to analyze protein expression of novel immunological targets on CD3+ T cells isolated from the peripheral blood (n = 20), malignant ascites (n = 16), and tumor tissue (n = 6) of patients with ovarian cancer (OVCA). The study revealed an increased proportion of effector memory CD8+ T cells in OVCA tissue and malignant ascites. An OVCA-characteristic PD-1high CD8+ T cell population was detected, which differed from PD-1lowCD8+ T cells by increased co-expression of TIGIT, CD39, and HLA-DR. In addition, these OVCA-characteristic CD8+ T cells showed reduced expression of the transcription factor TCF-1, which may also indicate reduced effector function and memory formation. On the contrary, the transcription factor TOX, which significantly regulates terminal T cell-exhaustion, was found more frequently in these cells. Further protein and gene analysis showed that CD39 and CD73 were also expressed on OVCA tumor cells isolated from solid tumors (n = 14) and malignant ascites (n = 9). In the latter compartment, CD39 and CD73 were also associated with the expression of the "don't eat me" molecule CD24 on tumor cells. Additionally, ascites-derived CD24+EpCAM+ tumor cells showed a higher frequency of CD39+ or CD73+ cells. Furthermore, CD39 expression was associated with unfavorable clinical parameters. Expression of CD39 on T cells was upregulated through CD3/CD28 stimulation and its blockade by a newly developed nanobody construct resulted in increased proliferation (eFluor), activation (CD25 and CD134), and production of cytotoxic cytokines (IFN-γ, TNF-α, and granzyme-B) of CD8+ T cells.


Apyrase , CD8-Positive T-Lymphocytes , Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/immunology , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Apyrase/metabolism , Apyrase/genetics , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Middle Aged , Ascites/immunology , Ascites/pathology , Ascites/metabolism , Antigens, CD/metabolism , Antigens, CD/genetics , Aged , Programmed Cell Death 1 Receptor/metabolism , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Receptors, Immunologic/antagonists & inhibitors , T Cell Transcription Factor 1/metabolism , T Cell Transcription Factor 1/genetics , HLA-DR Antigens/metabolism , Adult , T-Cell Exhaustion , High Mobility Group Proteins
9.
PLoS One ; 19(5): e0290485, 2024.
Article En | MEDLINE | ID: mdl-38722959

Cadherin family proteins play a central role in epithelial and endothelial cell-cell adhesion. The dynamic regulation of cell adhesion is achieved in part through endocytic membrane trafficking pathways that modulate cadherin cell surface levels. Here, we define the role for various MARCH family ubiquitin ligases in the regulation of cadherin degradation. We find that MARCH2 selectively downregulates VE-cadherin, resulting in loss of adherens junction proteins at cell borders and a loss of endothelial barrier function. Interestingly, N-cadherin is refractory to MARCH ligase expression, demonstrating that different classical cadherin family proteins are differentially regulated by MARCH family ligases. Using chimeric cadherins, we find that the specificity of different MARCH family ligases for different cadherins is conferred by the cadherin transmembrane domain. Further, juxta-membrane lysine residues are required for cadherin degradation by MARCH proteins. These findings expand our understanding of cadherin regulation and highlight a new role for mammalian MARCH family ubiquitin ligases in differentially regulating cadherin turnover.


Cadherins , Proteolysis , Ubiquitin-Protein Ligases , Cadherins/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Humans , Animals , Antigens, CD/metabolism , Antigens, CD/genetics , HEK293 Cells , Adherens Junctions/metabolism , Cell Adhesion
10.
Sci Rep ; 14(1): 11177, 2024 05 16.
Article En | MEDLINE | ID: mdl-38750122

Major depressive disorder (MDD) is associated with T cell activation, but no studies have examined the combined effects of T cell activation and deficits in T regulatory (Treg) cells on the severity of acute phase MDD. Using flow cytometry, we determined the percentage and median fluorescence intensity of CD69, CD71, CD40L, and HLADR-bearing CD3+, CD4+, and CD8+ cells, and cannabinoid type 1 receptor (CB1), CD152 and GARP (glycoprotein A repetitions predominant)-bearing CD25+ FoxP3 T regulatory (Treg) cells in 30 MDD patients and 20 healthy controls in unstimulated and stimulated (anti-CD3/CD28) conditions. Based on cytokine levels, we assessed M1 macrophage, T helper (Th)-1 cell, immune-inflammatory response system (IRS), T cell growth, and neurotoxicity immune profiles. We found that the immune profiles (including IRS and neurotoxicity) were significantly predicted by decreased numbers of CD152 or GARP-bearing CD25+ FoxP3 cells or CD152 and GARP expression in combination with increases in activated T cells (especially CD8+ CD40L+ percentage and expression). MDD patients showed significantly increased numbers of CD3+ CD71+, CD3+ CD40L+, CD4+ CD71+, CD4+ CD40L+, CD4+ HLADR+, and CD8+ HLADR+ T cells, increased CD3+ CD71+, CD4+ CD71+ and CD4+ HLADR+ expression, and lowered CD25+ FoxP3 expression and CD25+ FoxP+ CB1+ numbers as compared with controls. The Hamilton Depression Rating Scale score was strongly predicted (between 30 and 40% of its variance) by a lower number of CB1 or GARP-bearing Treg cells and one or more activated T cell subtypes (especially CD8+ CD40L+). In conclusion, increased T helper and cytotoxic cell activation along with decreased Treg homeostatic defenses are important parts of MDD that lead to enhanced immune responses and, as a result, neuroimmunotoxicity.


Depressive Disorder, Major , Lymphocyte Activation , T-Lymphocytes, Regulatory , Humans , Depressive Disorder, Major/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Male , Female , Adult , Lymphocyte Activation/immunology , Middle Aged , Severity of Illness Index , Cytokines/metabolism , Antigens, CD/metabolism , Case-Control Studies
11.
J Exp Med ; 221(7)2024 Jul 01.
Article En | MEDLINE | ID: mdl-38753245

Preterm infants are at high risk of developing neonatal sepsis. γδ T cells are thought to be an important set of effector cells in neonates. Here, γδ T cells were investigated in a longitudinal cohort of preterm neonates using next-generation sequencing, flow cytometry, and functional assays. During the first year of life, the Vγ9Vδ2 T cell subset showed dynamic phenotypic changes and elevated levels of fetal-derived Vγ9Vδ2 T cells were evident in infants with sepsis. Single-cell transcriptomics identified HLA-DRhiCD83+ γδ T cells in neonatal sepsis, which expressed genes related to antigen presentation. In vitro assays showed that CD83 was expressed on activated Vγ9Vδ2 T cells in preterm and term neonates, but not in adults. In contrast, activation of adult Vγ9Vδ2 T cells enhanced CD86 expression, which was presumably the key receptor to induce CD4 T cell proliferation. Together, we provide a map of the maturation of γδ T cells after preterm birth and highlight their phenotypic diversity in infections.


Antigens, CD , CD83 Antigen , Infant, Premature , Receptors, Antigen, T-Cell, gamma-delta , Humans , Infant, Newborn , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Receptors, Antigen, T-Cell, gamma-delta/immunology , Infant, Premature/immunology , Antigens, CD/metabolism , Antigens, CD/genetics , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Female , Male , Sepsis/immunology , Cohort Studies , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Adult , Lymphocyte Activation/immunology , Neonatal Sepsis/immunology , Infant
12.
Front Immunol ; 15: 1378359, 2024.
Article En | MEDLINE | ID: mdl-38779662

Skin tissue-resident memory T (Trm) cells are produced by antigenic stimulation and remain in the skin for a long time without entering the peripheral circulation. In the healthy state Trm cells can play a patrolling and surveillance role, but in the disease state Trm cells differentiate into various phenotypes associated with different diseases, exhibit different localizations, and consequently have local protective or pathogenic roles, such as disease recurrence in vitiligo and maintenance of immune homeostasis in melanoma. The most common surface marker of Trm cells is CD69/CD103. However, the plasticity of tissue-resident memory T cells after colonization remains somewhat uncertain. This ambiguity is largely due to the variation in the functionality and ultimate destination of Trm cells produced from memory cells differentiated from diverse precursors. Notably, the presence of Trm cells is not stationary across numerous non-lymphoid tissues, most notably in the skin. These cells may reenter the blood and distant tissue sites during the recall response, revealing the recycling and migration potential of the Trm cell progeny. This review focuses on the origin and function of skin Trm cells, and provides new insights into the role of skin Trm cells in the treatment of autoimmune skin diseases, infectious skin diseases, and tumors.


Cell Plasticity , Homeostasis , Immunologic Memory , Memory T Cells , Skin Diseases , Skin , Humans , Homeostasis/immunology , Memory T Cells/immunology , Memory T Cells/metabolism , Skin/immunology , Skin/pathology , Cell Plasticity/immunology , Animals , Skin Diseases/immunology , Antigens, CD/metabolism , Antigens, CD/immunology
13.
Xenotransplantation ; 31(3): e12863, 2024.
Article En | MEDLINE | ID: mdl-38751087

Overexpression of human CD200 (hCD200) in porcine endothelial cells (PECs) has been reported to suppress xenogeneic immune responses of human macrophages against porcine endothelial cells. The current study aimed to address whether the above-mentioned beneficial effect of hCD200 is mediated by overcoming the molecular incompatibility between porcine CD200 (pCD200) and hCD200 receptor or simply by increasing the expression levels of CD200 without any molecular incompatibility across the two species. We overexpressed hCD200 or pCD200 using lentiviral vectors with V5 marker in porcine endothelial cells and compared their suppressive activity against U937-derived human macrophage-like cells (hMCs) and primary macrophages. In xenogeneic coculture of porcine endothelial cells and human macrophage-like cells or macrophages, hCD200-porcine endothelial cells suppressed phagocytosis and cytotoxicity of human macrophages to a greater extent than pCD200-porcine endothelial cells. Secretion of tumor necrosis factor-α, interleukin-1ß, and monocyte chemoattractant protein-1 from human macrophages and expression of M1 phenotypes (inducible nitric oxide synthase, dectin-1, and CD86) were also suppressed by hCD200 to a greater extent than pCD200. Furthermore, in signal transduction downstream of CD200 receptor, hCD200 induced Dok2 phosphorylation and suppressed IκB phosphorylation to a greater extent than pCD200. The above data supported the possibility of a significant molecular incompatibility between pCD200 and human CD200 receptor, suggesting that the beneficial effects of hCD200 overexpression in porcine endothelial cells could be mediated by overcoming the molecular incompatibility across the species barrier rather than by simple overexpression effects of CD200.


Antigens, CD , Endothelial Cells , Macrophages , Transplantation, Heterologous , Animals , Humans , Antigens, CD/immunology , Antigens, CD/metabolism , Antigens, CD/genetics , Swine , Macrophages/immunology , Macrophages/metabolism , Transplantation, Heterologous/methods , Endothelial Cells/immunology , Phagocytosis , Orexin Receptors/genetics , Orexin Receptors/metabolism , Orexin Receptors/immunology , Coculture Techniques
14.
Asian Pac J Cancer Prev ; 25(5): 1777-1785, 2024 May 01.
Article En | MEDLINE | ID: mdl-38809650

BACKGROUND: Deregulation of immune checkpoint is an important point in cancer evolution as well as patients outcome. T-cells is an important arm in immunity against cancer. This study aimed to assess CTLA4/LAG3 expression on different T-cell subsets and its effect on disease outcome. METHODS: This study included 81 newly diagnosed Egyptian adult AML patients. For each one of the patients CTLA4/ LAG3 expression on T-cell subsets was identified by flowcytometry before start of induction chemotherapy. RESULTS: Total CD3 count in AML patients was lower than control. LAG3 expression were significantly higher in total CD3, T-cell subsets (CD4, CD8) as compared to healthy control. Moreover, co-expression of LAG3/CTLA4 on T-cell subsets were significantly higher in AML as compared to healthy control . NPM-/ FLT3+ was significantly associated with high LAG3 expression in T-cells subsets as compared to other molecular subtypes. Shorter OS, DFS were significantly associated with higher expression of LAG3 on T-cells subsets as compared to patients harbor low expression. COX regression analysis revealed that high expression of CD3/LAG3, CD4/LAG3, CD8/LAG4, CD3/CTLA4/LAG3 were considered a poor prognostic risk factor. CONCLUSION: High LAG3/CTLA4 expression could predict AML Patients' outcome Conclusion: Our findings indicated that high expression of LAG3/CTL4 on T cells subsets identify a subgroup of AML patients with poor prognosis.


Antigens, CD , Biomarkers, Tumor , CTLA-4 Antigen , Leukemia, Myeloid, Acute , Lymphocyte Activation Gene 3 Protein , T-Lymphocyte Subsets , Humans , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/metabolism , Male , Female , Prognosis , CTLA-4 Antigen/metabolism , Adult , Antigens, CD/metabolism , Middle Aged , Case-Control Studies , Biomarkers, Tumor/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Follow-Up Studies , Young Adult , Survival Rate , Adolescent
15.
Cell Mol Biol (Noisy-le-grand) ; 70(5): 145-149, 2024 May 27.
Article En | MEDLINE | ID: mdl-38814222

The purpose of this study was to investigate the expression of CD109 and its clinicopathological significance in oral squamous cell carcinoma. Data from TIMER2.0 and UALCAN were analyzed to assess CD109 mRNA levels in OSCC. The immunohistochemical method was used to investigate the expressions of CD109 in 20 normal oral mucosa and 75 OSCC and analyzed the relationship between the expression of CD109 and the clinical variables. The mRNA levels of CD109 in OSCC tissues were significantly higher than in adjacent normal tissues (p<0.05). Immunohistochemical analysis revealed that CD109 protein expression was increased in OSCC tissues compared to normal tissues, and this difference was statistically significant (P<0.05). The positive rate of CD109 expression was 94% (16/117) in the group with lymph node metastasis, while it was 55% (32/58) in the group without metastasis (P<0.05). Similarly, the positive rate of CD109 expression was 91% (22/23) in the low differentiation group and 59% (26/52) in the high differentiation group (P<0.05). CD109 expression is markedly higher in OSCC, contributes to the pathological grading of OSCC and predicts lymph node metastasis.


Antigens, CD , Carcinoma, Squamous Cell , GPI-Linked Proteins , Lymphatic Metastasis , Mouth Neoplasms , Neoplasm Proteins , Humans , Mouth Neoplasms/pathology , Mouth Neoplasms/metabolism , Mouth Neoplasms/genetics , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/genetics , Female , Male , Antigens, CD/metabolism , Antigens, CD/genetics , Middle Aged , GPI-Linked Proteins/metabolism , GPI-Linked Proteins/genetics , Neoplasm Proteins/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/biosynthesis , Immunohistochemistry , Gene Expression Regulation, Neoplastic , Aged , RNA, Messenger/genetics , RNA, Messenger/metabolism , Adult , Mouth Mucosa/metabolism , Mouth Mucosa/pathology , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Clinical Relevance
16.
Head Neck Pathol ; 18(1): 40, 2024 May 10.
Article En | MEDLINE | ID: mdl-38727794

BACKGROUND: Odontogenic lesions constitute a heterogeneous group of lesions. CLIC4 protein regulates different cellular processes, including epithelial-mesenchymal transition and fibroblast-myofibroblast transdifferentiation. This study analyzed CLIC4, E-cadherin, Vimentin, and α-SMA immunoexpression in epithelial odontogenic lesions that exhibit different biological behavior. METHODS: It analyzed the immunoexpression of CLIC4, E-cadherin, and Vimentin in the epithelial cells, as well as CLIC4 and α-SMA in the mesenchymal cells, of ameloblastoma (AM) (n = 16), odontogenic keratocyst (OKC) (n = 20), and adenomatoid odontogenic tumor (AOT) (n = 8). Immunoexpressions were categorized as score 0 (0% positive cells), 1 (< 25%), 2 (≥ 25% - < 50%), 3 (≥ 50% - < 75%), or 4 (≥ 75%). RESULTS: Cytoplasmic CLIC4 immunoexpression was higher in AM and AOT (p < 0.001) epithelial cells. Nuclear-cytoplasmic CLIC4 was higher in OKC's epithelial lining (p < 0.001). Membrane (p = 0.012) and membrane-cytoplasmic (p < 0.001) E-cadherin immunoexpression were higher in OKC, while cytoplasmic E-cadherin expression was higher in AM and AOT (p < 0.001). Vimentin immunoexpression was higher in AM and AOT (p < 0.001). Stromal CLIC4 was higher in AM and OKC (p = 0.008). Similarly, α-SMA immunoexpression was higher in AM and OKC (p = 0.037). Correlations in these proteins' immunoexpression were observed in AM and OKC (p < 0.05). CONCLUSIONS: CLIC4 seems to regulate the epithelial-mesenchymal transition, modifying E-cadherin and Vimentin expression. In mesenchymal cells, CLIC4 may play a role in fibroblast-myofibroblast transdifferentiation. CLIC4 may be associated with epithelial odontogenic lesions with aggressive biological behavior.


Ameloblastoma , Cadherins , Chloride Channels , Epithelial-Mesenchymal Transition , Odontogenic Tumors , Vimentin , Humans , Epithelial-Mesenchymal Transition/physiology , Chloride Channels/metabolism , Chloride Channels/analysis , Cadherins/metabolism , Odontogenic Tumors/pathology , Odontogenic Tumors/metabolism , Ameloblastoma/pathology , Ameloblastoma/metabolism , Vimentin/metabolism , Adult , Female , Odontogenic Cysts/pathology , Odontogenic Cysts/metabolism , Male , Actins/metabolism , Young Adult , Middle Aged , Antigens, CD/metabolism , Adolescent
17.
Cell Mol Life Sci ; 81(1): 231, 2024 May 23.
Article En | MEDLINE | ID: mdl-38780647

CD200 is an anti-inflammatory protein that facilitates signal transduction through its receptor, CD200R, in cells, resulting in immune response suppression. This includes reducing M1-like macrophages, enhancing M2-like macrophages, inhibiting NK cell cytotoxicity, and downregulating CTL responses. Activation of CD200R has been found to modulate dendritic cells, leading to the induction or enhancement of Treg cells expressing Foxp3. However, the precise mechanisms behind this process are still unclear. Our previous study demonstrated that B cells in Peyer's patches can induce Treg cells, so-called Treg-of-B (P) cells, through STAT6 phosphorylation. This study aimed to investigate the role of CD200 in Treg-of-B (P) cell generation. To clarify the mechanisms, we used wild-type, STAT6 deficient, and IL-24 deficient T cells to generate Treg-of-B (P) cells, and antagonist antibodies (anti-CD200 and anti-IL-20RB), an agonist anti-CD200R antibody, CD39 inhibitors (ARL67156 and POM-1), a STAT6 inhibitor (AS1517499), and soluble IL-20RB were also applied. Our findings revealed that Peyer's patch B cells expressed CD200 to activate the CD200R on T cells and initiate the process of Treg-of-B (P) cells generation. CD200 and CD200R interaction triggers the phosphorylation of STAT6, which regulated the expression of CD200R, CD39, and IL-24 in T cells. CD39 regulated the expression of IL-24, which sustained the expression of CD223 and IL-10 and maintained the cell viability. In summary, the generation of Treg-of-B (P) cells by Peyer's patch B cells was through the CD200R-STAT6-CD39-IL-24 axis pathway.


B-Lymphocytes , STAT6 Transcription Factor , T-Lymphocytes, Regulatory , Animals , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Mice , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , STAT6 Transcription Factor/metabolism , Mice, Inbred C57BL , Orexin Receptors/metabolism , Orexin Receptors/genetics , Antigens, CD/metabolism , Antigens, CD/genetics , Antigens, CD/immunology , Signal Transduction , Phosphorylation , Peyer's Patches/immunology , Peyer's Patches/metabolism , Peyer's Patches/cytology , Apyrase/metabolism , Apyrase/immunology , Membrane Glycoproteins
18.
Med Oncol ; 41(6): 150, 2024 May 13.
Article En | MEDLINE | ID: mdl-38740647

The impact of tumor microenvironment (TME) in influencing clinical response to first-line immune checkpoint inhibitor (ICI)-based treatment in advanced renal cell carcinoma (RCC) is unclear. Immunohistochemistry (IHC) could identify biomarkers related to immune checkpoints and immune cell population. This study retrospectively characterized TME from 28 RCC patients who received first line ICI-based therapy through IHC assessment of selected markers and explored preliminary evidence about their possible correlation with treatment efficacy. We found a significantly higher count of CD80+, CD163+ cells and their ratio in RCC with clear cell component compared to those without clear cell features; additionally, patients with metastatic disease at diagnosis were associated with higher expression of CD163+ cells, while higher count of CD4+ cells and CD4+/CD8+ ratio were found in RCC with sarcomatoid features. Patients achieving partial or complete response were associated with lower expression of CD163+ cells (median 28 vs 47; p = 0.049). Furthermore, lower expression of CD163+ was associated with better PFS (median PFS 20.0 vs 4.7 months; HR 0.22 p = 0.011) and OS (median OS NR vs 14.4 months; HR 0.28 p = 0.036). A longer OS was reported in PD-L1 CPS negative patients (median OS NR vs 11.8 months; HR 0.20 p = 0.024). High infiltration of CD163+ macrophages, who typically present "anti-inflammatory" M2-like phenotype, could identify a subgroup of patients with poor survival after receiving first-line ICI.


Carcinoma, Renal Cell , Immune Checkpoint Inhibitors , Kidney Neoplasms , Tumor Microenvironment , Humans , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/immunology , Carcinoma, Renal Cell/metabolism , Tumor Microenvironment/immunology , Kidney Neoplasms/pathology , Kidney Neoplasms/drug therapy , Kidney Neoplasms/immunology , Kidney Neoplasms/metabolism , Male , Female , Middle Aged , Aged , Retrospective Studies , Immune Checkpoint Inhibitors/therapeutic use , Adult , Immunotherapy/methods , Receptors, Cell Surface/metabolism , Antigens, CD/metabolism , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/analysis , Aged, 80 and over , Treatment Outcome , Antigens, Differentiation, Myelomonocytic/metabolism
19.
Front Immunol ; 15: 1360412, 2024.
Article En | MEDLINE | ID: mdl-38745652

A robust immune response is required for resistance to pulmonary tuberculosis (TB), the primary disease caused by Mycobacterium tuberculosis (Mtb). However, pharmaceutical inhibition of T cell immune checkpoint molecules can result in the rapid development of active disease in latently infected individuals, indicating the importance of T cell immune regulation. In this study, we investigated the potential role of CD200R during Mtb infection, a key immune checkpoint for myeloid cells. Expression of CD200R was consistently downregulated on CD14+ monocytes in the blood of subjects with active TB compared to healthy controls, suggesting potential modulation of this important anti-inflammatory pathway. In homogenized TB-diseased lung tissue, CD200R expression was highly variable on monocytes and CD11b+HLA-DR+ macrophages but tended to be lowest in the most diseased lung tissue sections. This observation was confirmed by fluorescent microscopy, which showed the expression of CD200R on CD68+ macrophages surrounding TB lung granuloma and found expression levels tended to be lower in macrophages closest to the granuloma core and inversely correlated with lesion size. Antibody blockade of CD200R in a biomimetic 3D granuloma-like tissue culture system led to significantly increased Mtb growth. In addition, Mtb infection in this system reduced gene expression of CD200R. These findings indicate that regulation of myeloid cells via CD200R is likely to play an important part in the immune response to TB and may represent a potential target for novel therapeutic intervention.


Mycobacterium tuberculosis , Myeloid Cells , Tuberculosis, Pulmonary , Humans , Mycobacterium tuberculosis/immunology , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/microbiology , Myeloid Cells/immunology , Myeloid Cells/metabolism , Orexin Receptors/metabolism , Macrophages/immunology , Macrophages/metabolism , Adult , Female , Male , Antigens, CD/metabolism , Antigens, CD/genetics , Middle Aged , Lung/immunology , Lung/microbiology , Lung/pathology , Lung/metabolism , Biomimetics , Monocytes/immunology , Monocytes/metabolism
20.
Breast Cancer Res ; 26(1): 75, 2024 May 08.
Article En | MEDLINE | ID: mdl-38720366

BACKGROUND: Tumor-associated macrophages (TAMs) are a prominent immune subpopulation in the tumor microenvironment that could potentially serve as therapeutic targets for breast cancer. Thus, it is important to characterize this cell population across different tumor subtypes including patterns of association with demographic and prognostic factors, and breast cancer outcomes. METHODS: We investigated CD163+ macrophages in relation to clinicopathologic variables and breast cancer outcomes in the Women's Circle of Health Study and Women's Circle of Health Follow-up Study populations of predominantly Black women with breast cancer. We evaluated 611 invasive breast tumor samples (507 from Black women, 104 from White women) with immunohistochemical staining of tissue microarray slides followed by digital image analysis. Multivariable Cox proportional hazards models were used to estimate hazard ratios for overall survival (OS) and breast cancer-specific survival (BCSS) for 546 cases with available survival data (median follow-up time 9.68 years (IQR: 7.43-12.33). RESULTS: Women with triple-negative breast cancer showed significantly improved OS in relation to increased levels of tumor-infiltrating CD163+ macrophages in age-adjusted (Q3 vs. Q1: HR = 0.36; 95% CI 0.16-0.83) and fully adjusted models (Q3 vs. Q1: HR = 0.30; 95% CI 0.12-0.73). A similar, but non-statistically significant, association was observed for BCSS. Macrophage infiltration in luminal and HER2+ tumors was not associated with OS or BCSS. In a multivariate regression model that adjusted for age, subtype, grade, and tumor size, there was no significant difference in CD163+ macrophage density between Black and White women (RR = 0.88; 95% CI 0.71-1.10). CONCLUSIONS: In contrast to previous studies, we observed that higher densities of CD163+ macrophages are independently associated with improved OS and BCSS in women with invasive triple-negative breast cancer. Trial registration Not applicable.


Antigens, CD , Antigens, Differentiation, Myelomonocytic , Receptors, Cell Surface , Triple Negative Breast Neoplasms , Tumor Microenvironment , Humans , Female , Tumor Microenvironment/immunology , Antigens, Differentiation, Myelomonocytic/metabolism , Antigens, CD/metabolism , Middle Aged , Receptors, Cell Surface/metabolism , Triple Negative Breast Neoplasms/mortality , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/metabolism , Follow-Up Studies , Prognosis , Adult , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/immunology , Macrophages/metabolism , Macrophages/immunology , Macrophages/pathology , Aged , Biomarkers, Tumor/metabolism , Proportional Hazards Models
...