Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.584
Filter
1.
PLoS One ; 19(6): e0304985, 2024.
Article in English | MEDLINE | ID: mdl-38843278

ABSTRACT

Signal regulatory protein alpha (SIRPα) is an immune inhibitory receptor on myeloid cells including macrophages and dendritic cells, which binds to CD47, a ubiquitous self-associated molecule. SIRPα-CD47 interaction is exploited by cancer cells to suppress anti-tumor activity of myeloid cells, therefore emerging as a novel immune checkpoint for cancer immunotherapy. In blood cancer, several SIRPα-CD47 blockers have shown encouraging monotherapy activity. However, the anti-tumor activity of SIRPα-CD47 blockers in solid tumors seems limited, suggesting the need for combination therapies to fully exploit the myeloid immune checkpoint in solid tumors. Here we tested whether combination of SIRPα-CD47 blocker with antibody-drug conjugate bearing a topoisomerase I inhibitor DXd (DXd-ADC) would enhance anti-tumor activity in solid tumors. To this end, DS-1103a, a newly developed anti-human SIRPα antibody (Ab), was assessed for the potential combination benefit with datopotamab deruxtecan (Dato-DXd) and trastuzumab deruxtecan (T-DXd), DXd-ADCs targeting human trophoblast cell-surface antigen 2 and human epidermal growth factor receptor 2, respectively. DS-1103a inhibited SIRPα-CD47 interaction and enhanced antibody-dependent cellular phagocytosis of Dato-DXd and T-DXd against human cancer cells. In a whole cancer cell vaccination model, vaccination with DXd-treated cancer cells led to activation of tumor-specific T cells when combined with an anti-mouse SIRPα (anti-mSIRPα) Ab, implying the benefit of combining DXd-ADCs with anti-SIRPα Ab on anti-tumor immunity. Furthermore, in syngeneic mouse models, both Dato-DXd and T-DXd combination with anti-mSIRPα Ab showed stronger anti-tumor activity over the monotherapies. Taken together, this study provides a preclinical rationale of novel therapies for solid tumors combining SIRPα-CD47 blockers with DXd-ADCs.


Subject(s)
Antigens, Differentiation , CD47 Antigen , Immunoconjugates , Receptors, Immunologic , CD47 Antigen/antagonists & inhibitors , CD47 Antigen/immunology , Animals , Receptors, Immunologic/antagonists & inhibitors , Receptors, Immunologic/metabolism , Receptors, Immunologic/immunology , Humans , Mice , Immunoconjugates/pharmacology , Antigens, Differentiation/immunology , Cell Line, Tumor , Female , Trastuzumab/pharmacology , Topoisomerase I Inhibitors/pharmacology , Immunotherapy/methods , Mice, Inbred BALB C
2.
J Clin Invest ; 134(11)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38828721

ABSTRACT

The adoptive transfer of T cell receptor-engineered (TCR-engineered) T cells (ACT) targeting the HLA-A2-restricted cancer-testis epitope NY-ESO-1157-165 (A2/NY) has yielded favorable clinical responses against several cancers. Two approaches to improve ACT are TCR affinity optimization and T cell coengineering to express immunomodulatory molecules that can exploit endogenous immunity. By computational design we previously developed a panel of binding-enhanced A2/NY-TCRs including A97L, which augmented the in vitro function of gene-modified T cells as compared with WT. Here, we demonstrated higher persistence and improved tumor control by A97L-T cells. In order to harness macrophages in tumors, we further coengineered A97L-T cells to secrete a high-affinity signal regulatory protein α (SiRPα) decoy (CV1) that blocks CD47. While CV1-Fc-coengineered A97L-T cells mediated significantly better control of tumor outgrowth and survival in Winn assays, in subcutaneous xenograft models the T cells, coated by CV1-Fc, were depleted. Importantly, there was no phagocytosis of CV1 monomer-coengineered T cells by human macrophages. Moreover, avelumab and cetuximab enhanced macrophage-mediated phagocytosis of tumor cells in vitro in the presence of CV1 and improved tumor control upon coadministration with A97L-T cells. Taken together, our study indicates important clinical promise for harnessing macrophages by combining CV1-coengineered TCR-T cells with targeted antibodies to direct phagocytosis against tumor cells.


Subject(s)
Macrophages , Phagocytosis , Receptors, Immunologic , Animals , Humans , Mice , Antigens, Differentiation/immunology , Antigens, Neoplasm/immunology , CD47 Antigen/immunology , Cell Line, Tumor , HLA-A2 Antigen/immunology , HLA-A2 Antigen/genetics , Immunotherapy, Adoptive , Macrophages/immunology , Macrophages/metabolism , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Receptors, Immunologic/immunology , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , T-Lymphocytes/immunology , Xenograft Model Antitumor Assays , Male , Female
3.
Viruses ; 16(5)2024 05 06.
Article in English | MEDLINE | ID: mdl-38793616

ABSTRACT

Interferons (IFNs) are antiviral cytokines that defend against viral infections by inducing the expression of interferon-stimulated genes (ISGs). Interferon-inducible transmembrane proteins (IFITMs) 1, 2, and 3 are crucial ISG products and members of the CD225 protein family. Compelling evidence shows that IFITMs restrict the infection of many unrelated viruses by inhibiting the virus-cell membrane fusion at the virus entry step via the modulation of lipid composition and membrane properties. Meanwhile, viruses can evade IFITMs' restrictions by either directly interacting with IFITMs via viral glycoproteins or by altering the native entry pathway. At the same time, cumulative evidence suggests context-dependent and multifaceted roles of IFITMs in modulating virus infections and cell signaling. Here, we review the diverse antiviral mechanisms of IFITMs, the viral antagonizing strategies, and the regulation of IFITM activity in host cells. The mechanisms behind the antiviral activity of IFITMs could aid the development of broad-spectrum antivirals and enhance preparedness for future pandemics.


Subject(s)
Interferons , Membrane Proteins , Virus Internalization , Humans , Membrane Proteins/metabolism , Membrane Proteins/immunology , Interferons/immunology , Interferons/metabolism , Virus Internalization/drug effects , Antiviral Agents/pharmacology , Immune Evasion , Animals , Virus Diseases/immunology , Virus Diseases/virology , Viruses/immunology , Viruses/drug effects , Host-Pathogen Interactions/immunology , Signal Transduction , Antigens, Differentiation/metabolism , Antigens, Differentiation/immunology
4.
Nature ; 630(8016): 457-465, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38750365

ABSTRACT

Adoptively transferred T cells and agents designed to block the CD47-SIRPα axis are promising cancer therapeutics that activate distinct arms of the immune system1,2. Here we administered anti-CD47 antibodies in combination with adoptively transferred T cells with the goal of enhancing antitumour efficacy but observed abrogated therapeutic benefit due to rapid macrophage-mediated clearance of T cells expressing chimeric antigen receptors (CARs) or engineered T cell receptors. Anti-CD47-antibody-mediated CAR T cell clearance was potent and rapid enough to serve as an effective safety switch. To overcome this challenge, we engineered the CD47 variant CD47(Q31P) (47E), which engages SIRPα and provides a 'don't eat me' signal that is not blocked by anti-CD47 antibodies. TCR or CAR T cells expressing 47E are resistant to clearance by macrophages after treatment with anti-CD47 antibodies, and mediate substantial, sustained macrophage recruitment to the tumour microenvironment. Although many of the recruited macrophages manifested an M2-like profile3, the combined therapy synergistically enhanced antitumour efficacy. Our study identifies macrophages as major regulators of T cell persistence and illustrates the fundamental challenge of combining T-cell-directed therapeutics with those designed to activate macrophages. It delivers a therapeutic approach that is capable of simultaneously harnessing the antitumour effects of T cells and macrophages, offering enhanced potency against solid tumours.


Subject(s)
CD47 Antigen , Immunotherapy, Adoptive , Neoplasms , T-Lymphocytes , Animals , Female , Humans , Male , Mice , Antigens, Differentiation/immunology , Antigens, Differentiation/metabolism , CD47 Antigen/genetics , CD47 Antigen/immunology , CD47 Antigen/metabolism , Cell Line, Tumor , Immunotherapy, Adoptive/methods , Macrophages/cytology , Macrophages/immunology , Neoplasms/immunology , Neoplasms/metabolism , Neoplasms/therapy , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/metabolism , Receptors, Immunologic/immunology , Receptors, Immunologic/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/transplantation , Tumor Microenvironment/immunology , Antibodies/immunology , Antibodies/therapeutic use , Macrophage Activation
5.
Transpl Immunol ; 84: 102020, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38452982

ABSTRACT

OBJECTIVE: Innate immunity plays a vital role in xenotransplantation. A CD47 molecule, binding to the SIRPα expressed on monocyte/macrophage cells, can suppress cytotoxicity. Particularly, the SIRPα contains ITIM, which delivers a negative signal. Our previous study demonstrated that the binding between CL-P1 and surfactant protein-D hybrid (CL-SP-D) with SIRPα regulates macrophages' phagocytic activity. In this study, we examined the effects of human CD47 and CL-SP-D expression on the inhibition of xenograft rejection by neutrophils in swine endothelial cells (SECs). METHODS: We first examined SIRPα expression on HL-60 cells, a neutrophil-like cell line, and neutrophils isolated from peripheral blood. CD47-expressing SECs or CL-SP-D-expressing SECs were generated through plasmid transfection. Subsequently, these SECs were co-cultured with HL-60 cells or neutrophils. After co-culture, the degree of cytotoxicity was calculated using the WST-8 assay. The suppressive function of CL-SP-D on neutrophils was subsequently examined, and the results were compared with those of CD47 using naïve SECs as controls. Additionally, we assessed ROS production and neutrophil NETosis. RESULTS: In initial experiments, the expression of SIRPα on HL-60 and neutrophils was confirmed. Exposure to CL-SP-D significantly suppressed the cytotoxicity in HL-60 (p = 0.0038) and neutrophils (p = 0.00003). Furthermore, engagement with CD47 showed a suppressive effect on neutrophils obtained from peripheral blood (p = 0.0236) but not on HL-60 (p = 0.4244). The results of the ROS assays also indicated a significant downregulation of SEC by CD47 (p = 0.0077) or CL-SP-D (p = 0.0018). Additionally, the suppression of NETosis was confirmed (p = 0.0125) in neutrophils co-cultured with S/CL-SP-D. CONCLUSION: These results indicate that CL-SP-D is highly effective on neutrophils in xenogeneic rejection. Furthermore, CL-SP-D was more effective than CD47 at inhibiting neutrophil-mediated xenograft rejection.


Subject(s)
Antigens, Differentiation , CD47 Antigen , Graft Rejection , Neutrophils , Receptors, Immunologic , Humans , CD47 Antigen/metabolism , CD47 Antigen/immunology , Neutrophils/immunology , Neutrophils/metabolism , Animals , Graft Rejection/immunology , Swine , HL-60 Cells , Receptors, Immunologic/metabolism , Antigens, Differentiation/metabolism , Antigens, Differentiation/immunology , Coculture Techniques , Transplantation, Heterologous , Endothelial Cells/immunology , Endothelial Cells/metabolism , Reactive Oxygen Species/metabolism
6.
Adv Sci (Weinh) ; 11(24): e2306388, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38477522

ABSTRACT

CD47-SIRPα axis is an immunotherapeutic target in tumor therapy. However, current monoclonal antibody targeting CD47-SIRPα axis is associated with on-target off-tumor and antigen sink effects, which significantly limit its potential clinical application. Herein, a biomimetic nano-degrader is developed to inhibit CD47-SIRPα axis in a site-specific manner through SIRPα degradation, and its efficacy in acute myocardial infarction (AMI) is evaluated. The nano-degrader is constructed by hybridizing liposome with red blood cell (RBC) membrane (RLP), which mimics the CD47 density of senescent RBCs and possesses a natural high-affinity binding capability to SIRPα on macrophages without signaling capacity. RLP would bind with SIRPα and induce its lysosomal degradation through receptor-mediated endocytosis. To enhance its tissue specificity, Ly6G antibody conjugation (aRLP) is applied, enabling its attachment to neutrophils and accumulation within inflammatory sites. In the myocardial infarction model, aRLP accumulated in the infarcted myocardium blocks CD47-SIRPα axis and subsequently promoted the efferocytosis of apoptotic cardiomyocytes by macrophage, improved heart repair. This nano-degrader efficiently degraded SIRPα in lysosomes, providing a new strategy for immunotherapy with great clinical transformation potential.


Subject(s)
CD47 Antigen , Macrophages , Receptors, Immunologic , CD47 Antigen/immunology , CD47 Antigen/metabolism , Animals , Receptors, Immunologic/metabolism , Mice , Macrophages/immunology , Macrophages/drug effects , Macrophages/metabolism , Disease Models, Animal , Myocardial Infarction/immunology , Immune Checkpoint Inhibitors/pharmacology , Antigens, Differentiation/immunology , Phagocytosis/drug effects , Biomimetics/methods , Humans , Efferocytosis
7.
Front Immunol ; 13: 899068, 2022.
Article in English | MEDLINE | ID: mdl-35795660

ABSTRACT

Immunotherapies targeting the "don't eat me" myeloid checkpoint constituted by CD47 SIRPα interaction have promising clinical potential but are limited by toxicities associated with the destruction of non-tumor cells. These dose-limiting toxicities demonstrate the need to highlight the mechanisms of anti-CD47-SIRPα therapy effects on non-tumor CD47-bearing cells. Given the increased incidence of lymphopenia in patients receiving anti-CD47 antibodies and the strong ADCC (antibody-dependent cellular cytotoxicity) effector function of polymorphonuclear cells (PMNs), we investigated the behavior of primary PMNs cocultured with primary T cells in the presence of anti-CD47 mAbs. PMNs killed T cells in a CD47-mAb-dependent manner and at a remarkably potent PMN to T cell ratio of 1:1. The observed cytotoxicity was produced by a novel combination of both trogocytosis and a strong respiratory burst induced by classical ADCC and CD47-SIRPα checkpoint blockade. The complex effect of the CD47 blocking mAb could be recapitulated by combining its individual mechanistic elements: ADCC, SIRPα blockade, and ROS induction. Although previous studies had concluded that disruption of SIRPα signaling in PMNs was limited to trogocytosis-specific cytotoxicity, our results suggest that SIRPα also tightly controls activation of NADPH oxidase, a function demonstrated during differentiation of immature PMNs but not so far in mature PMNs. Together, our results highlight the need to integrate PMNs in the development of molecules targeting the CD47-SIRPα immune checkpoint and to design agents able to enhance myeloid cell function while limiting adverse effects on healthy cells able to participate in the anti-tumor immune response.


Subject(s)
Antigens, Differentiation , CD47 Antigen , NADPH Oxidases , Neoplasms , Receptors, Immunologic , T-Lymphocytes , Trogocytosis , Antibodies, Monoclonal/pharmacology , Antibody-Dependent Cell Cytotoxicity , Antigens, Differentiation/immunology , CD47 Antigen/immunology , Enzyme Activation , Humans , Lymphocyte Count , NADPH Oxidases/immunology , NADPH Oxidases/metabolism , Neoplasms/immunology , Neoplasms/therapy , Receptors, Immunologic/immunology , T-Lymphocytes/immunology , Trogocytosis/immunology
8.
Eur J Immunol ; 52(1): 75-84, 2022 01.
Article in English | MEDLINE | ID: mdl-34561855

ABSTRACT

Treg therapy holds promise as a potentially curative approach to establish immune tolerance in transplantation and autoimmune disease. An outstanding question is whether therapeutic Tregs have the potential to transdifferentiate into effector T-cells and, thus, exacerbate rather than suppress immune responses. In mice, the transcription factor Helios is thought to promote Treg lineage stability in a range of inflammatory contexts. In humans, the role of Helios in Tregs is less clear, in part, due to the inability to enrich and study subsets of Helios-positive versus Helios-negative Tregs. Using an in vitro expansion system, we found that loss of high Helios expression and emergence of an intermediate Helios (Heliosmid )-expressing population correlated with Treg destabilization. We used CRISPR/Cas9 to genetically ablate Helios expression in human naive or memory Tregs and found that Helios-KO and unedited Tregs were equivalent in their suppressive function and stability in inflammation. Thus, high Helios expression is a marker, but not a driver, of human Treg stability in vitro. These data highlight the importance of monitoring Helios expression in therapeutic Treg manufacturing and provide new insight into the biological function of this transcription factor in human T-cells.


Subject(s)
Antigens, Differentiation/immunology , Gene Expression Regulation/immunology , Ikaros Transcription Factor/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Antigens, Differentiation/genetics , CRISPR-Cas Systems , Cell Line , Gene Knockout Techniques , Humans , Ikaros Transcription Factor/genetics , Mice
9.
Cancer Immunol Immunother ; 71(2): 473-489, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34247273

ABSTRACT

Cluster of differentiation 47 (CD47) is a transmembrane protein ubiquitously expressed on human cells but overexpressed on many different tumor cells. The interaction of CD47 with signal-regulatory protein alpha (SIRPα) triggers a "don't eat me" signal to the macrophage, inhibiting phagocytosis. Thus, overexpression of CD47 enables tumor cells to escape from immune surveillance via the blockade of phagocytic mechanisms. We report here the development and characterization of CC-90002, a humanized anti-CD47 antibody. CC-90002 is unique among previously reported anti-CD47 bivalent antibodies that it does not promote hemagglutination while maintaining high-affinity binding to CD47 and inhibition of the CD47-SIRPα interaction. Studies in a panel of hematological cancer cell lines showed concentration-dependent CC-90002-mediated phagocytosis in acute lymphoblastic leukemia, acute myeloid leukemia (AML), lenalidomide-resistant multiple myeloma (MM) cell lines and AML cells from patients. In vivo studies with MM cell line-derived xenograft models established in immunodeficient mice demonstrated significant dose-dependent antitumor activity of CC-90002. Treatment with CC-90002 significantly prolonged survival in an HL-60-disseminated AML model. Mechanistic studies confirmed the binding of CC-90002 to tumor cells and concomitant recruitment of F4-80 positive macrophages into the tumor and an increase in expression of select chemokines and cytokines of murine origin. Furthermore, the role of macrophages in the CC-90002-mediated antitumor activity was demonstrated by transient depletion of macrophages with liposome-clodronate treatment. In non-human primates, CC-90002 displayed acceptable pharmacokinetic properties and a favorable toxicity profile. These data demonstrate the potential activity of CC-90002 across hematological malignancies and provided basis for clinical studies CC-90002-ST-001 (NCT02367196) and CC-90002-AML-001 (NCT02641002).


Subject(s)
Antibodies, Monoclonal/pharmacology , Antigens, Differentiation/immunology , CD47 Antigen/immunology , Immunoglobulin Fc Fragments/immunology , Leukemia, Promyelocytic, Acute/drug therapy , Macrophages/immunology , Receptors, Immunologic/immunology , Animals , Antibodies, Monoclonal/immunology , Antigens, Differentiation/metabolism , Antineoplastic Agents, Immunological/immunology , Antineoplastic Agents, Immunological/pharmacology , Apoptosis , CD47 Antigen/metabolism , Cell Differentiation , Cell Proliferation , Female , Humans , Leukemia, Promyelocytic, Acute/immunology , Leukemia, Promyelocytic, Acute/metabolism , Leukemia, Promyelocytic, Acute/pathology , Mice , Mice, Inbred NOD , Mice, SCID , Phagocytosis , Prognosis , Receptors, Immunologic/metabolism , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
10.
mBio ; 12(6): e0211321, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34933450

ABSTRACT

The interferon-induced transmembrane proteins (IFITMs) are broad-spectrum antiviral proteins that inhibit the entry of enveloped viruses. We analyzed the effect of IFITMs on the gamma-2 herpesviruses Kaposi's sarcoma-associated herpesvirus (KSHV) and the closely related rhesus monkey rhadinovirus (RRV). We used CRISPR/Cas9-mediated gene knockout to generate A549 cells, human foreskin fibroblasts (HFF), and human umbilical vein endothelial cells (HUVEC) with combined IFITM1/2/3 knockout and identified IFITMs as cell-dependent inhibitors of KSHV and RRV infection in A549 cells and HFF but not HUVEC. IFITM overexpression revealed IFITM1 as the relevant IFITM that inhibits KSHV and RRV infection. Fluorescent KSHV particles did not pronouncedly colocalize with IFITM-positive compartments. However, we found that KSHV and RRV glycoprotein-mediated cell-cell fusion is enhanced upon IFITM1/2/3 knockout. Taken together, we identified IFITM1 as a cell-dependent restriction factor of KSHV and RRV that acts at the level of membrane fusion. Of note, our results indicate that recombinant IFITM overexpression may lead to results that are not representative for the situation at endogenous levels. Strikingly, we observed that the endotheliotropic KSHV circumvents IFITM-mediated restriction in HUVEC despite high IFITM expression, while influenza A virus (IAV) glycoprotein-driven entry into HUVEC is potently restricted by IFITMs even in the absence of interferon. Mechanistically, we found that KSHV colocalizes less with IFITM1 and IFITM2 in HUVEC than in A549 cells immediately after attachment, potentially contributing to the observed difference in restriction. IMPORTANCE IFITM proteins are the first line of defense against infection by many pathogens and may also have therapeutic importance, as they, among other effectors, mediate the antiviral effect of interferons. Neither their function against herpesviruses nor their mechanism of action is well understood. We report here that in some cells but not in, for example, primary umbilical vein endothelial cells, IFITM1 restricts KSHV and RRV and that, mechanistically, this is likely effected by reducing the fusogenicity of the cell membrane. Further, we demonstrate potent inhibition of IAV glycoprotein-driven infection of cells of extrapulmonary origin by high constitutive IFITM expression.


Subject(s)
Antigens, Differentiation/immunology , Herpesviridae Infections/immunology , Herpesvirus 8, Human/physiology , Membrane Proteins/immunology , RNA-Binding Proteins/immunology , Rhadinovirus/physiology , Animals , Antigens, Differentiation/genetics , Coinfection/genetics , Coinfection/immunology , Coinfection/virology , Fibroblasts/immunology , Fibroblasts/virology , Herpesviridae Infections/genetics , Herpesviridae Infections/virology , Herpesvirus 8, Human/genetics , Host-Pathogen Interactions , Human Umbilical Vein Endothelial Cells/immunology , Human Umbilical Vein Endothelial Cells/virology , Humans , Membrane Proteins/genetics , RNA-Binding Proteins/genetics , Rhadinovirus/genetics , Species Specificity , Virus Internalization , Virus Replication
11.
Front Immunol ; 12: 732530, 2021.
Article in English | MEDLINE | ID: mdl-34925315

ABSTRACT

A numerous number of positive and negative signals via various molecules modulate T-cell activation. Within the various transmembrane proteins, SIRPγ is of interest since it is not expressed in rodents. SIRPγ interaction with CD47 is reevaluated in this study. Indeed, we show that the anti-SIRPγ mAb clone LSB2.20 previously used by others has not been appropriately characterized. We reveal that the anti-SIRPα clone KWAR23 is a Pan anti-SIRP mAb which efficiently blocks SIRPα and SIRPγ interactions with CD47. We show that SIRPγ expression on T cells varies with their differentiation and while being expressed on Tregs, is not implicated in their suppressive functions. SIRPγ spatial reorganization at the immune synapse is independent of its interaction with CD47. In vitro SIRPα-γ/CD47 blockade with KWAR23 impairs IFN-γ secretion by chronically activated T cells. In vivo in a xeno-GvHD model in NSG mice, the SIRPγ/CD47 blockade with the KWAR23 significantly delays the onset of the xeno-GvHD and deeply impairs human chimerism. In conclusion, we have shown that T-cell interaction with CD47 is of importance notably in chronic stimulation.


Subject(s)
Antigens, Differentiation/metabolism , CD47 Antigen/metabolism , Graft vs Host Disease/immunology , Lymphocyte Activation/drug effects , Muromonab-CD3/administration & dosage , Receptors, Immunologic/metabolism , Signal Transduction/drug effects , T-Lymphocytes/immunology , Animals , Antigens, Differentiation/genetics , Antigens, Differentiation/immunology , Blood Donors , CD47 Antigen/genetics , Disease Models, Animal , Female , Gene Knock-In Techniques , Gene Knockout Techniques , Healthy Volunteers , Heterografts , Humans , Jurkat Cells , Lymphocyte Activation/genetics , Male , Mice , Muromonab-CD3/immunology , Receptors, Immunologic/genetics , Receptors, Immunologic/immunology , Signal Transduction/genetics
13.
Bull Cancer ; 108(10S): S96-S108, 2021 Oct.
Article in French | MEDLINE | ID: mdl-34920813

ABSTRACT

In solid tumors, adoptive T cell therapies based on ex vivo amplification of antitumor T cell are represented by three main complementary approaches : (i) tumor infiltrating lymphocytes (TILs) which are amplified in vitro before reinjection to the patient, (ii) chimeric antigen receptor (CAR) engineered T cells and (iii) T cell receptor (TCR) engineered T cells. Despite encouraging results, some obstacles remain, such as optimal target selection and tumor microenvironment. In this Review, we discuss pros and cons of these different therapeutic strategies that may open new perspectives in the treatment of solid tumors.


Subject(s)
Immunotherapy, Adoptive/methods , Lymphocytes, Tumor-Infiltrating/transplantation , Neoplasms/therapy , Receptors, Antigen, T-Cell , Receptors, Chimeric Antigen/immunology , Antigens, Differentiation/immunology , Antigens, Neoplasm/immunology , Cell Engineering , Humans , Lymphocytes, Tumor-Infiltrating/cytology , Lymphocytes, Tumor-Infiltrating/immunology , Neoplasms/immunology , Tumor Microenvironment/immunology
14.
J Mater Chem B ; 10(1): 64-77, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34846059

ABSTRACT

Many viral vectors, which are effective when administrated in situ, lack efficacy when delivered intravenously. The key reason for this is the rapid clearance of the viruses from the blood circulation via the immune system before they reach target sites. Therefore, avoiding their clearance by the immune system is essential. In this study, lentiviral vectors were tethered with the ectodomain of self-marker protein CD47 to suppress phagocytosis via interacting with SIRPα on the outer membrane of macrophage cells. CD47 ectodomain and core-streptavidin fusion gene (CD47ED-coreSA) was constructed into pET-30a(+) plasmid and transformed into Lemo21 (DE3) competent E. coli cells. The expressed CD47ED-coreSA chimeric protein was purified by cobalt-nitrilotriacetate affinity column and characterized by SDS-PAGE and western blot. The purified chimeric protein was anchored on biotinylated lentivirus via biotin-streptavidin binding. The CD47ED-capped lentiviruses encoding GFP were used to infect J774A.1 macrophage cells to assess the impact on phagocytosis. Our results showed that the overexpressed CD47ED-coreSA chimeric protein was purified and bound on the surface of biotinylated lentivirus which was confirmed via immunoblotting assay. The process to produce biotinylated lentivirus did not affect native viral infectivity. It was shown that the level of GFP expression in J774A.1 macrophages transduced with CD47ED-lentiviruses was threefold lower in comparison to control lentiviruses, indicating an antiphagocytic effect triggered by the interaction of CD47ED and SIRPα. Through the test of blocking antibodies against CD47ED and/or SIRPα, it was confirmed that the phagocytosis inhibition was mediated through the CD47ED-SIRPα axis signaling. In conclusion, surface immobilization of CD47ED on lentiviral vectors inhibits their phagocytosis by macrophages. The chimeric protein of CD47 ectodomain and core-streptavidin is effective in mediating the surface binding and endowing the lentiviral nanoparticles with the antiphagocytic property.


Subject(s)
Antigens, Differentiation/immunology , CD47 Antigen/immunology , Lentivirus/immunology , Receptors, Immunologic/immunology , Animals , Cell Line , Cells, Cultured , Humans , Materials Testing , Mice , Particle Size , Phagocytosis/immunology
15.
J Hematol Oncol ; 14(1): 155, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34579739

ABSTRACT

BACKGROUND: Acute myeloid leukaemia (AML) stem cells (LSCs) cause disease relapse. The CD47 "don't eat me signal" is upregulated on LSCs and contributes to immune evasion by inhibiting phagocytosis through interacting with myeloid-specific signal regulatory protein alpha (SIRPα). Activation of macrophages by blocking CD47 has been successful, but the ubiquitous expression of CD47 on healthy cells poses potential limitations for such therapies. In contrast, CD123 is a well-known LSC-specific surface marker utilized as a therapeutic target. Here, we report the development of SIRPα-αCD123 fusion antibodies that localize the disruption of CD47/SIRPα signalling to AML while specifically enhancing LSC clearance. METHODS: SIRPα-αCD123 antibodies were generated by fusing the extracellular domain of SIRPα to an αCD123 antibody. The binding properties of the antibodies were analysed by flow cytometry and surface plasmon resonance. The functional characteristics of the fusion antibodies were determined by antibody-dependent cellular phagocytosis and antibody-dependent cellular cytotoxicity assays using primary AML patient cells. Finally, an in vivo engraftment assay was utilized to assess LSC targeting. RESULTS: SIRPα-αCD123 fusion antibodies exhibited increased binding and preferential targeting of CD123+ CD47+ AML cells even in the presence of CD47+ healthy cells. Furthermore, SIRPα-αCD123 fusion antibodies confined disruption of the CD47-SIRPα axis locally to AML cells. In vitro experiments demonstrated that SIRPα-αCD123 antibodies greatly enhanced AML cell phagocytosis mediated by allogeneic and autologous macrophages. Moreover, SIRPα-αCD123 fusion antibodies efficiently targeted LSCs with in vivo engraftment potential. CONCLUSIONS: SIRPα-αCD123 antibodies combine local CD47 blockade with specific LSC targeting in a single molecule, minimize the risk of targeting healthy cells and efficiently eliminate AML LSCs. These results validate SIRPα-αCD123 antibodies as promising therapeutic interventions for AML.


Subject(s)
Antigens, Differentiation/immunology , Antineoplastic Agents, Immunological/therapeutic use , CD47 Antigen/immunology , Interleukin-3 Receptor alpha Subunit/immunology , Leukemia, Myeloid, Acute/drug therapy , Neoplastic Stem Cells/drug effects , Receptors, Immunologic/immunology , Adult , Aged , Aged, 80 and over , Cell Line, Tumor , Female , Humans , Leukemia, Myeloid, Acute/immunology , Male , Middle Aged , Neoplastic Stem Cells/immunology
16.
Nat Commun ; 12(1): 5218, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34471125

ABSTRACT

CD47 is the only 5-transmembrane (5-TM) spanning receptor of the immune system. Its extracellular domain (ECD) is a cell surface marker of self that binds SIRPα and inhibits macrophage phagocytosis, and cancer immuno-therapy approaches in clinical trials are focused on blocking CD47/SIRPα interaction. We present the crystal structure of full length CD47 bound to the function-blocking antibody B6H12. CD47 ECD is tethered to the TM domain via a six-residue peptide linker (114RVVSWF119) that forms an extended loop (SWF loop), with the fundamental role of inserting the side chains of W118 and F119 into the core of CD47 extracellular loop region (ECLR). Using hydrogen-deuterium exchange and molecular dynamics simulations we show that CD47's ECLR architecture, comprised of two extracellular loops and the SWF loop, creates a molecular environment stabilizing the ECD for presentation on the cell surface. These findings provide insights into CD47 immune recognition, signaling and therapeutic intervention.


Subject(s)
Biomarkers , CD47 Antigen/chemistry , CD47 Antigen/metabolism , Carrier Proteins/metabolism , Receptors, Immunologic/metabolism , Antibodies, Blocking/chemistry , Antibodies, Blocking/pharmacology , Antigens, Differentiation/immunology , Binding Sites , CD47 Antigen/drug effects , CD47 Antigen/genetics , Humans , Macrophages/metabolism , Models, Molecular , Phagocytosis/drug effects , Signal Transduction/drug effects
17.
Front Immunol ; 12: 703931, 2021.
Article in English | MEDLINE | ID: mdl-34394101

ABSTRACT

Tocilizumab, a humanized anti-IL-6 receptor monoclonal antibody, showed its therapeutic efficacy on neuromyelitis optica spectrum disorder (NMOSD). To assess the immunological effects of this drug on B cells, follicular T helper (Tfh) cells, and peripheral T helper (Tph) cells in patients with NMOSD, peripheral B cell and Tfh cell phenotypes were evaluated in 26 patients with NMOSD before and after tocilizumab treatment by nine-color flow cytometry, as well as the expression of costimulatory and co-inhibitory molecules on B cells. Results showed that the frequency of CD27+IgD- switched memory B cells, CD27-IgD- double-negative B cells, and CD27highCD38high antibody-secreting cells was increased in patients with NMOSD. Tocilizumab treatment led to a significant shift of B cells to naïve B cells from memory B cells after 3 months. Three markers on B cells associated with T-cell activation (i.e., CD86 CD69, and HLA-DR) were downregulated after tocilizumab treatment. The frequencies of total Tfh and Tph cells were decreased, whereas that of follicular regulatory T cells tended to increase. Intrinsic increased PD-L1 and PD-L2 expression was characteristic of B cells in patients with NMOSD. Tocilizumab selectively restored PD-L1 on B-cell subsets. These results provided evidence that tocilizumab enhanced B- and T-cell homoeostasis by regulating B-cell differentiation and inhibiting lymphocyte activation in patients with NMOSD.


Subject(s)
Antibodies, Monoclonal, Humanized/administration & dosage , Lymphocyte Activation/drug effects , Memory B Cells , Neuromyelitis Optica , T-Lymphocytes, Helper-Inducer , Adult , Antigens, Differentiation/blood , Antigens, Differentiation/immunology , Female , Humans , Male , Memory B Cells/immunology , Memory B Cells/metabolism , Middle Aged , Neuromyelitis Optica/blood , Neuromyelitis Optica/drug therapy , Neuromyelitis Optica/immunology , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism
18.
Front Immunol ; 12: 719077, 2021.
Article in English | MEDLINE | ID: mdl-34394127

ABSTRACT

The COVID-19 pandemic caused by the coronavirus SARS-CoV-2 is a major global public threat. Currently, a worldwide effort has been mounted to generate billions of effective SARS-CoV-2 vaccine doses to immunize the world's population at record speeds. However, there is still a demand for alternative effective vaccines that rapidly confer long-term protection and rely upon cost-effective, easily scaled-up manufacturing. Here, we present a Sindbis alphavirus vector (SV), transiently expressing the SARS-CoV-2 spike protein (SV.Spike), combined with the OX40 immunostimulatory antibody (αOX40) as a novel, highly effective vaccine approach. We show that SV.Spike plus αOX40 elicits long-lasting neutralizing antibodies and a vigorous T-cell response in mice. Protein binding, immunohistochemical, and cellular infection assays all show that vaccinated mice sera inhibits spike functions. Immunophenotyping, RNA Seq transcriptome profiles, and metabolic analysis indicate a reprogramming of T cells in vaccinated mice. Activated T cells were found to mobilize to lung tissue. Most importantly, SV.Spike plus αOX40 provided robust immune protection against infection with authentic coronavirus in transgenic mice expressing the human ACE2 receptor (hACE2-Tg). Finally, our immunization strategy induced strong effector memory response, potentiating protective immunity against re-exposure to SARS-CoV-2 spike protein. Our results show the potential of a new Sindbis virus-based vaccine platform to counteract waning immune response, which can be used as a new candidate to combat SARS-CoV-2. Given the T-cell responses elicited, our vaccine is likely to be effective against variants that are proving challenging, as well as serve as a platform to develop a broader spectrum pancoronavirus vaccine. Similarly, the vaccine approach is likely to be applicable to other pathogens.


Subject(s)
Antigens, Differentiation/immunology , COVID-19 Vaccines/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Sindbis Virus/immunology , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Cricetinae , Female , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Sindbis Virus/genetics , T-Lymphocytes/immunology , Vaccination
19.
Cancer Gene Ther ; 28(9): 960-970, 2021 09.
Article in English | MEDLINE | ID: mdl-34349240

ABSTRACT

Antigen-presenting cells (APCs), including macrophages and dendritic cells (DCs), play a crucial role in bridging innate and adaptive immunity; thereby, innate immune checkpoint blockade-based therapy is an attractive approach for the induction of sustainable tumor-specific immunity. The interaction between the cluster of differentiation 47 (CD47) on tumor and signal-regulatory protein alpha (SIRPα) on phagocytic cells inhibits the phagocytic function of APCs, acting as a "don't eat me" signal. Accordingly, CD47 blockade is known to increase tumor cell phagocytosis, eliciting tumor-specific CD8+ T-cell immunity. Here, we introduced a nature-derived nanocage to deliver SIRPγ for blocking of antiphagocytic signaling through binding to CD47 and combined it with prophagocytic stimuli using a metabolic reprogramming reagent for APCs (CpG-oligodeoxynucleotides). Upon delivering the clustered SIRPγ variant, the nanocage showed enhanced CD47 binding profiles on tumor cells, thereby promoting active engulfment by phagocytes. Moreover, combination with CpG potentiated the prophagocytic ability, leading to the establishment of antitumorigenic surroundings. This combination treatment could competently inhibit tumor growth by invigorating APCs and CD8+ T-cells in TMEs in B16F10 orthotopic tumor models, known to be resistant to CD47-targeting therapeutics. Collectively, enhanced delivery of an innate immune checkpoint antagonist with metabolic modulation stimuli of immune cells could be a promising strategy for arousing immune responses against cancer.


Subject(s)
Antigens, Differentiation/administration & dosage , Antigens, Differentiation/immunology , Ferritins/administration & dosage , Melanoma, Experimental/immunology , Melanoma, Experimental/therapy , Nanostructures/therapeutic use , Oxidoreductases/administration & dosage , Receptors, Immunologic/administration & dosage , Receptors, Immunologic/immunology , Animals , Antigens, Differentiation/chemistry , Antigens, Differentiation/genetics , Cell Line, Tumor , Disease Models, Animal , Ferritins/chemistry , Ferritins/genetics , Humans , Immunotherapy/methods , Male , Mice , Mice, Inbred C57BL , Nanostructures/chemistry , Neoplastic Cells, Circulating/immunology , Oxidoreductases/chemistry , Oxidoreductases/genetics , Phagocytosis/immunology , Receptors, Immunologic/chemistry , Receptors, Immunologic/genetics
20.
Anticancer Res ; 41(7): 3371-3387, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34230133

ABSTRACT

BACKGROUND/AIM: We compared the therapeutic efficacy of two recently developed experimental anticancer technologies: 1) in situ vaccination based on local immunotherapy with CpG oligonucleotides and anti-OX40 antibodies to activate antitumor immune response and 2) "Karanahan" technology [from the Sanskrit karana ('source') + han ('to kill')] based on the combined injection of cyclophosphamide and double-stranded DNA to eradicate cancer stem cells. MATERIALS AND METHODS: The anticancer approaches were compared on three types of mouse malignant tumors with different grades of immunogenicity: weakly immunogenic carcinoma Krebs-2, moderately immunogenic Lewis carcinoma, and highly immunogenic A20 В-cellular lymphoma. RESULTS: Our results indicated that in situ vaccination was the most effective against the highly immunogenic tumor А20. In addition, "Karanahan" demonstrated high efficiency in all types of tumors, regardless of their immunogenicity or size. CONCLUSION: "Karanahan" therapy showed higher efficacy relative to in situ vaccination with CpG oligonucleotides and anti-OX40 antibodies.


Subject(s)
Antineoplastic Agents/immunology , Immunotherapy/methods , Animals , Antibodies/immunology , Antigens, Differentiation/immunology , Antigens, Neoplasm/immunology , Carcinoma, Lewis Lung/immunology , Cell Line, Tumor , Cyclophosphamide/immunology , DNA/immunology , Female , Lymphoma/immunology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred CBA , Neoplastic Stem Cells/immunology , Oligodeoxyribonucleotides/immunology , Receptors, OX40/immunology , Vaccination/methods
SELECTION OF CITATIONS
SEARCH DETAIL