Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Commun Biol ; 4(1): 953, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34376792

ABSTRACT

Major Intrinsic Proteins (MIPs) are membrane channels that permeate water and other small solutes. Some trypanosomatid MIPs mediate the uptake of antiparasitic compounds, placing them as potential drug targets. However, a thorough study of the diversity of these channels is still missing. Here we place trypanosomatid channels in the sequence-function space of the large MIP superfamily through a sequence similarity network. This analysis exposes that trypanosomatid aquaporins integrate a distant cluster from the currently defined MIP families, here named aquaporin X (AQPX). Our phylogenetic analyses reveal that trypanosomatid MIPs distribute exclusively between aquaglyceroporin (GLP) and AQPX, being the AQPX family expanded in the Metakinetoplastina common ancestor before the origin of the parasitic order Trypanosomatida. Synteny analysis shows how African trypanosomes specifically lost AQPXs, whereas American trypanosomes specifically lost GLPs. AQPXs diverge from already described MIPs on crucial residues. Together, our results expose the diversity of trypanosomatid MIPs and will aid further functional, structural, and physiological research needed to face the potentiality of the AQPXs as gateways for trypanocidal drugs.


Subject(s)
Aquaglyceroporins/genetics , Aquaporins/genetics , Protozoan Proteins/genetics , Trypanosomatina/genetics , Amino Acid Sequence , Aquaglyceroporins/chemistry , Aquaporins/chemistry , Protozoan Proteins/chemistry , Sequence Alignment , Trypanosomatina/chemistry
2.
Sci Rep ; 9(1): 18, 2019 01 10.
Article in English | MEDLINE | ID: mdl-30631140

ABSTRACT

Amphibian oocytes have been extensively used for heterologous expression of membrane proteins for studying their biochemical and biophysical properties. So far, Xenopus laevis is the main amphibian used as oocytes source to express aquaglyceroporins in order to assess water and solutes permeability. However, this well-established amphibian model represents a threat to the biodiversity in many countries, especially in those from tropical regions. For that reason, the import of Xenopus laevis is subjected to strict control, which essentially has restricted its use in these regions. Therefore, a wider variety of expression systems for aquaglyceroporins is needed. Rhinella marina is extensively distributed in the Americas and its native range spreads from South America to Texas, US. Here we report the use of Rhinella marina oocytes as an alternative expression system for aquaglyceroporins and demonstrated its suitability to determine the permeability to water and non-ionic solutes. Rhinella marina oocytes were able to functionally express channels from human and the protozoan pathogen Trypanosoma brucei, two very distant organisms on the evolutionary scale. Permeability values obtained from Rhinella marina oocytes expressing members of aquaporin family were similar and comparable to those values reported in the literature for the same channels expressed in Xenopus laevis oocytes.


Subject(s)
Aquaglyceroporins/biosynthesis , Bufo marinus , Gene Expression , Oocytes , Recombinant Proteins/biosynthesis , Trypanosoma brucei brucei/enzymology , Animals , Aquaglyceroporins/genetics , Recombinant Proteins/genetics , Trypanosoma brucei brucei/genetics
3.
Plant Physiol Biochem ; 121: 38-47, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29080426

ABSTRACT

Aquaporins (AQPs) and aquaglyceroporins (AQGPs) are integral membrane proteins that mediate the transport of water and solutes, such as glycerol and urea, across membranes. AQP and AQGP genes represent a valuable tool for biotechnological improvement of plant tolerance to environmental stresses. We previously isolated a gene encoding for an aquaglyceroporin (ThAQGP), which was up-regulated in Trichoderma harzianum during interaction with the plant pathogen Fusarium solani. This gene was introduced into Nicotiana tabacum and plants were physiologically characterized. Under favorable growth conditions, transgenic progenies did not had differences in both germination and growth rates when compared to wild type. However, physiological responses under drought stress revealed that transgenic plants presented significantly higher transpiration rate, stomatal conductance, photosynthetic efficiency and faster turgor recovery than wild type. Quantitative RT-PCR analysis demonstrated the presence of ThAQGP transcripts in transgenic lines, showing the cause-effect relationship between the observed phenotype and the expression of the transgene. Our results underscore the high potential of T. harzianum as a source of genes with promising applications in transgenic plants tolerant to drought stress.


Subject(s)
Aquaglyceroporins , Disease Resistance , Fungal Proteins , Nicotiana , Plants, Genetically Modified , Trichoderma/genetics , Water/metabolism , Aquaglyceroporins/biosynthesis , Aquaglyceroporins/genetics , Dehydration , Fungal Proteins/biosynthesis , Fungal Proteins/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Nicotiana/genetics , Nicotiana/metabolism
4.
Gene ; 585(1): 119-127, 2016 Jul 01.
Article in English | MEDLINE | ID: mdl-27016299

ABSTRACT

Aquaporins are small integral membrane proteins that function as pore channels for the transport of water and other small solutes across the cell membrane. Considering the important roles of these proteins in several biological processes, including host-parasite interactions, there has been increased research on aquaporin proteins recently. The present study expands on the knowledge of aquaporin family genes in parasitic copepods, examining diversity and expression during the ontogeny of the sea louse Caligus rogercresseyi. Furthermore, aquaporin expression was evaluated during the early infestation of Atlantic (Salmo salar) and Coho salmon (Oncorhynchus kisutch). Deep transcriptome sequencing data revealed eight full length and two partial open reading frames belonging to the aquaporin protein family. Clustering analyses with identified Caligidae sequences revealed three major clades of aquaglyceroporins (Cr-Glp), classical aquaporin channels (Cr-Bib and Cr-PripL), and unorthodox aquaporins (Cr-Aqp12-like). In silico analysis revealed differential expression of aquaporin genes between developmental stages and between sexes. Male-biased expression of Cr-Glp1_v1 and female-biased expression of Cr-Bib were further confirmed in adults by RT-qPCR. Additionally, gene expressions were measured for seven aquaporins during the early infestation stage. The majority of aquaporin genes showed significant differential transcription expressions between sea lice parasitizing different hosts, with Atlantic salmon sea lice exhibiting overall reduced expression as compared to Coho salmon. The observed differences in the regulation of aquaporin genes may reveal osmoregulatory adaptations associated with nutrient ingestion and metabolite waste export, exposing complex host-parasite relationships in C. rogercresseyi.


Subject(s)
Aquaglyceroporins/genetics , Copepoda/genetics , Fish Diseases/parasitology , Oncorhynchus kisutch/parasitology , Salmo salar/parasitology , Amino Acid Sequence , Animals , Female , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Host-Parasite Interactions , Male , Molecular Sequence Data , Open Reading Frames/genetics , Transcription, Genetic/genetics , Transcriptome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL