Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.355
1.
Nat Commun ; 15(1): 4438, 2024 May 28.
Article En | MEDLINE | ID: mdl-38806462

Various microbes isolated from healthy plants are detrimental under laboratory conditions, indicating the existence of molecular mechanisms preventing disease in nature. Here, we demonstrated that application of sodium chloride (NaCl) in natural and gnotobiotic soil systems is sufficient to induce plant disease caused by an otherwise non-pathogenic root-derived Pseudomonas brassicacearum isolate (R401). Disease caused by combinatorial treatment of NaCl and R401 triggered extensive, root-specific transcriptional reprogramming that did not involve down-regulation of host innate immune genes, nor dampening of ROS-mediated immunity. Instead, we identified and structurally characterized the R401 lipopeptide brassicapeptin A as necessary and sufficient to promote disease on salt-treated plants. Brassicapeptin A production is salt-inducible, promotes root colonization and transitions R401 from being beneficial to being detrimental on salt-treated plants by disturbing host ion homeostasis, thereby bolstering susceptibility to osmolytes. We conclude that the interaction between a global change stressor and a single exometabolite from a member of the root microbiome promotes plant disease in complex soil systems.


Osmotic Pressure , Plant Diseases , Plant Roots , Pseudomonas , Plant Diseases/microbiology , Pseudomonas/metabolism , Pseudomonas/genetics , Plant Roots/microbiology , Plant Roots/metabolism , Sodium Chloride/pharmacology , Sodium Chloride/metabolism , Soil Microbiology , Lipopeptides/pharmacology , Lipopeptides/metabolism , Arabidopsis/microbiology , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis/drug effects
2.
Environ Int ; 187: 108732, 2024 May.
Article En | MEDLINE | ID: mdl-38728817

The spread of antibiotic resistance genes (ARGs) in agroecosystems through the application of animal manure is a global threat to human and environmental health. However, the adaptability and colonization ability of animal manure-derived bacteria determine the spread pathways of ARG in agroecosystems, which have rarely been studied. Here, we performed an invasion experiment by creating a synthetic communities (SynCom) with ten isolates from pig manure and followed its assembly during gnotobiotic cultivation of a soil-Arabidopsis thaliana (A. thaliana) system. We found that Firmicutes in the SynCom were efficiently filtered out in the rhizosphere, thereby limiting the entry of tetracycline resistance genes (TRGs) into the plant. However, Proteobacteria and Actinobacteria in the SynCom were able to establish in all compartments of the soil-plant system thereby spreading TRGs from manure to soil and plant. The presence of native soil bacteria prevented the establishment of manure-borne bacteria and effectively reduced the spread of TRGs. Achromobacter mucicolens and Pantoea septica were the main vectors for the entry of tetA into plants. Furthermore, doxycycline stress promoted the horizontal gene transfer (HGT) of the conjugative resistance plasmid RP4 within the SynCom in A. thaliana by upregulating the expression of HGT-related mRNAs. Therefore, this study provides evidence for the dissemination pathways of ARGs in agricultural systems through the invasion of manure-derived bacteria and HGT by conjugative resistance plasmids and demonstrates that the priority establishment of soil bacteria in the rhizosphere limited the spread of TRGs from pig manure to soil-plant systems.


Manure , Rhizosphere , Soil Microbiology , Tetracycline Resistance , Manure/microbiology , Animals , Swine , Tetracycline Resistance/genetics , Arabidopsis/microbiology , Arabidopsis/genetics , Bacteria/genetics , Gene Transfer, Horizontal , Anti-Bacterial Agents/pharmacology
3.
Planta ; 259(6): 153, 2024 May 14.
Article En | MEDLINE | ID: mdl-38744752

MAIN CONCLUSION: The study evaluates the potential of Spray-Induced Gene Silencing and Host-Induced Gene Silencing for sustainable crop protection against the broad-spectrum necrotrophic fungus Sclerotinia sclerotiorum. Sclerotinia sclerotiorum (Lib.) de Bary, an aggressive ascomycete fungus causes white rot or cottony rot on a broad range of crops including Brassica juncea. The lack of sustainable control measures has necessitated biotechnological interventions such as RNA interference (RNAi) for effective pathogen control. Here we adopted two RNAi-based strategies-Spray-Induced Gene Silencing (SIGS) and Host-Induced Gene Silencing (HIGS) to control S. sclerotiorum. SIGS was successful in controlling white rot on Nicotiana benthamiana and B. juncea by targeting SsPac1, a pH-responsive transcription factor and SsSmk1, a MAP kinase involved in fungal development and pathogenesis. Topical application of dsRNA targeting SsPac1 and SsSmk1 delayed infection initiation and progression on B. juncea. Further, altered hyphal morphology and reduced radial growth were also observed following dsRNA application. We also explored the impact of stable dsRNA expression in A. thaliana against S. sclerotiorum. In this report, we highlight the utility of RNAi as a biofungicide and a tool for preliminary functional genomics.


Ascomycota , Nicotiana , Plant Diseases , RNA Interference , Ascomycota/physiology , Ascomycota/genetics , Plant Diseases/microbiology , Plant Diseases/prevention & control , Nicotiana/genetics , Nicotiana/microbiology , Mustard Plant/genetics , Mustard Plant/microbiology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/microbiology , Transcription Factors/genetics , Transcription Factors/metabolism , RNA, Double-Stranded/genetics
4.
Mol Plant Pathol ; 25(5): e13464, 2024 May.
Article En | MEDLINE | ID: mdl-38695733

Many plant pathogens secrete effector proteins into the host plant to suppress host immunity and facilitate pathogen colonization. The necrotrophic pathogen Sclerotinia sclerotiorum causes severe plant diseases and results in enormous economic losses, in which secreted proteins play a crucial role. SsCVNH was previously reported as a secreted protein, and its expression is significantly upregulated at 3 h after inoculation on the host plant. Here, we further demonstrated that deletion of SsCVNH leads to attenuated virulence. Heterologous expression of SsCVNH in Arabidopsis enhanced pathogen infection, inhibited the host PAMP-triggered immunity (PTI) response and increased plant susceptibility to S. sclerotiorum. SsCVNH interacted with class III peroxidase AtPRX71, a positive regulator of innate immunity against plant pathogens. SsCVNH could also interact with other class III peroxidases, thus reducing peroxidase activity and suppressing plant immunity. Our results reveal a new infection strategy employed by S. sclerotiorum in which the fungus suppresses the function of class III peroxidases, the major component of PTI to promote its own infection.


Arabidopsis , Ascomycota , Fungal Proteins , Plant Diseases , Plant Immunity , Ascomycota/pathogenicity , Plant Diseases/microbiology , Virulence , Arabidopsis/microbiology , Arabidopsis/immunology , Plant Immunity/genetics , Fungal Proteins/metabolism , Fungal Proteins/genetics , Peroxidases/metabolism , Peroxidases/genetics
5.
J Plant Physiol ; 297: 154259, 2024 Jun.
Article En | MEDLINE | ID: mdl-38705079

Management of the plant microbiome may help support food needs for the human population. Bacteria influence plants through enhancing nutrient uptake, metabolism, photosynthesis, biomass production and/or reinforcing immunity. However, information into how these microbes behave under different growth conditions is missing. In this work, we tested how carbon supplements modulate the interaction of Pseudomonas chlororaphis with Arabidopsis thaliana. P. chlororaphis streaks strongly repressed primary root growth, lateral root formation and ultimately, biomass production. Noteworthy, increasing sucrose availability into the media from 0 to 2.4% restored plant growth and promoted lateral root formation in bacterized seedlings. This effect could not be observed by supplementing sucrose to leaves only, indicating that the interaction was strongly modulated by bacterial access to sugar. Total phenazine content decreased in the bacteria grown in high (2.4%) sucrose medium, and conversely, the expression of phzH and pslA genes were diminished by sugar supply. Pyocyanin antagonized the promoting effects of sucrose in lateral root formation and biomass production in inoculated seedlings, indicating that this virulence factor accounts for growth repression during the plant-bacterial interaction. Defence reporter transgenes PR-1::GUS and LOX2::GUS were induced in leaves, while the expression of the auxin-inducible, synthetic reporter gene DR5::GUS was enhanced in the roots of bacterized seedlings at low and high sucrose treatments, which suggests that growth/defence trade-offs in plants are critically modulated by P. chlororaphis. Collectively, our data suggest that bacterial carbon nutrition controls the outcome of the relation with plants.


Arabidopsis , Indoleacetic Acids , Phenazines , Plant Roots , Pseudomonas chlororaphis , Sucrose , Sucrose/metabolism , Arabidopsis/microbiology , Arabidopsis/metabolism , Arabidopsis/genetics , Plant Roots/microbiology , Plant Roots/metabolism , Pseudomonas chlororaphis/metabolism , Phenazines/metabolism , Indoleacetic Acids/metabolism
6.
Plant Cell Rep ; 43(6): 149, 2024 May 23.
Article En | MEDLINE | ID: mdl-38780624

KEY MESSAGE: The small-molecule glucosyltransferase loss-of-function mutant ugt76b1 exhibits both SID2- or NPR1-dependent and independent facets of enhanced plant immunity, whereupon FMO1 is required for the SID2 and NPR1 independence. The small-molecule glucosyltransferase UGT76B1 inactivates salicylic acid (SA), isoleucic acid (ILA), and N-hydroxypipecolic acid (NHP). ugt76b1 loss-of-function plants manifest an enhanced defense status. Thus, we were interested how UGT76B1 genetically integrates in defense pathways and whether all impacts depend on SA and NHP. We study the integration of UGT76B1 by transcriptome analyses of ugt76b1. The comparison of transcripts altered by the loss of UGT76B1 with public transcriptome data reveals both SA-responsive, ISOCHORISMATE SYNTHASE 1/SALICYLIC ACID INDUCTION DEFICIENT 2 (ICS1/SID2)- and NON EXPRESSOR OF PR GENES 1 (NPR1)-dependent, consistent with the role of UGT76B1 in glucosylating SA, and SA-non-responsive, SID2/NPR1-independent genes. We also discovered that UGT76B1 impacts on a group of genes showing non-SA-responsiveness and regulation by infections independent from SID2/NPR1. Enhanced resistance of ugt76b1 against Pseudomonas syringae is partially independent from SID2 and NPR1. In contrast, the ugt76b1-activated resistance is completely dependent on FMO1 encoding the NHP-synthesizing FLAVIN-DEPENDENT MONOOXYGENASE 1). Moreover, FMO1 ranks top among the ugt76b1-induced SID2- and NPR1-independent pathogen responsive genes, suggesting that FMO1 determines the SID2- and NPR1-independent effect of ugt76b1. Furthermore, the genetic study revealed that FMO1, ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1), SID2, and NPR1 are required for the SA-JA crosstalk and senescence development of ugt76b1, indicating that EDS1 and FMO1 have a similar effect like stress-induced SA biosynthesis (SID2) or the key SA signaling regulator NPR1. Thus, UGT76B1 influences both SID2/NPR1-dependent and independent plant immunity, and the SID2/NPR1 independence is relying on FMO1 and its product NHP, another substrate of UGT76B1.


Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Glucosyltransferases , Salicylic Acid , Salicylic Acid/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/microbiology , Arabidopsis/immunology , Arabidopsis/metabolism , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Plant Immunity/genetics , Pseudomonas syringae/pathogenicity , Pseudomonas syringae/physiology , Pipecolic Acids/metabolism , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Diseases/immunology , Intramolecular Transferases/genetics , Intramolecular Transferases/metabolism
7.
Microb Ecol ; 87(1): 76, 2024 May 27.
Article En | MEDLINE | ID: mdl-38801423

Modern crop production relies on the application of chemical pesticides and fertilizers causing environmental and economic challenges. In response, less environmentally impactful alternatives have emerged such as the use of beneficial microorganisms. These microorganisms, particularly plant growth-promoting bacteria (PGPB), have demonstrated their ability to enhance plant growth, protect against various stresses, and reduce the need for chemical inputs. Among the PGPB, Bacillus species have garnered attention due to their adaptability and commercial potential. Recent reports have highlighted Bacillus strains as biocontrol agents against phytopathogenic bacteria while concurrently promoting plant growth. We also examined Bacillus plant growth-promoting abilities in Arabidopsis thaliana seedlings. In this study, we assessed the potential of various Bacillus strains to control diverse phytopathogenic bacteria and inhibit quorum sensing using Chromobacterium violaceum as a model system. In conclusion, our results suggest that bacteria of the genus Bacillus hold significant potential for biotechnological applications. This includes developments aimed at reducing agrochemical use, promoting sustainable agriculture, and enhancing crop yield and protection.


Arabidopsis , Bacillus , Plant Diseases , Bacillus/physiology , Arabidopsis/microbiology , Arabidopsis/growth & development , Plant Diseases/prevention & control , Plant Diseases/microbiology , Quorum Sensing , Chromobacterium/physiology , Chromobacterium/growth & development , Biological Control Agents/pharmacology , Plant Development , Seedlings/microbiology , Seedlings/growth & development , Soil Microbiology
8.
Commun Biol ; 7(1): 644, 2024 May 27.
Article En | MEDLINE | ID: mdl-38802699

The post-translational modification of proteins by ubiquitin-like modifiers (UbLs), such as SUMO, ubiquitin, and Nedd8, regulates a vast array of cellular processes. Dedicated UbL deconjugating proteases families reverse these modifications. During bacterial infection, effector proteins, including deconjugating proteases, are released to disrupt host cell defenses and promote bacterial survival. NopD, an effector protein from rhizobia involved in legume nodule symbiosis, exhibits deSUMOylation activity and, unexpectedly, also deubiquitination and deNeddylation activities. Here, we present two crystal structures of Bradyrhizobium (sp. XS1150) NopD complexed with either Arabidopsis SUMO2 or ubiquitin at 1.50 Å and 1.94 Å resolution, respectively. Despite their low sequence similarity, SUMO and ubiquitin bind to a similar NopD interface, employing a unique loop insertion in the NopD sequence. In vitro binding and activity assays reveal specific residues that distinguish between deubiquitination and deSUMOylation. These unique multifaceted deconjugating activities against SUMO, ubiquitin, and Nedd8 exemplify an optimized bacterial protease that disrupts distinct UbL post-translational modifications during host cell infection.


Bacterial Proteins , Bradyrhizobium , Ubiquitin , Bradyrhizobium/metabolism , Bradyrhizobium/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Ubiquitin/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/chemistry , Arabidopsis/microbiology , Arabidopsis/metabolism , Small Ubiquitin-Related Modifier Proteins/metabolism , Crystallography, X-Ray , Protein Processing, Post-Translational , Ubiquitins/metabolism , Ubiquitins/genetics , Protein Binding
9.
Environ Int ; 186: 108655, 2024 Apr.
Article En | MEDLINE | ID: mdl-38626494

The rhizosphere is one of the key determinants of plant health and productivity. Mixtures of pesticides are commonly used in intensified agriculture. However, the combined mechanisms underlying their impacts on soil microbiota remain unknown. The present study revealed that the rhizosphere microbiota was more sensitive to azoxystrobin and oxytetracycline, two commonly used pesticides, than was the microbiota present in bulk soil. Moreover, the rhizosphere microbiota enhanced network complexity and stability and increased carbohydrate metabolism and xenobiotic biodegradation as well as the expression of metabolic genes involved in defence against pesticide stress. Co-exposure to azoxystrobin and oxytetracycline had antagonistic effects on Arabidopsis thaliana growth and soil microbial variation by recruiting organic-degrading bacteria and regulating ABC transporters to reduce pesticide uptake. Our study explored the composition and function of soil microorganisms through amplicon sequencing and metagenomic approaches, providing comprehensive insights into the synergistic effect of plants and rhizosphere microbiota on pesticides and contributing to our understanding of the ecological risks associated with pesticide use.


Arabidopsis , Microbiota , Oxytetracycline , Pyrimidines , Rhizosphere , Soil Microbiology , Strobilurins , Arabidopsis/microbiology , Arabidopsis/drug effects , Oxytetracycline/toxicity , Microbiota/drug effects , Soil Pollutants/toxicity , Pesticides/toxicity , Biodegradation, Environmental
10.
Curr Biol ; 34(10): 2049-2065.e6, 2024 05 20.
Article En | MEDLINE | ID: mdl-38677281

Plants rely on autophagy and membrane trafficking to tolerate stress, combat infections, and maintain cellular homeostasis. However, the molecular interplay between autophagy and membrane trafficking is poorly understood. Using an AI-assisted approach, we identified Rab3GAP-like (Rab3GAPL) as a key membrane trafficking node that controls plant autophagy negatively. Rab3GAPL suppresses autophagy by binding to ATG8, the core autophagy adaptor, and deactivating Rab8a, a small GTPase essential for autophagosome formation and defense-related secretion. Rab3GAPL reduces autophagic flux in three model plant species, suggesting that its negative regulatory role in autophagy is conserved in land plants. Beyond autophagy regulation, Rab3GAPL modulates focal immunity against the oomycete pathogen Phytophthora infestans by preventing defense-related secretion. Altogether, our results suggest that Rab3GAPL acts as a molecular rheostat to coordinate autophagic flux and defense-related secretion by restraining Rab8a-mediated trafficking. This unprecedented interplay between a RabGAP-Rab pair and ATG8 sheds new light on the intricate membrane transport mechanisms underlying plant autophagy and immunity.


Arabidopsis Proteins , Arabidopsis , Autophagy , GTPase-Activating Proteins , Plant Immunity , Autophagy/physiology , Arabidopsis/immunology , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis/microbiology , GTPase-Activating Proteins/metabolism , GTPase-Activating Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Autophagy-Related Protein 8 Family/metabolism , Autophagy-Related Protein 8 Family/genetics , Phytophthora infestans/physiology , Plant Diseases/microbiology , Plant Diseases/immunology , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics , Protein Transport
11.
Curr Microbiol ; 81(6): 157, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38658394

This manuscript reports the whole genome sequence of a conditionally pathogenic rhizobacterial strain, Pseudomonas putida AKMP7, which has been previously reported by us to be beneficial to Arabidopsis thaliana under well-watered conditions and pathogenic to the plant under water stress. As part of a study to understand this unique behavior, the whole genome sequence of this strain was analyzed. Based on the results, it was identified that the total length of the AKMP7 genome is 5,764,016 base pairs, and the total GC content of the genome is 62.93% (typical of P. putida). Using RAST annotation pipeline, it was identified that the genome has 5605 coding sequences, 80 repeat regions, 71 tRNA genes, and 22 rRNA genes. A total of 4487 functional proteins and 1118 hypothetical proteins were identified. Phylogenetic analysis has classified it as P. putida species, with a P value of 0.03. In order to identify close relatives of this strain, comparative genomics was performed with 30 other P. putida strains, taken from publicly available genome databases, using Average Nucleotide Identity (ANI) analysis. Whole genome comparison with these strains reveals that AKMP7 possesses Type-IV Secretion System (T4SS) with conjugative transfer functionality. Interestingly, the T4SS feature is absent in all the beneficial/harmless strains of P. putida that we analyzed. All the plant pathogenic bacteria that were analyzed had the T4SS feature in their genome, indicating its role in pathogenesis. This study aims to address important gaps in understanding the molecular mechanisms involved in the conditional/opportunistic pathogenesis of plant-associated, beneficial soil bacteria, using genomics approaches.


Genome, Bacterial , Phylogeny , Pseudomonas putida , Pseudomonas putida/genetics , Pseudomonas putida/classification , Base Composition , Arabidopsis/microbiology , Arabidopsis/genetics , Bacterial Proteins/genetics , Plant Diseases/microbiology , Whole Genome Sequencing , Sequence Analysis, DNA
12.
Microbiol Res ; 284: 127734, 2024 Jul.
Article En | MEDLINE | ID: mdl-38670037

The spread of livestock manure-borne antibiotic resistance genes (ARGs) into agroecosystems through manure application poses a potential threat to human health. However, there is still a knowledge gap concerning ARG dissemination in coalescing manure, soil and plant microbiomes. Here, we examined the fate of tetracycline resistance genes (TRGs) originating from pig manure microbiomes and spread in the soil-A thaliana system and explored the effects of microbial functions on TRGs spread at different interfaces. Our results indicate that the TRGs abundances in all microbiome continuum of the soil-A. thaliana system were significantly increased with the application of a living manure microbiome, although the addition of manure with both an active and inactive microbiome caused a shift in the microbial community composition. This was attributed to the increasing relative abundances of tetA, tetL, tetM, tetO, tetW and tolC in the system. The application of living manure with DOX residues resulted in the highest relative abundance of total TRGs (3.30×10-3 copies/16S rRNA gene copies) in the rhizosphere soil samples. Community coalescence of the manure and soil microbiomes increased the abundance of Firmicutes in the soil and root microbiome, which directly explains the increase in TRG abundance observed in these interfaces. In contrast, the leaf microbiome differed markedly from that of the remaining samples, indicating strong plant host filtering effects on Firmicutes and TRGs from pig manure. The random forest machine learning model revealed microbial functions and their significant positive correlation with TRG abundance in the microbiome continuum of the system. Our findings revealed that community coalescence is the main driver of TRG spread from manure to the soil and root microbiomes. Plant host filtering effects play a crucial role in allowing certain microbial groups to occupy ecological niches in the leaves, thereby limiting the establishment of manure-borne TRGs in aboveground plant tissues.


Manure , Microbiota , RNA, Ribosomal, 16S , Soil Microbiology , Tetracycline Resistance , Manure/microbiology , Animals , Microbiota/genetics , Swine , Tetracycline Resistance/genetics , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Arabidopsis/microbiology , Genes, Bacterial/genetics , Rhizosphere , Plant Roots/microbiology , Soil/chemistry , Tetracycline/pharmacology , Anti-Bacterial Agents/pharmacology , Plant Leaves/microbiology
13.
Plant Cell Rep ; 43(5): 130, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38652336

KEY MESSAGE: We identify three SDEs that inhibiting host defence from Candidatus Liberibacter asiaticus psy62, which is an important supplement to the pathogenesis of HLB. Candidatus Liberibacter asiaticus (CLas) is the main pathogen of citrus Huanglongbing (HLB). 38 new possible sec-dependent effectors (SDEs) of CLas psy62 were predicted by updated predictor SignalP 5.0, which 12 new SDEs were found using alkaline phosphate assay. Among them, SDE4310, SDE4435 and SDE4955 inhibited hypersensitivity reactions (HR) in Arabidopsis thaliana (Arabidopsis, At) and Nicotiana benthamiana leaves induced by pathogens, which lead to a decrease in cell death and reactive oxygen species (ROS) accumulation. And the expression levels of SDE4310, SDE4435, and SDE4955 genes elevated significantly in mild symptom citrus leaves. When SDE4310, SDE4435 and SDE4955 were overexpressed in Arabidopsis, HR pathway key genes pathogenesis-related 2 (PR2), PR5, nonexpressor of pathogenesis-related 1 (NPR1) and isochorismate synthase 1 (ICS1) expression significantly decreased and the growth of pathogen was greatly increased relative to control with Pst DC3000/AvrRps4 treatment. Our findings also indicated that SDE4310, SDE4435 and SDE4955 interacted with AtCAT3 (catalase 3) and AtGAPA (glyceraldehyde-3-phosphate dehydrogenase A). In conclusion, our results suggest that SDE4310, SDE4435 and SDE4955 are CLas psy62 effector proteins that may have redundant functions. They inhibit ROS burst and cell death by interacting with AtCAT3 and AtGAPA to negatively regulate host defense.


Arabidopsis , Bacterial Proteins , Nicotiana , Plant Diseases , Reactive Oxygen Species , Arabidopsis/microbiology , Arabidopsis/genetics , Arabidopsis/metabolism , Plant Diseases/microbiology , Nicotiana/genetics , Nicotiana/microbiology , Nicotiana/metabolism , Reactive Oxygen Species/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Plant Leaves/microbiology , Plant Leaves/metabolism , Plant Leaves/genetics , Citrus/microbiology , Citrus/genetics , Citrus/metabolism , Gene Expression Regulation, Plant , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Liberibacter/pathogenicity , Liberibacter/physiology , Host-Pathogen Interactions , Plants, Genetically Modified , Plant Proteins/metabolism , Plant Proteins/genetics , Rhizobiaceae/physiology , Disease Resistance/genetics
14.
Genes (Basel) ; 15(4)2024 Apr 16.
Article En | MEDLINE | ID: mdl-38674433

Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) is able to infect many economically important crops and thus causes substantial losses in the global agricultural economy. Pst DC3000 can be divided into virulent lines and avirulent lines. For instance, the pathogen effector avrRPM1 of avirulent line Pst-avrRpm1 (Pst DC3000 avrRpm1) can be recognized and detoxified by the plant. To further compare the pathogenicity mechanisms of virulent and avirulent Pst DC3000, a comprehensive analysis of the acetylome and succinylome in Arabidopsis thaliana was conducted following infection with virulent line Pst DC3000 and avirulent line Pst-avrRpm1. In this study, a total of 1625 acetylated proteins encompassing 3423 distinct acetylation sites were successfully identified. Additionally, 229 succinylated proteins with 527 unique succinylation sites were detected. A comparison of these modification profiles between plants infected with Pst DC3000 and Pst-avrRpm1 revealed significant differences. Specifically, modification sites demonstrated inconsistencies, with a variance of up to 10% compared to the control group. Moreover, lysine acetylation (Kac) and lysine succinylation (Ksu) displayed distinct preferences in their modification patterns. Lysine acetylation is observed to exhibit a tendency towards up-regulation in Arabidopsis infected with Pst-avrRpm1. Conversely, the disparity in the number of Ksu up-regulated and down-regulated sites was not as pronounced. Motif enrichment analysis disclosed that acetylation modification sequences are relatively conserved, and regions rich in polar acidic/basic and non-polar hydrophobic amino acids are hotspots for acetylation modifications. Functional enrichment analysis indicated that the differentially modified proteins are primarily enriched in the photosynthesis pathway, particularly in relation to light-capturing proteins. In conclusion, this study provides an insightful profile of the lysine acetylome and succinylome in A. thaliana infected with virulent and avirulent lines of Pst DC3000. Our findings revealed the potential impact of these post-translational modifications (PTMs) on the physiological functions of the host plant during pathogen infection. This study offers valuable insights into the complex interactions between plant pathogens and their hosts, laying the groundwork for future research on disease resistance and pathogenesis mechanisms.


Arabidopsis , Lysine , Plant Diseases , Proteome , Pseudomonas syringae , Acetylation , Arabidopsis/microbiology , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Bacterial Proteins/metabolism , Lysine/metabolism , Plant Diseases/microbiology , Plant Diseases/genetics , Protein Processing, Post-Translational , Proteome/metabolism , Proteomics , Pseudomonas syringae/pathogenicity , Pseudomonas syringae/metabolism , Pseudomonas syringae/genetics , Virulence/genetics
15.
Plant Sci ; 344: 112089, 2024 Jul.
Article En | MEDLINE | ID: mdl-38640973

Accurate nucleocytoplasmic transport of signal molecules is essential for plant growth and development. Multiple studies have confirmed that nucleocytoplasmic transport and receptors are involved in regulating plant disease resistance responses, however, little is known about the regulatory mechanism in plants. In this study, we showed that the mutant of the importin beta-like protein SAD2 exhibited a more susceptible phenotype than wild-type Col-0 after treatment with Pseudomonas syringae pv tomato DC3000 (Pst DC3000). Coimmunoprecipitation (Co-IP) and bimolecular fluorescence complementation (BiFC) experiments demonstrated that SAD2 interacts with the hypersensitive response (HR)-positive transcriptional regulator MYB30. Subcellular localization showed that MYB30 was not fully localized in the nucleus in sad2-5 mutants, and western-blot experiments further indicated that SAD2 was required for MYB30 nuclear trafficking during the pathogen infection process. A phenotypic test of pathogen inoculation demonstrated that MYB30 partially rescued the disease symptoms of sad2-5 caused by Pst DC3000, and that MYB30 worked downstream of SAD2 in plant pathogen defense. These results suggested that SAD2 might be involved in plant pathogen defense by mediating MYB30 nuclear trafficking. Taken together, our results revealed the important function of SAD2 in plant pathogen defense and enriched understanding of the mechanism of nucleocytoplasmic transport-mediated plant pathogen defense.


Arabidopsis Proteins , Arabidopsis , Plant Diseases , Pseudomonas syringae , Transcription Factors , Pseudomonas syringae/physiology , Arabidopsis/microbiology , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/immunology , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Plant Diseases/microbiology , Transcription Factors/metabolism , Transcription Factors/genetics , Disease Resistance/genetics , Cell Nucleus/metabolism , Gene Expression Regulation, Plant
16.
Int. microbiol ; 27(2): 337-347, Abr. 2024. ilus
Article En | IBECS | ID: ibc-232284

The objective of this study was to identify bacteria from the rhizosphere of the black saxaul (Haloxylon ammodendron) and test the possibility of using the bacteria for enhancement of drought and/or salt tolerance in the model plant, Arabidopsis thaliana. We collected rhizosphere and bulk soil samples from a natural habitat of H. ammodendron in Iran and identified 58 morphotypes of bacteria that were enriched in the rhizosphere. From this collection, we focused our further experiments on eight isolates. Microbiological analyses showed that these isolates have different levels of tolerance to heat, salt, and drought stresses, and showed different capabilities of auxin production and phosphorous solubilization. We first tested the effects of these bacteria on the salt tolerance of Arabidopsis on agar plate assays. The bacteria substantially influenced the root system architecture, but they were not effective in increasing salt tolerance significantly. Pot assays were then conducted to evaluate the effects of the bacteria on salt or drought tolerance of Arabidopsis on peat moss. Results showed that three of these bacteria (Pseudomonas spp. and Peribacillus sp.) effectively enhanced drought tolerance in Arabidopsis, so that while none of the mock-inoculated plants survived after 19 days of water withholding, the survival rate was 50–100% for the plants that were inoculated with these bacteria. The positive effects of the rhizobacteria on a phylogenetically-distant plant species imply that the desert rhizobacteria may be used to enhance abiotic stress in crops.(AU)


Humans , Male , Female , Microbiology , Arabidopsis/microbiology , Salt Tolerance , Chenopodiaceae , Bacteria
17.
Mol Plant Pathol ; 25(3): e13436, 2024 Mar.
Article En | MEDLINE | ID: mdl-38460112

While the response of Arabidopsis thaliana to drought, herbivory or fungal infection has been well-examined, the consequences of exposure to a series of such (a)biotic stresses are not well studied. This work reports on the genetic mechanisms underlying the Arabidopsis response to single osmotic stress, and to combinatorial stress, either fungal infection using Botrytis cinerea or herbivory using Pieris rapae caterpillars followed by an osmotic stress treatment. Several small-effect genetic loci associated with rosette dry weight (DW), rosette water content (WC), and the projected rosette leaf area in response to combinatorial stress were mapped using univariate and multi-environment genome-wide association approaches. A single-nucleotide polymorphism (SNP) associated with DROUGHT-INDUCED 19 (DI19) was identified by both approaches, supporting its potential involvement in the response to combinatorial stress. Several SNPs were found to be in linkage disequilibrium with known stress-responsive genes such as PEROXIDASE 34 (PRX34), BASIC LEUCINE ZIPPER 25 (bZIP25), RESISTANCE METHYLATED GENE 1 (RMG1) and WHITE RUST RESISTANCE 4 (WRR4). An antagonistic effect between biotic and osmotic stress was found for prx34 and arf4 mutants, which suggests PRX34 and ARF4 play an important role in the response to the combinatorial stress.


Arabidopsis Proteins , Arabidopsis , Mycoses , Genome-Wide Association Study , Arabidopsis/microbiology , Osmotic Pressure , Stress, Physiological/genetics , Transcription Factors/genetics , Arabidopsis Proteins/genetics
18.
Cell Rep ; 43(4): 113985, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38517890

Emerging evidence suggests a beneficial role of rhizobacteria in ameliorating plant disease resistance in an environment-friendly way. In this study, we characterize a rhizobacterium, Bacillus cereus NJ01, that enhances bacterial pathogen resistance in rice and Arabidopsis. Transcriptome analyses show that root inoculation of NJ01 induces the expression of salicylic acid (SA)- and abscisic acid (ABA)-related genes in Arabidopsis leaves. Genetic evidence showed that EDS1, PAD4, and WRKY18 are required for B. cereus NJ01-induced bacterial resistance. An EDS1-PAD4 complex interacts with WRKY18 and enhances its DNA binding activity. WRKY18 directly binds to the W box in the promoter region of the SA biosynthesis gene ICS1 and ABA biosynthesis genes NCED3 and NCED5 and contributes to the NJ01-induced bacterial resistance. Taken together, our findings indicate a role of the EDS1/PAD4-WRKY18 complex in rhizobacteria-induced disease resistance.


Abscisic Acid , Arabidopsis Proteins , Arabidopsis , Bacillus cereus , DNA-Binding Proteins , Plant Diseases , Salicylic Acid , Bacillus cereus/genetics , Abscisic Acid/metabolism , Arabidopsis/immunology , Arabidopsis/microbiology , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Plant Diseases/microbiology , Plant Diseases/immunology , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Salicylic Acid/metabolism , Gene Expression Regulation, Plant , Transcription Factors/metabolism , Transcription Factors/genetics , Oryza/microbiology , Oryza/immunology , Oryza/genetics , Disease Resistance/genetics , Disease Resistance/immunology , Plant Immunity
19.
Plant Cell ; 36(6): 2103-2116, 2024 May 29.
Article En | MEDLINE | ID: mdl-38445983

Bacterial pathogens deliver effectors into host cells to suppress immunity. How host cells target these effectors is critical in pathogen-host interactions. SUMOylation, an important type of posttranslational modification in eukaryotic cells, plays a critical role in immunity, but its effect on bacterial effectors remains unclear in plant cells. In this study, using bioinformatic and biochemical approaches, we found that at least 16 effectors from the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 are SUMOylated by the enzyme cascade from Arabidopsis thaliana. Mutation of SUMOylation sites on the effector HopB1 enhances its function in the induction of plant cell death via stability attenuation of a plant receptor kinase BRASSINOSTEROID INSENSITIVE 1 (BRI1)-ASSOCIATED RECEPTOR KINASE 1. By contrast, SUMOylation is essential for the function of another effector, HopG1, in the inhibition of mitochondria activity and jasmonic acid signaling. SUMOylation of both HopB1 and HopG1 is increased by heat treatment, and this modification modulates the functions of these 2 effectors in different ways in the regulation of plant survival rates, gene expression, and bacterial infection under high temperatures. Therefore, the current work on the SUMOylation of effectors in plant cells improves our understanding of the function of dynamic protein modifications in plant-pathogen interactions in response to environmental conditions.


Arabidopsis Proteins , Arabidopsis , Hot Temperature , Pseudomonas syringae , Sumoylation , Arabidopsis/microbiology , Arabidopsis/genetics , Arabidopsis/metabolism , Pseudomonas syringae/pathogenicity , Pseudomonas syringae/physiology , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Host-Pathogen Interactions , Plant Diseases/microbiology , Gene Expression Regulation, Plant , Oxylipins/metabolism , Plant Cells/metabolism , Plant Cells/microbiology , Cyclopentanes/metabolism , Signal Transduction , Cell Death
20.
Cell Host Microbe ; 32(4): 543-556.e6, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38479394

Plant roots are functionally heterogeneous in cellular architecture, transcriptome profile, metabolic state, and microbial immunity. We hypothesized that axial differentiation may also impact spatial colonization by root microbiota along the root axis. We developed two growth systems, ArtSoil and CD-Rhizotron, to grow and then dissect Arabidopsis thaliana roots into three segments. We demonstrate that distinct endospheric and rhizosphere bacterial communities colonize the segments, supporting the hypothesis of microbiota differentiation along the axis. Root metabolite profiling of each segment reveals differential metabolite enrichment and specificity. Bioinformatic analyses and GUS histochemistry indicate microbe-induced accumulation of SWEET2, 4, and 12 sugar uniporters. Profiling of root segments from sweet mutants shows altered spatial metabolic profiles and reorganization of endospheric root microbiota. This work reveals the interdependency between root metabolites and microbial colonization and the contribution of SWEETs to spatial diversity and stability of microbial ecosystem.


Arabidopsis Proteins , Arabidopsis , Microbiota , Arabidopsis/microbiology , Bacteria/metabolism , Rhizosphere , Sugars/metabolism , Plant Roots/microbiology , Monosaccharide Transport Proteins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism
...