Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.357
Filter
1.
An Acad Bras Cienc ; 96(3): e20230435, 2024.
Article in English | MEDLINE | ID: mdl-38985028

ABSTRACT

This study evaluated the oil content obtained from andiroba seeds by pressurized n-propane at different conditions of temperature (25, 35, and 45 °C) and pressure (40, 60, and 80 bar), and conventional extraction technique using n-hexane as the solvent. Kinetic extraction curves were fitted using Sovová's mathematical model. The chemical characterization of the oil was reported as well as the protein content in the extraction by-product. Pressurized extractions conducted at 25 °C provided the highest oil recovery (~45 wt%) from the seeds. The increase in pressure at 25 ºC favored obtaining oil with higher Stigmasterol contents, however, the Squalene content was higher in the oil obtained at 40 bar. The oils with the highest concentration phenolic compounds and antioxidant activity were obtained at 80 bar. Extraction with n-propane provided oils with higher levels of phenolic compounds, however, with antioxidant activity similar to conventional extraction. For all evaluated extractions, the product showed a predominance of oleic and palmitic acids, with similar values of oxidative stability. The extraction of the by-product with the highest soluble protein content was obtained under mild processing conditions (25 °C and 40 bar) with n-propane.


Subject(s)
Antioxidants , Plant Oils , Seeds , Seeds/chemistry , Antioxidants/analysis , Antioxidants/isolation & purification , Plant Oils/chemistry , Temperature , Pressure , Arecaceae/chemistry , Hexanes/chemistry
2.
Sci Data ; 11(1): 745, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982096

ABSTRACT

Black scorch disease (BSD), caused by the fungal pathogen Thielaviopsis punctulata (Tp) DSM102798, poses a significant threat to date palm cultivation in the United Arab Emirates (UAE). In this study, Chicago and Hi-C libraries were prepared as input for the Dovetail HiRise pipeline to scaffold the genome of Tp DSM102798. We generated an assembly with a total length of 28.23 Mb comprising 1,256 scaffolds, and the assembly had a contig N50 of 18.56 kb, L50 of three, and a BUSCO completeness score of 98.6% for 758 orthologous genes. Annotation of this assembly produced 7,169 genes and 3,501 Gene Ontology (GO) terms. Compared to five other Thielaviopsis genomes, Tp DSM102798 exhibited the highest continuity with a cumulative size of 27.598 Mb for the first seven scaffolds, surpassing the assemblies of all examined strains. These findings offer a foundation for targeted strategies that enhance date palm resistance against BSD, and foster more sustainable and resilient agricultural systems.


Subject(s)
Genome, Fungal , Molecular Sequence Annotation , Plant Diseases , Plant Diseases/microbiology , Plant Diseases/genetics , Arecaceae/genetics , Arecaceae/microbiology , United Arab Emirates
3.
Environ Sci Pollut Res Int ; 31(33): 45887-45912, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38980479

ABSTRACT

This study investigates the synthesize of activated carbon for carbon dioxide adsorption using palm kernel shell (PKS), a by-product of oil palm industry. The adsorbent synthesis involved a simple two-step carbonization method. Firstly, PKS was activated with potassium oxide (KOH), followed by functionalization with magnesium oxide (MgO). Surface analysis revealed that KOH activated PKS has resulted in a high specific surface area of 1086 m2/g compared to untreated PKS (435 m2/g). However, impregnation of MgO resulted in the reduction of surface area due to blockage of pores by MgO. Thermogravimetric analysis (TGA) demonstrated that PKS-based adsorbents exhibited minimal weight loss of less than 30% up to 500 °C, indicating their suitability for high-temperature applications. CO2 adsorption experiments revealed that PKS-AC-MgO has achieved a higher adsorption capacity of 155.35 mg/g compared to PKS-AC (149.63 mg/g) at 25 °C and 5 bars. The adsorption behaviour of PKS-AC-MgO was well fitted by both the Sips and Langmuir isotherms, suggesting a combination of both heterogeneous and homogeneous adsorption and indicating a chemical reaction between MgO and CO2. Thermodynamic analysis indicated a spontaneous and thermodynamically favourable process for CO2 capture by PKS-AC-MgO, with negative change in enthalpy (- 0.21 kJ/mol), positive change in entropy (2.44 kJ/mol), and negative change in Gibbs free energy (- 729.61 J/mol, - 790.79 J/mol, and - 851.98 J/mol) across tested temperature. Economic assessment revealed that the cost of PKS-AC-MgO is 21% lower than the current market price of commercial activated carbon, indicating its potential for industrial application. Environmental assessment shows a significant reduction in greenhouse gas emissions (381.9 tCO2) through the utilization of PKS-AC-MgO, underscoring its environmental benefits. In summary, the use of activated carbon produced from PKS and functionalised with MgO shows great potential for absorbing CO2. This aligns with the ideas of a circular economy and sustainable development.


Subject(s)
Arecaceae , Carbon Dioxide , Carbon Dioxide/chemistry , Adsorption , Arecaceae/chemistry , Carbon/chemistry , Magnesium Oxide/chemistry , Charcoal/chemistry , Palm Oil/chemistry
4.
Int J Mol Sci ; 25(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38891808

ABSTRACT

AP2/ERF transcription factor genes play an important role in regulating the responses of plants to various abiotic stresses, such as cold, drought, high salinity, and high temperature. However, less is known about the function of oil palm AP2/ERF genes. We previously obtained 172 AP2/ERF genes of oil palm and found that the expression of EgAP2.25 was significantly up-regulated under salinity, cold, or drought stress conditions. In the present study, the sequence characterization and expression analysis for EgAP2.25 were conducted, showing that it was transiently over-expressed in Nicotiana tabacum L. The results indicated that transgenic tobacco plants over-expressing EgAP2.25 could have a stronger tolerance to salinity stress than wild-type tobacco plants. Compared with wild-type plants, the over-expression lines showed a significantly higher germination rate, better plant growth, and less chlorophyll damage. In addition, the improved salinity tolerance of EgAP2.25 transgenic plants was mainly attributed to higher antioxidant enzyme activities, increased proline and soluble sugar content, reduced H2O2 production, and lower MDA accumulation. Furthermore, several stress-related marker genes, including NtSOD, NtPOD, NtCAT, NtERD10B, NtDREB2B, NtERD10C, and NtP5CS, were significantly up-regulated in EgAP2.25 transgenic tobacco plants subjected to salinity stress. Overall, over-expression of the EgAP2.25 gene significantly enhanced salinity stress tolerance in transgenic tobacco plants. This study lays a foundation for further exploration of the regulatory mechanism of the EgAP2.25 gene in conferring salinity tolerance in oil palm.


Subject(s)
Arecaceae , Gene Expression Regulation, Plant , Plant Proteins , Salt Tolerance , Arecaceae/genetics , Arecaceae/metabolism , Germination/genetics , Nicotiana/genetics , Nicotiana/physiology , Nicotiana/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Salt Stress/genetics , Salt Tolerance/genetics , Stress, Physiological/genetics
5.
Pak J Biol Sci ; 27(5): 256-267, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38840466

ABSTRACT

<b>Background and Objective:</b> The prioritisation of oil palm studies involves the exploration of novel bacterial isolates as possible agents for suppressing <i>Ganoderma boninense</i>. The objective of this study was to evaluate and characterise the potential of rhizospheric bacteria, obtained from the rhizosphere of oil palm plants, in terms of their ability to demonstrate anti-<i>Ganoderma </i>activity. <b>Materials and Methods:</b> The study began by employing a dual culture technique to select hostile bacteria. Qualitative detection was performed to assess the antifungal activity, as well as the synthesis of chitinase and glucanase, from certain isolates. The candidate strains were molecularly identified using 16S-rRNA ribosomal primers, specifically the 27F and 1492R primers. <b>Results:</b> The findings of the study indicated that the governmental plantation exhibited the highest ratio between diazotroph and indigenous bacterial populations in comparison to the other sites. Out of a pool of ninety bacterial isolates, a subset of twenty-one isolates demonstrated the ability to impede the development of <i>G. boninense</i>, as determined using a dual culture experiment. Twenty-one bacterial strains were found to exhibit antifungal activity. Nine possible bacteria were found based on the sequence analysis. These bacteria include <i>Burkholderia territorii</i> (RK2, RP2, RP3, RP5), <i>Burkholderia stagnalis</i> (RK3), <i>Burkholderia cenocepacia</i> (RP1), <i>Serratia marcescens</i> (RP13) and <i>Rhizobium multihospitium</i> (RU4). <b>Conclusion:</b> The findings of the study revealed that a significant proportion of the bacterial population exhibited the ability to perform nitrogen fixation, indole-3-acetic acid (IAA) production and phosphate solubilization. However, it is worth noting that <i>Rhizobium multihospitium</i> RU4 did not demonstrate the capacity for phosphate solubilization, while <i>B. territory</i> RK2 did not exhibit IAA production.


Subject(s)
Ganoderma , Rhizosphere , Ganoderma/metabolism , Ganoderma/growth & development , Biological Control Agents , Bioprospecting/methods , Soil Microbiology , Bacteria/metabolism , Bacteria/growth & development , Bacteria/genetics , Bacteria/isolation & purification , Arecaceae/microbiology , Plant Development , Palm Oil/metabolism , Antifungal Agents/metabolism , Antifungal Agents/pharmacology
6.
PLoS One ; 19(6): e0299312, 2024.
Article in English | MEDLINE | ID: mdl-38843202

ABSTRACT

This research presents a comprehensive study of sequential oxidative extraction (SOE) consisting of alkaline and acidic oxidation processes to extract nanocellulose from plant biomass. This proposed process is advantageous as its operation requires a minimum process with mild solvents, and yet successfully isolated high-quality nanofibrillated cellulose (NFC) from raw OPEFB. The SOE involved ammonium hydroxide (NH4OH, 2.6 M) and formic acid (HCOOH, 5.3 M) catalyzed by hydrogen peroxide (H2O2, 3.2 M). This approach was used to efficiently solubilize the lignin and hemicellulose from Oil Palm Empty Fruit Bunch (OPEFB) at the temperature of 100°C and 1 h extraction time, which managed to retain fibrous NFC. The extracted solid and liquor at each stage were studied extensively through physiochemical analysis. The finding indicated that approximately 75.3%dwb of hemicellulose, 68.9%dwb of lignin, and 42.0%dwb of extractive were solubilized in the first SOE cycle, while the second SOE cycle resulted in 92.3%dwb, 99.6%dwb and 99.8%dwb of solubilized hemicellulose, lignin, and extractive/ash, respectively. High-quality NFC (75.52%dwb) was obtained for the final extracted solid with 76.4% crystallinity, which is near the crystallinity of standard commercial NFC. The proposed process possesses an effective synergy in producing NFC from raw OPEFB with less cellulose degradation, and most of the degraded hemicellulose and lignin are solubilized in the liquor.


Subject(s)
Arecaceae , Cellulose , Fruit , Lignin , Oxidation-Reduction , Cellulose/chemistry , Fruit/chemistry , Arecaceae/chemistry , Lignin/chemistry , Nanofibers/chemistry , Palm Oil/chemistry , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Hydrogen Peroxide/chemistry
7.
PLoS One ; 19(6): e0303941, 2024.
Article in English | MEDLINE | ID: mdl-38838001

ABSTRACT

Areca palm velarivirus 1 (APV1) is one of the main pathogen causing yellow leaf disease, and leading to considerable losses in the Areca palm industry. The detection methods for APV1 are primarily based on phenotype determination and molecular techniques, such as polymerase chain reaction (PCR). However, a single PCR has limitations in accuracy and sensitivity. Therefore, in the present study, we established a dual RT-PCR APV1-detection system with enhanced accuracy and sensitivity using two pairs of specific primers, YLDV2-F/YLDV2-R and YLDV4-F/YLDV4-R. Moreover, two cDNA fragments covering different regions of the viral genome were simultaneously amplified, with PCR amplicon of 311 and 499 bp, respectively. The dual RT-PCR detection system successfully amplified the two target regions of the APV1, demonstrating high specificity and sensitivity and compensating for the limitations of single-primer detection methods. We tested 60 Areca palm samples from different geographical regions, highlighting its advantages in that the dual RT-PCR system efficiently and accurately detected APV1 in samples across diverse areas. The dual RT-PCR APV1 detection system provides a rapid, accurate, and sensitive method for detecting the virus and offers valuable technical support for research in preventing and managing yellow leaf diseases caused by APV1 in Areca palms. Moreover, the findings of this study can serve as a reference for establishing similar plants viral detection systems in the future.


Subject(s)
Plant Diseases , Reverse Transcriptase Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction/methods , Plant Diseases/virology , Arecaceae/virology , Sensitivity and Specificity , DNA Primers/genetics , RNA, Viral/genetics , RNA, Viral/analysis
8.
Appl Microbiol Biotechnol ; 108(1): 370, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38861018

ABSTRACT

Members of the genus Lysinibacillus attract attention for their mosquitocidal, bioremediation, and plant growth-promoting abilities. Despite this interest, comprehensive studies focusing on genomic traits governing plant growth and stress resilience in this genus using whole-genome sequencing are still scarce. Therefore, we sequenced and compared the genomes of three endophytic Lysinibacillus irui strains isolated from Canary Island date palms with the ex-type strain IRB4-01. Overall, the genomes of these strains consist of a circular chromosome with an average size of 4.6 Mb and a GC content of 37.2%. Comparative analysis identified conserved gene clusters within the core genome involved in iron acquisition, phosphate solubilization, indole-3-acetic acid biosynthesis, and volatile compounds. In addition, genome analysis revealed the presence of genes encoding carbohydrate-active enzymes, and proteins that confer resistance to oxidative, osmotic, and salinity stresses. Furthermore, pathways of putative novel bacteriocins were identified in all genomes. This illustrates possible common plant growth-promoting traits shared among all strains of L. irui. Our findings highlight a rich repertoire of genes associated with plant lifestyles, suggesting significant potential for developing inoculants to enhance plant growth and resilience. This study is the first to provide insights into the overall genomic signatures and mechanisms of plant growth promotion and biocontrol in the genus Lysinibacillus. KEY POINTS: • Pioneer study in elucidating plant growth promoting in L. irui through comparative genomics. • Genome mining identified biosynthetic pathways of putative novel bacteriocins. • Future research directions to develop L. irui-based biofertilizers for sustainable agriculture.


Subject(s)
Bacillaceae , Genome, Bacterial , Genomics , Bacillaceae/genetics , Bacillaceae/metabolism , Base Composition , Multigene Family , Arecaceae/microbiology , Plant Development , Whole Genome Sequencing , Bacteriocins/genetics , Bacteriocins/metabolism , Bacteriocins/biosynthesis , Phylogeny , Plant Growth Regulators/metabolism , Indoleacetic Acids/metabolism , Stress, Physiological
9.
Bioresour Technol ; 406: 130969, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38879052

ABSTRACT

Inorganic elements in palm empty fruit bunch (EFB) are problematic in boiler operation, causing slagging and fouling deposits. The first pilot-scale hydrothermal treatment (HTT) system was commenced in a palm oil mill to remove undesirable elements. Fuel properties, combustion behavior, and fouling deposition of HTT-EFB were investigated. Liquid temperatures and treatment times in the HTT system significantly altered EFB-fuel properties. At ≥ 60 °C, potassium removals of at least 78 % were achieved, generating EFB-fuel containing potassium below 0.5 %wt. Later, a series of EFB combustion experiments were conducted in a specially designed fixed-bed reactor to simulate the tube surface of industrial boilers. Fouling deposition from HTT-EFB combustion reduced to below half of untreated EFB at all HTT conditions and combustion temperatures studied. The deposit-to-fuel ratio of HTT-EFB combusted at 1,000 °C was 37.3 % lower than untreated EFB combusted at a typical EFB boiler at 800 °C. Results demonstrated great potential for HTT-EFB in industrial applications.


Subject(s)
Arecaceae , Fruit , Pilot Projects , Fruit/chemistry , Arecaceae/chemistry , Palm Oil/chemistry , Temperature , Water/chemistry , Bioreactors , Plant Oils/chemistry , Hot Temperature , Biofouling
10.
Plant Dis ; 108(7): 1982-1986, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38937876

ABSTRACT

Ganoderma boninense is a basidiomycete pathogen of African oil palm (Elaeis guineensis) and the causal agent of basal stem rot (BSR) disease, which is the most destructive fungal disease of oil palm in Southeast Asia. The disease is fatal for infected palms and can result in 50 to 80% losses in oil yields because of a reduction in productive life span and a yield decline of infected oil palms. In this study, G. boninense isolates collected from different locations and planting blocks with different palm ages were molecularly characterized using microsatellite genotyping. Results showed high pathogen genetic diversity (He = 0.67 to 0.74) among planting blocks and between oil palm estates. Two nearby planting blocks with similar planting ages (i.e., 1999 and 2001) had a similar percentage of BSR incidence (>20%) but showed distinct Ganoderma genetic structure as detected using STRUCTURE. Similar results were obtained from another trial site where planting blocks differing in planting age but located only less than 1 km apart showed a diverse genetic background. The pathogen genetic admixture of the oldest planting (>30% BSR incidence) differed significantly from the younger planting (1.8 to 2.8% BSR incidence, breeding trial block), suggesting that the host-pathogen genotype interaction may impact the Ganoderma genetic variation over time. The genetic structure of G. boninense, as revealed in this study, implies positive selection resulting from the pathogen genetic variation, host-pathogen interaction, and possible introductions of novel genetic variants (through spores) from adjacent plantings. These findings offer new insights into the genetic changes of G. boninense over time. The information is essential to design disease management strategies and breeding for BSR resistance in oil palm.


Subject(s)
Arecaceae , Ganoderma , Genetic Variation , Plant Diseases , Ganoderma/genetics , Arecaceae/microbiology , Plant Diseases/microbiology , Malaysia , Microsatellite Repeats/genetics , Genotype
11.
Environ Sci Pollut Res Int ; 31(31): 44272-44288, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38941052

ABSTRACT

One of the hottest research topics over the last decades was the valorization or/and recycling of agro-industrial wastes into different valuable liquid or solid products, which is considered a sustainable and low-cost approach. In this study, we developed zero-valent iron nanoparticles from Palm Petiole Extract (P-NZVI) using a green and straightforward approach. The as-synthesized P-NZVI was used to adsorb Cr(VI) in water. The physico-chemical characterizations of P-NZVI, including the particle size, crystalline structure, surface area, morphology, and functional groups, were investigated via several techniques such as UV-vis spectroscopy, SEM, TEM, XRD, FTIR, AFM, DLS, pHZPC measurement, and BET analysis. The adsorption performance of P-NZVI was studied under different operational parameters, including pollutant concentration, pH, temperature, and adsorbent mass. The adsorption rate was found to be 89.3% within 40 min, corresponding to the adsorption capacity of 44.47 mg/g under the following conditions: initial Cr(VI) concentration of 40 mg/L, pH 5, and a P-NZVI dosage of 1 g/L. It was found that the adsorption pattern follows the Langmuir and the pseudo-second-order kinetic models, indicating a combination of monolayer adsorption and chemisorption mechanisms. The thermodynamic study shows that the adsorption process is endothermic and spontaneous. The reusability of P-NZVI was carried out four times, showing a slight decrease from 89.3 to 87%. These findings highlight that P-NZVI's could be an effective green adsorbent for removing Cr(VI) or other types of toxic pollutants from water.


Subject(s)
Chromium , Iron , Metal Nanoparticles , Water Pollutants, Chemical , Water Pollutants, Chemical/chemistry , Iron/chemistry , Adsorption , Chromium/chemistry , Metal Nanoparticles/chemistry , Water Purification/methods , Arecaceae/chemistry , Kinetics , Green Chemistry Technology , Plant Extracts/chemistry
12.
J Plant Physiol ; 299: 154263, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38772323

ABSTRACT

The oil palm (Elaeis guineensis) is emerging as the world's most important and prolific oilseed crop, celebrated for its impressive oil yield. However, the molecular intricacies that govern lipid metabolism and fatty acid accumulation in oil palm fruits remain relatively underexplored. This study reveals a significant correlation between the expression of EgGRP2A, a transcription factor, and the expression of EgFATA in the oil palm. Yeast one-hybrid analysis and electrophoretic mobility shift assays (EMSA) reveal and confirm the binding interactions between EgGRP2A and the promoter region of EgFATA. Subsequent experiments in oil palm protoplasts show that transient overexpression of EgGRP2A leads to a marked upregulation of EgFATA expression. Conversely, downregulation of EgGRP2A in transgenic oil palm embryoids leads to a significant reduction in EgFATA expression. Metabolite profiling in the transgenic embryoids reveals a significant reduction in unsaturated fatty acids, particularly oleic acid. These findings promise profound insights into the regulatory orchestration of EgFATA and the synthesis of fatty acids, particularly oleic acid, in the oil palm. Furthermore, the results lay the foundation for future breeding and genetic improvement efforts aimed at increasing oleic acid content in oil palm varieties.


Subject(s)
Arecaceae , Gene Expression Regulation, Plant , Oleic Acid , Plant Proteins , Transcription Factors , Arecaceae/genetics , Arecaceae/metabolism , Oleic Acid/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Plants, Genetically Modified/genetics
13.
Food Funct ; 15(11): 5752-5784, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38753200

ABSTRACT

Brazil has a broad geographic biodiversity spread across its six different biomes. However, it has been suffering from the abusive exploitation of its resources, which poses a threat to the local fauna and flora. The Amazon and Atlantic Forest, for example, are birthplaces to rare and edible native species, such as bacaba (Oenocarpus bacaba, Arecaceae) and camu-camu (Myrciaria dubia, Myrtaceae), and cereja-do-Rio Grande (Eugenia involucrata, Myrtaceae) and grumixama (Eugenia brasiliensis, Myrtaceae), respectively. These plants produce fruits which are sources of macro and micronutrients, including sugars, dietary fibers, vitamins, minerals, and/or lipids. Nutritionally, their consumption have the ability to reach partially or totally the daily recommendations for adults of some nutrients. More recently, these fruits have also been exposed as interesting sources of minor bioactive compounds, such as carotenoids, terpenes, and/or polyphenols, the latter which include anthocyanins, phenolic acids, and tannins. Particularly, bacaba stands out for being a rich source of polyunsaturated fatty acids (around 22%, dry weight) and dietary fibers (6.5-21%, dry weight); camu-camu has very high contents of vitamin C (up to 5000 mg per 100 g of pulp, dry basis); and cereja-do-Rio-Grande and grumixama are abundant sources of anthocyanins. Although they are still underexplored, several in vitro and in vivo studies with different parts of the fruits, including the peel, seed, and pulp, indicate their health potential through anti-oxidative, anti-obesity, antihyperglycemic, antidyslipidemic, antimicrobial, and/or anticancer effects. All things considered, the focus of this research was to highlight the bioactive potential and health impact of native fruits from the Amazon and Atlantic Forest biomes.


Subject(s)
Arecaceae , Forests , Fruit , Myrtaceae , Fruit/chemistry , Brazil , Humans , Myrtaceae/chemistry , Arecaceae/chemistry , Eugenia/chemistry , Phytochemicals/analysis , Antioxidants/analysis , Antioxidants/pharmacology , Plant Extracts/chemistry
14.
Sci Rep ; 14(1): 10520, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38714765

ABSTRACT

The hemibiotrophic Basidiomycete pathogen Ganoderma boninense (Gb) is the dominant causal agent of oil palm basal stem rot disease. Here, we report a complete chromosomal genome map of Gb using a combination of short-read Illumina and long-read Pacific Biosciences (PacBio) sequencing platforms combined with chromatin conformation capture data from the Chicago and Hi-C platforms. The genome was 55.87 Mb in length and assembled to a high contiguity (N50: 304.34 kb) of 12 chromosomes built from 112 scaffolds, with a total of only 4.34 Mb (~ 7.77%) remaining unplaced. The final assemblies were evaluated for completeness of the genome by using Benchmarking Universal Single Copy Orthologs (BUSCO) v4.1.4, and based on 4464 total BUSCO polyporales group searches, the assemblies yielded 4264 (95.52%) of the conserved orthologs as complete and only a few fragmented BUSCO of 42 (0.94%) as well as a missing BUSCO of 158 (3.53%). Genome annotation predicted a total of 21,074 coding genes, with a GC content ratio of 59.2%. The genome features were analyzed with different databases, which revealed 2471 Gene Ontology/GO (11.72%), 5418 KEGG (Kyoto Encyclopedia of Genes and Genomes) Orthologous/KO (25.71%), 13,913 Cluster of Orthologous Groups of proteins/COG (66.02%), 60 ABC transporter (0.28%), 1049 Carbohydrate-Active Enzymes/CAZy (4.98%), 4005 pathogen-host interactions/PHI (19%), and 515 fungal transcription factor/FTFD (2.44%) genes. The results obtained in this study provide deep insight for further studies in the future.


Subject(s)
Arecaceae , Ganoderma , Genome, Fungal , Plant Diseases , Whole Genome Sequencing , Ganoderma/genetics , Whole Genome Sequencing/methods , Plant Diseases/microbiology , Arecaceae/microbiology , Arecaceae/genetics , Molecular Sequence Annotation
15.
J Ethnopharmacol ; 331: 118283, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38734393

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Syagrus coronata, a palm tree found in northeastern Brazil, popularly known as licuri, has socioeconomic importance for the production of vegetable oil rich in fatty acids with nutritional and pharmacological effects. Licuri oil is used in traditional medicine to treat inflammation, wound healing, mycosis, back discomfort, eye irritation, and other conditions. AIM OF THE STUDY: The study aimed to evaluate the antinociceptive, anti-inflammatory, and antipyretic effects of treatment with Syagrus coronata fixed oil (ScFO), as well as to determine the safety of use in mice. MATERIALS AND METHODS: Initially, the chemical characterization was performed by gas chromatography-mass spectrometry. Acute single-dose oral toxicity was evaluated in mice at a dose of 2000 mg/kg. Antinociceptive activity was evaluated through abdominal writhing, formalin, and tail dipping tests, and the anti-inflammatory potential was evaluated through the model of acute inflammation of ear edema, peritonitis, and fever at concentrations of 25, 50, and 100 mg/kg from ScFO. RESULTS: In the chemical analysis of ScFO, lauric (43.64%), caprylic (11.7%), and capric (7.2%) acids were detected as major. No mortality or behavioral abnormalities in the mice were evidenced over the 14 days of observation in the acute toxicity test. ScFO treatment decreased abdominal writhing by 27.07, 28.23, and 51.78% at 25, 50, and 100 mg/kg. ScFO demonstrated central and peripheral action in the formalin test, possibly via opioidergic and muscarinic systems. In the tail dipping test, ScFO showed action from the first hour after treatment at all concentrations. ScFO (100 mg/kg) reduced ear edema by 63.76% and leukocyte and neutrophil migration and IL-1ß and TNF-α production in the peritonitis test. CONCLUSION: Mice treated with ScFO had a reduction in fever after 60 min at all concentrations regardless of dose. Therefore, the fixed oil of S. coronata has the potential for the development of new pharmaceutical formulations for the treatment of pain, inflammation, and fever.


Subject(s)
Analgesics , Anti-Inflammatory Agents , Edema , Plant Oils , Animals , Analgesics/pharmacology , Analgesics/isolation & purification , Analgesics/toxicity , Mice , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification , Plant Oils/pharmacology , Male , Edema/drug therapy , Edema/chemically induced , Pain/drug therapy , Peritonitis/drug therapy , Antipyretics/pharmacology , Arecaceae/chemistry , Female , Inflammation/drug therapy , Inflammation/chemically induced , Fever/drug therapy , Fever/chemically induced , Administration, Oral , Disease Models, Animal
16.
Int J Biol Macromol ; 269(Pt 1): 132045, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38710254

ABSTRACT

Escalating petroleum depletion and environmental crises linked to conventional plastics have fueled interest in eco-friendly alternatives. Natural fibres and biopolymers are garnering increasing attention due to their sustainability. The sago palm (Metroxylon sagu), a tropical tree, holds potential for such materials, with cellulose-rich fibres (42.4-44.12 %) showcasing strong mechanics. Extracted sago palm starch can be blended, reinforced, or plasticised for improved traits. However, a comprehensive review of sago palm fibres, starch, and biocomposites is notably absent. This paper fills this void, meticulously assessing recent advancements in sago palm fibre, cellulose and starch properties, and their eco-friendly composite fabrication. Moreover, it uncovers the latent prospects of sago palm fibres and biopolymers across industries like automotive, packaging, and bioenergy. This review presents a crucial resource for envisaging and realising sustainable materials.


Subject(s)
Cellulose , Biopolymers/chemistry , Cellulose/chemistry , Arecaceae/chemistry , Starch/chemistry , Biocompatible Materials/chemistry
17.
Insect Biochem Mol Biol ; 169: 104129, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704126

ABSTRACT

The Asian palm weevil, Rhynchophorus ferrugineus, is a tremendously important agricultural pest primarily adapted to palm trees and causes severe destruction, threatening sustainable palm cultivation worldwide. The host plant selection of this weevil is mainly attributed to the functional specialization of odorant receptors (ORs) that detect palm-derived volatiles. Yet, ligands are known for only two ORs of R. ferrugineus, and we still lack information on the mechanisms of palm tree detection. This study identified a highly expressed antennal R. ferrugineus OR, RferOR2, thanks to newly generated transcriptomic data. The phylogenetic analysis revealed that RferOR2 belongs to the major coleopteran OR group 2A and is closely related to a sister clade containing an R. ferrugineus OR (RferOR41) tuned to the non-host plant volatile and antagonist, α-pinene. Functional characterization of RferOR2 via heterologous expression in Drosophila olfactory neurons revealed that this receptor is tuned to several ecologically relevant palm-emitted odors, most notably ethyl and methyl ester compounds, but not to any of the pheromone compounds tested, including the R. ferrugineus aggregation pheromone. We did not evidence any differential expression of RferOR2 in the antennae of both sexes, suggesting males and females detect these compounds equally. Next, we used the newly identified RferOR2 ligands to demonstrate that including synthetic palm ester volatiles as single compounds and in combinations in pheromone-based mass trapping has a synergistic attractiveness effect to R. ferrugineus aggregation pheromone, resulting in significantly increased weevil catches. Our study identified a key OR from a palm weevil species tuned to several ecologically relevant palm volatiles and represents a significant step forward in understanding the chemosensory mechanisms of host detection in palm weevils. Our study also defines RferOR2 as an essential model for exploring the molecular basis of host detection in other palm weevil species. Finally, our work showed that insect OR deorphanization could aid in identifying novel behaviorally active volatiles that can interfere with weevil host-searching behavior in sustainable pest management applications.


Subject(s)
Receptors, Odorant , Weevils , Animals , Weevils/metabolism , Weevils/genetics , Receptors, Odorant/metabolism , Receptors, Odorant/genetics , Receptors, Odorant/chemistry , Volatile Organic Compounds/metabolism , Male , Phylogeny , Female , Arecaceae/metabolism , Insect Proteins/metabolism , Insect Proteins/genetics , Insect Proteins/chemistry , Arthropod Antennae/metabolism , Esters/metabolism
18.
Plant Cell Rep ; 43(5): 128, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652306

ABSTRACT

KEY MESSAGE: GWAS identified six loci at 25 kb downstream of WAK2, a crucial gene for cell wall and callus formation, enabling development of a SNP marker for enhanced callus induction potential. Efficient callus induction is vital for successful oil palm tissue culture, yet identifying genomic loci and markers for early detection of genotypes with high potential of callus induction remains unclear. In this study, immature male inflorescences from 198 oil palm accessions (dura, tenera and pisifera) were used as explants for tissue culture. Callus induction rates were collected at one-, two- and three-months after inoculation (C1, C2 and C3) as phenotypes. Resequencing generated 11,475,258 high quality single nucleotide polymorphisms (SNPs) as genotypes. GWAS was then performed, and correlation analysis revealed a positive association of C1 with both C2 (R = 0.81) and C3 (R = 0.50), indicating that C1 could be used as the major phenotype for callus induction rate. Therefore, only significant SNPs (P ≤ 0.05) in C1 were identified to develop markers for screening individuals with high potential of callus induction. Among 21 significant SNPs in C1, LD block analysis revealed six SNPs on chromosome 12 (Chr12) potentially linked to callus formation. Subsequently, 13 SNP markers were identified from these loci and electrophoresis results showed that marker C-12 at locus Chr12_12704856 can be used effectively to distinguish the GG allele, which showed the highest probability (69%) of callus induction. Furthermore, a rapid SNP variant detection method without electrophoresis was established via qPCR-based melting curve analysis. Our findings facilitated marker-assisted selection for specific palms with high potential of callus induction using immature male inflorescence as explant, aiding ortet palm selection in oil palm tissue culture.


Subject(s)
Arecaceae , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Polymorphism, Single Nucleotide/genetics , Arecaceae/genetics , Tissue Culture Techniques/methods , Phenotype , Genotype , Genetic Loci/genetics , Linkage Disequilibrium/genetics , Quantitative Trait Loci/genetics
19.
Ann Bot ; 134(2): 263-282, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38687211

ABSTRACT

BACKGROUND AND AIMS: Palm fossils are often used as evidence for warm and wet palaeoenvironments, reflecting the affinities of most modern palms. However, several extant palm lineages tolerate cool and/or arid climates, making a clear understanding of the taxonomic composition of ancient palm communities important for reliable palaeoenvironmental inference. However, taxonomically identifiable palm fossils are rare and often confined to specific facies. Although the resolution of taxonomic information they provide remains unclear, phytoliths (microscopic silica bodies) provide a possible solution because of their high preservation potential under conditions where other plant fossils are scarce. We thus evaluate the taxonomic and palaeoenvironmental utility of palm phytoliths. METHODS: We quantified phytolith morphology of 97 modern palm and other monocot species. Using this dataset, we tested the ability of five common discriminant methods to identify nine major palm clades. We then compiled a dataset of species' climate preferences and tested if they were correlated with phytolith morphology using a phylogenetic comparative approach. Finally, we reconstructed palm communities and palaeoenvironmental conditions at six fossil sites. KEY RESULTS: Best-performing models correctly identified phytoliths to their clade of origin only 59 % of the time. Although palms were generally distinguished from non-palms, few palm clades were highly distinct, and phytolith morphology was weakly correlated with species' environmental preferences. Reconstructions at all fossil sites suggested that palm communities were dominated by Trachycarpeae and Areceae, with warm, equable climates and high, potentially seasonal rainfall. However, fossil site reconstructions had high uncertainty and often conflicted with other climate proxies. CONCLUSIONS: While phytolith morphology provides some distinction among palm clades, caution is warranted. Unlike prior spatially restricted studies, our geographically and phylogenetically broad study indicates phytolith morphology may not reliably differentiate most palm taxa in deep time. Nevertheless, it reveals distinct clades, including some likely to be palaeoenvironmentally informative.


Subject(s)
Arecaceae , Biological Evolution , Fossils , Phylogeny , Arecaceae/anatomy & histology , Arecaceae/physiology , Fossils/anatomy & histology , Climate
20.
Braz J Microbiol ; 55(2): 1179-1187, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38671219

ABSTRACT

The hemicellulosic fraction of lignocellulosic biomass is a very important material, due to the significant concentration of pentoses present in its composition and that can be used sustainably in biotechnological processes such as the production of fumaric acid. Research efforts are currently being promoted for the proper disposal and valorization of empty fruit bunches (EFB) from oil palm. In this work, seventeen Rhizopus species were evaluated in a fermentation medium with EFB hydrolyzate, without detoxification, as a carbon source for fumaric acid production. Rhizopus circicans 1475 and Rhizopus 3271 achieved productions of 5.65 g.L-1 and 5.25 g.L-1 of fumaric acid at 30 °C, 120 rpm for 96 h, respectively. The percentage of consumed sugars, mainly pentoses, was 24.88% and 34.02% for R. circicans 1475 and R 3271, respectively. Soy peptone and ammonium sulfate were evaluated as nitrogen sources, where soy peptone stimulated the formation of biomass pellets while ammonium sulfate produced mycelia and clamps.


Subject(s)
Fermentation , Fumarates , Rhizopus , Rhizopus/metabolism , Fumarates/metabolism , Culture Media/chemistry , Culture Media/metabolism , Biomass , Fruit/microbiology , Fruit/chemistry , Fruit/metabolism , Hydrolysis , Palm Oil/metabolism , Palm Oil/chemistry , Arecaceae/metabolism , Arecaceae/chemistry , Arecaceae/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL