Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.938
Filter
1.
Chem Biol Drug Des ; 104(2): e14598, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39090783

ABSTRACT

Acne caused by inflammation of hair follicles and sebaceous glands is a common chronic skin disease. Arctigenin (ATG) is an extract of Arctium lappa L., which has significant anti-inflammatory effects. However, the effect and mechanism of ATG in cutaneous inflammation mediated by Cutibacterium acnes (C. acnes) has not been fully evaluated. The purpose of this study was to explore the effect and potential mechanism of ATG in the treatment of acne through network pharmacology and experimental confirmation. An acne model was established by injected live C. acnes into living mice and treated with ATG. Our data showed that ATG effectively improved acne induced by live C. acnes, which was confirmed by determining ear swelling rate, estradiol concentration and hematoxylin and eosin (H&E) staining. In addition, ATG inhibited the NLRP3 inflammasome signaling pathway in mice ear tissues and reduced the secretion of pro-inflammatory cytokines IL-1ß to relieve inflammation. The results of network pharmacology and molecular docking confirmed that ATG can regulate 17ß-Estradiol (E2) levels through targeted to CYP19A1, and finally inhibited skin inflammation. Taken together, our results confirmed that ATG regulated E2 secretion by targeting CYP19A1, thereby inhibiting the NLRP3 inflammasome signaling pathway and improving inflammation levels in acne mice. This study provides a basis for the feasibility of ATG in treating acne in clinical practice.


Subject(s)
Acne Vulgaris , Aromatase , Furans , Lignans , Molecular Docking Simulation , Network Pharmacology , Animals , Furans/chemistry , Furans/pharmacology , Mice , Lignans/pharmacology , Lignans/chemistry , Lignans/therapeutic use , Acne Vulgaris/drug therapy , Acne Vulgaris/microbiology , Aromatase/metabolism , Aromatase/chemistry , Signal Transduction/drug effects , Skin/pathology , Skin/drug effects , Skin/metabolism , Inflammation/drug therapy , Inflammation/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , Inflammasomes/metabolism , Humans , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/therapeutic use , Propionibacterium acnes/drug effects , Interleukin-1beta/metabolism , Disease Models, Animal
2.
Bioorg Chem ; 150: 107601, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38991489

ABSTRACT

A set of novels 2-thiohydantoin derivatives were synthesized and enaminone function was discussed at position 5 using DMFDMA catalyst which result in formation of pyrazole, isoxazole, benzoxazepine by using reagents such as hydrazine, hydroxylamine and 2-aminothiophenol. These newly synthesized compounds were evaluated for their antioxidant and antiproliferative activity. In vitro studies on the effect of 2-thiohydantoin on scavenging 2,2-diphenyl-1-picrylhydrazyl radical (DPPH•) confirmed the free radical scavenging and antioxidant activity of 2-thiohydantoin. The synthesized compounds show significant antioxidant activity. The in vitro antitumor activity of 2-thiohydantoin on MCF7 (breast) and PC3 cells (prostate) was evaluated using MTT assay. Some of the synthesized compounds show significant to moderate antiproliferative properties compared to reference drug erlotinib. Among all, compound 4a exhibit potent antitumor properties against MCF7 and PC3 cancer cell lines with IC50 = 2.53 ± 0.09 /ml & with IC50 = 3.25 ± 0.12 µg/ml respectively and has potent antioxidant activity with IC50 = 10.04 ± 0.49 µg/ml.


Subject(s)
Antineoplastic Agents , Antioxidants , Aromatase , Cell Proliferation , Drug Screening Assays, Antitumor , ErbB Receptors , Molecular Docking Simulation , Thiohydantoins , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Antioxidants/pharmacology , Antioxidants/chemical synthesis , Antioxidants/chemistry , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Structure-Activity Relationship , Molecular Structure , Thiohydantoins/pharmacology , Thiohydantoins/chemistry , Thiohydantoins/chemical synthesis , Aromatase/metabolism , Dose-Response Relationship, Drug , Drug Design , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Catalysis , Biphenyl Compounds/antagonists & inhibitors , Biphenyl Compounds/pharmacology , Biphenyl Compounds/chemistry , Cell Line, Tumor , Thermodynamics , Picrates/antagonists & inhibitors , Hydrazines , Thioamides
3.
Cells ; 13(14)2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39056753

ABSTRACT

Androgen excess is a key feature of several clinical phenotypes of polycystic ovary syndrome (PCOS). However, the presence of FSH receptor (FSHR) and aromatase (CYP19A1) activity responses to physiological endocrine stimuli play a critical role in the pathogenesis of PCOS. Preliminary data suggest that myo-Inositol (myo-Ins) and D-Chiro-Inositol (D-Chiro-Ins) may reactivate CYP19A1 activity. We investigated the steroidogenic pathway of Theca (TCs) and Granulosa cells (GCs) in an experimental model of murine PCOS induced in CD1 mice exposed for 10 weeks to a continuous light regimen. The effect of treatment with different combinations of myo-Ins and D-Chiro-Ins on the expression of Fshr, androgenic, and estrogenic enzymes was analyzed by real-time PCR in isolated TCs and GCs and in ovaries isolated from healthy and PCOS mice. Myo-Ins and D-Chiro-Ins, at a ratio of 40:1 at pharmacological and physiological concentrations, positively modulate the steroidogenic activity of TCs and the expression of Cyp19a1 and Fshr in GCs. Moreover, in vivo, inositols (40:1 ratio) significantly increase Cyp19a1 and Fshr. These changes in gene expression are mirrored by modifications in hormone levels in the serum of treated animals. Myo-Ins and D-Chiro-Ins in the 40:1 formula efficiently rescued PCOS features by up-regulating aromatase and FSHR levels while down-regulating androgen excesses produced by TCs.


Subject(s)
Aromatase , Disease Models, Animal , Inositol , Ovary , Polycystic Ovary Syndrome , Receptors, FSH , Female , Animals , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/pathology , Polycystic Ovary Syndrome/drug therapy , Inositol/pharmacology , Mice , Aromatase/metabolism , Aromatase/genetics , Receptors, FSH/metabolism , Receptors, FSH/genetics , Ovary/metabolism , Ovary/drug effects , Ovary/pathology , Granulosa Cells/metabolism , Granulosa Cells/drug effects , Theca Cells/metabolism , Theca Cells/drug effects , Steroids/biosynthesis
4.
J Ovarian Res ; 17(1): 151, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39039600

ABSTRACT

BACKGROUND: Polycystic ovarian syndrome (PCOS) accounts for about 75% of anovulatory infertility. The cause of PCOS is not clear. CircRNAs acting as miRNA sponges mediate the post-transcriptional regulation of multiple genes. CYP19A1 is a limiting enzyme in the ovarian steroidogenesis pathway. However, the mechanism of circRNAs regulating granulosa cell (GC) estradiol secretion in PCOS remains to be elucidated. METHODS: Bioinformatics was used to predict the potential target miRNAs of circ_0043532 and target genes of miR-1270. Target miRNAs and mRNA expression were verified by qRT-PCR in GCs from 45 women with PCOS and 65 non-PCOS. Western blot, ELISA and dual-luciferase reporter assays were applied to confirm the substrate of miR-1270. RESULTS: Circ_0043532 and CYP19A1 were significant up-regulation in GCs from patients with PCOS. The predicted target miRNAs of circ_0053432, miR-1270, miR-576-5p, miR-421 and miR-142-5p, were notably decreased in GCs from patients with PCOS. Mechanistic experiments showed that circ_0043532 specifically binds to miR-1270. MiR-1270 was negatively regulated by circ_0043532. Concomitantly, miR-1270 inhibited CYP19A1 expression and estradiol production, which could be reversed by circ_0043532 over-expression. CONCLUSION: We identified that circ_0043532/miR-1270/CYP19A1 axis contributes to the aberrant steroidogenesis of GCs from patients with PCOS. This study broadens the spectrum of pathogenic factors of PCOS, and circ_0043532 might be a potential therapeutic target for PCOS.


Subject(s)
Aromatase , MicroRNAs , Polycystic Ovary Syndrome , RNA, Circular , Up-Regulation , Humans , Polycystic Ovary Syndrome/genetics , Polycystic Ovary Syndrome/metabolism , Female , MicroRNAs/genetics , MicroRNAs/metabolism , Aromatase/genetics , Aromatase/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Adult , Granulosa Cells/metabolism , RNA, Competitive Endogenous
5.
Biol Sex Differ ; 15(1): 60, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080808

ABSTRACT

BACKGROUND: Cyp19a1a is a key enzyme in the pathway that converts androgens into estrogen and is regulated by TGF-ß signaling. Smad4 and FoxH1 are downstream effectors of TGF-ß signaling and may play important roles in ovarian development in M. albus. METHODS: We investigated the expression pattern of the Smad4 and FoxH1 using qRT‒PCR and immunofluorescence, then tested the changes of smad4 and foxh1 by qRT‒PCR after ovary incubation with FSH in vitro, and analysed the regulation of cyp19a1a transcription by Smad4 and FoxH1 by dual-luciferase reporter assays. RESULTS: We found that Smad4 encoded a putative protein of 449 amino acids and harbored the three conserved domains typical of this protein family. Smad4 and foxh1 exhibited similar expression patterns during ovarian development and after FSH incubation, with Pearson's coefficients of 0.873 and 0.63-0.81, respectively. Furthermore, Smad4, FoxH1 and Cyp19a1a colocalized in the granulosa cells and theca cells of ovaries during the mid-to-late vitellogenic stage. Smad4 repressed cyp19a1a activity via SBE1 (- 1372/-1364) and SBE2 (- 415/-407) in the cyp19a1a promoter, whereas mutating SBE1 or SBE2 restored cyp19a1a promoter activity. Co-overexpression of Smad4 and FoxH1 significantly reduced cyp19a1a promoter activity. CONCLUSIONS: This study provides new insights into the potential functions of transcription factors Smad4 and FoxH1 in ovarian development and the transcriptional regulation mechanism of cyp19a1a in M. albus, which will reveal Smad4/FoxH1-mediated TGF-ß signaling in reproduction and the regulation of the cyp19a1a. Aromatase, encoded by cyp19a1a, is involved in ovarian development and plays an important role in the quality of eggs, as well the sex ratio, of the teleost fish, M. albus. The research on the transcriptional regulation of cyp19a1a has contributed to the understanding of its role in ovarian development. In previous study, it was shown that FoxH1 inhibits cyp19a1a transcription. In the present study, Smad4 was confirmed as a cyp19a1a transcriptional repressor and Smad4 may also coordinate with FoxH1 to repress cyp19a1a transcription. At present, we provide a new perspective for the transcriptional regulation of cyp19a1a by transcription factors Smad4 and FoxH1 in teleost fish ovary. In the future, the regulatory networks of Smad4 and FoxH1 will be further studied and the gene editing technology will be applied to screen specific regulatory factors of cyp191a1a gene, so as to alter the female cycle and modulate the sex ratio of the eggs production.


Subject(s)
Aromatase , Eels , Forkhead Transcription Factors , Ovary , Promoter Regions, Genetic , Smad4 Protein , Animals , Female , Ovary/metabolism , Aromatase/metabolism , Aromatase/genetics , Smad4 Protein/metabolism , Smad4 Protein/genetics , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Eels/metabolism , Fish Proteins/metabolism , Fish Proteins/genetics , Follicle Stimulating Hormone/metabolism
7.
Reprod Fertil ; 5(3)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38990713

ABSTRACT

Abstract: Reactive oxygen species (ROS) are a by-product of the activity of cytochrome P450 steroidogenic enzymes. Antioxidant enzymes protect against ROS damage. To identify if any particular antioxidant enzyme is used to protect against ROS produced by granulosa cells as follicles enlarge and produce oestradiol, we measured in the bovine granulosa cells the expression of two steroidogenic enzymes (CYP11A1, CYP19A1), important for progesterone and oestradiol production. We also measured the expression of the members (FDXR, FDX1, POR) of their electron transport chains (ETC). We measured antioxidant enzymes (GPXs 1-8, CAT, SODs 1 and 2, PRDXs 1-6, GSR, TXN, TXNRDs 1-3). Since selenium is an active component of GPXs, the selenium-uptake receptors (LRPs 2 and 8) were measured. Only the selenium-dependent GPX1 showed the same increase in expression as the steroidogenic enzymes did with increasing follicle size. GPX4 and PRDX2/6 decreased with follicle size, whereas SOD1/2, CAT, GSR, and TXNRD3 were lowest at the intermediate sizes. The other antioxidant enzymes were unchanged or expressed at low levels. The expression of the selenium-uptake receptor LRP8 also increased significantly with follicle size. Correlation analysis revealed statistically significant and strongly positive correlations of the steroidogenic enzymes and their ETCs with both GPX1 and LRP8. These results demonstrate a relationship between the expression of genes involved in steroidogenesis and selenium-containing antioxidant defence mechanisms. They suggest that during the late stages of folliculogenesis, granulosa cells are dependent on sufficient expression of GPX1 and the selenium transporter LRP8 to counteract increasing ROS levels caused by the production of steroid hormones. Lay summary: In the ovary, eggs are housed in follicles which contain the cells that produce oestrogen in the days leading up to ovulation of the egg. Oestrogen is produced by the action of enzymes. However, some of these enzymes also produce by-products called reactive oxygen species (ROS). These are harmful to eggs. Fortunately, cells have protective antioxidant enzymes that can neutralise ROS. This study was interested in which particular antioxidant enzyme(s) might be involved in neutralising the ROS in follicle cells. It was found that only one antioxidant enzyme, GPX1, appeared to be co-regulated with the enzymes that produce oestrogen and progesterone in the follicular cells. GPX1 contains the essential mineral selenium. In summary, this study has identified which antioxidant appears to be involved in neutralising ROS in the days leading to ovulation. It highlights the importance of selenium in the diet.


Subject(s)
Glutathione Peroxidase GPX1 , Glutathione Peroxidase , Granulosa Cells , Female , Granulosa Cells/metabolism , Animals , Cattle , Glutathione Peroxidase/metabolism , Glutathione Peroxidase/genetics , Selenium/metabolism , Antioxidants/metabolism , Aromatase/metabolism , Aromatase/genetics , Cholesterol Side-Chain Cleavage Enzyme/metabolism , Cholesterol Side-Chain Cleavage Enzyme/genetics , Progesterone/metabolism , Reactive Oxygen Species/metabolism , Estradiol/metabolism , Ovarian Follicle/metabolism
8.
Int J Mol Sci ; 25(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38928251

ABSTRACT

The objective of the study was to evaluate the profile and diagnostic significance of serum autoantibodies in infertile patients with premature ovarian insufficiency (POI). The pilot study included 26 patients of reproductive age with POI and diminished ovarian reserve who received complex treatment using new surgical technologies (Group 1) and 18 patients without POI (Group 2). The profile of serum autoantibodies, including anti-ovarian antibodies, antibodies against thyroid peroxidase (TPO), steroidogenic enzymes, and steroid and gonadotropic hormones, was studied using modified ELISAs and human recombinant steroidogenic enzymes (CYP11A1, CYP19A1, CYP21A2). Patients in Group 1 had higher levels of IgG autoantibodies against steroidogenic enzymes, estradiol, progesterone, and TPO than those in Group 2. Tests for IgG antibodies against CYP11A1, CYP19A1, and CYP21A2 exhibited high sensitivity (65.4-76.9%), specificity (83.3-89.9%), and AUC values (0.842-0.910) for POI, the highest in the first test. Three-antibodies panel screening showed higher diagnostic accuracy (84.1% versus 75-79.6%). The levels of these antibodies correlated with menstrual irregularities and a decrease in the antral follicle count. Thus, antibodies against CYP11A1, CYP19A1, and CYP21A2 have a high diagnostic value for POI. Three-antibody panel screening may improve the accuracy of POI diagnosis and be useful for identifying high-risk groups, early stages of the disease, and predicting POI progression.


Subject(s)
Autoantibodies , Cholesterol Side-Chain Cleavage Enzyme , Infertility, Female , Primary Ovarian Insufficiency , Humans , Female , Autoantibodies/blood , Autoantibodies/immunology , Primary Ovarian Insufficiency/immunology , Primary Ovarian Insufficiency/blood , Primary Ovarian Insufficiency/diagnosis , Adult , Infertility, Female/immunology , Infertility, Female/blood , Infertility, Female/diagnosis , Cholesterol Side-Chain Cleavage Enzyme/immunology , Aromatase/immunology , Steroid 21-Hydroxylase/immunology , Iodide Peroxidase/immunology , Pilot Projects , Immunoglobulin G/blood , Immunoglobulin G/immunology , Biomarkers/blood , Progesterone/blood , Progesterone/immunology , Estradiol/blood
9.
J Ethnopharmacol ; 331: 118279, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38705425

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Leonurus japonicus Houtt (L. japonicus, Chinese motherwort), known as Yi Mu Cao which means "good for women", has long been widely used in China and other Asian countries to alleviate gynecological disorders, often characterized by estrogen dysregulation. It has been used for the treatment of polycystic ovary syndrome (PCOS), a common endocrine disorder in women but the underlying mechanism remains unknown. AIM OF THE STUDY: The present study was designed to investigate the effect and mechanism of flavonoid luteolin and its analog luteolin-7-methylether contained in L. japonicus on aromatase, a rate-limiting enzyme that catalyzes the conversion of androgens to estrogens and a drug target to induce ovulation in PCOS patients. MATERIALS AND METHODS: Estrogen biosynthesis in human ovarian granulosa cells was examined using ELISA. Western blots were used to explore the signaling pathways in the regulation of aromatase expression. Transcriptomic analysis was conducted to elucidate the potential mechanisms of action of compounds. Finally, animal models were used to assess the therapeutic potential of these compounds in PCOS. RESULTS: Luteolin potently inhibited estrogen biosynthesis in human ovarian granulosa cells stimulated by follicle-stimulating hormone. This effect was achieved by decreasing cAMP response element-binding protein (CREB)-mediated expression of aromatase. Mechanistically, luteolin and luteolin-7-methylether targeted tumor progression locus 2 (TPL2) to suppress mitogen-activated protein kinase 3/6 (MKK3/6)-p38 MAPK-CREB pathway signaling. Transcriptional analysis showed that these compounds regulated the expression of different genes, with the MAPK signaling pathway being the most significantly affected. Furthermore, luteolin and luteolin-7-methylether effectively alleviated the symptoms of PCOS in mice. CONCLUSIONS: This study demonstrates a previously unrecognized role of TPL2 in estrogen biosynthesis and suggests that luteolin and luteolin-7-methylether have potential as novel therapeutic agents for the treatment of PCOS. The results provide a foundation for further development of these compounds as effective and safe therapies for women with PCOS.


Subject(s)
Aromatase , Estrogens , Granulosa Cells , Leonurus , Luteolin , Polycystic Ovary Syndrome , Female , Polycystic Ovary Syndrome/drug therapy , Polycystic Ovary Syndrome/metabolism , Luteolin/pharmacology , Luteolin/isolation & purification , Animals , Humans , Aromatase/metabolism , Aromatase/genetics , Leonurus/chemistry , Estrogens/pharmacology , Estrogens/biosynthesis , Mice , Granulosa Cells/drug effects , Granulosa Cells/metabolism , Aromatase Inhibitors/pharmacology , Aromatase Inhibitors/isolation & purification
10.
J Inorg Biochem ; 257: 112579, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38703512

ABSTRACT

Human aromatase (CYP19A1), the cytochrome P450 enzyme responsible for conversion of androgens to estrogens, was incorporated into lipoprotein nanodiscs (NDs) and interrogated by small angle X-ray and neutron scattering (SAXS/SANS). CYP19A1 was associated with the surface and centered at the edge of the long axis of the ND membrane. In the absence of the N-terminal anchor, the amphipathic A'- and G'-helices were predominately buried in the lipid head groups, with the possibly that their hydrophobic side chains protrude into the hydrophobic, aliphatic tails. The prediction is like that for CYP3A4 based on SAXS employing a similar modeling approach. The orientation of CYP19A1 in a ND is consistent with our previous predictions based on molecular dynamics simulations and lends additional credibility to the notion that CYP19A1 captures substrates from the membrane.


Subject(s)
Aromatase , Scattering, Small Angle , Aromatase/metabolism , Aromatase/chemistry , Humans , Lipoproteins/chemistry , Lipoproteins/metabolism , X-Ray Diffraction , Nanostructures/chemistry , Molecular Dynamics Simulation
11.
J Med Chem ; 67(11): 8913-8931, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38809993

ABSTRACT

Estrogen receptor α (ERα) plays a pivotal role in the proliferation, differentiation, and migration of breast cancer (BC) cells, and aromatase (ARO) is a crucial enzyme in estrogen synthesis. Hence, it is necessary to inhibit estrogen production or the activity of ERα for the treatment of estrogen receptor-positive (ER+) BC. Herein, we present a new category of dual-targeting PROTAC degraders designed to specifically target ERα and ARO. Among them, compound 18c bifunctionally degrades and inhibits ERα/ARO, thus effectively suppressing the proliferation of MCF-7 cells while showing negligible cytotoxicity to normal cells. In vivo, 18c promotes the degradation of ERα and ARO and inhibits the growth of MCF-7 xenograft tumors. Finally, compound 18c demonstrates promising antiproliferative and ERα degradation activity against the ERαMUT cells. These findings suggest that 18c, being the inaugural dual-targeting degrader for ERα and ARO, warrants further advancement for the management of BC and the surmounting of endocrine resistance.


Subject(s)
Breast Neoplasms , Cell Proliferation , Drug Resistance, Neoplasm , Estrogen Receptor alpha , Humans , Estrogen Receptor alpha/metabolism , Estrogen Receptor alpha/antagonists & inhibitors , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Female , Animals , Drug Resistance, Neoplasm/drug effects , Cell Proliferation/drug effects , Mice , Aromatase/metabolism , Aromatase Inhibitors/pharmacology , Aromatase Inhibitors/chemistry , Aromatase Inhibitors/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , MCF-7 Cells , Proteolysis/drug effects , Mice, Nude , Drug Discovery , Structure-Activity Relationship
12.
Genes (Basel) ; 15(5)2024 05 17.
Article in English | MEDLINE | ID: mdl-38790265

ABSTRACT

The estrogen receptor signaling pathway plays an important role in vertebrate embryonic development and sexual differentiation. There are four major estrogen receptors in zebrafish: esr1, esr2a, esr2b and gper. However, the specific role of different estrogen receptors in zebrafish is not clear. To investigate the role of esr2b in zebrafish development and reproduction, this study utilized TALENs technology to generate an esr2b knockout homozygous zebrafish line. The number of eggs laid by esr2b knockout female zebrafish did not differ significantly from that of wild zebrafish. The embryonic development process of wild-type and esr2b knockout zebrafish was observed, revealing a significant developmental delay in the esr2b knockout zebrafish. Additionally, mortality rates were significantly higher in esr2b knockout zebrafish than in their wild-type counterparts at 24 hpf. The reciprocal cross experiment between esr2b knockout zebrafish and wild-type zebrafish revealed that the absence of esr2b resulted in a decline in the quality of zebrafish oocytes, while having no impact on sperm cells. The knockout of esr2b also led to an abnormal sex ratio in the adult zebrafish population, with a female-to-male ratio of approximately 1:7. The quantitative PCR (qPCR) and in situ hybridization results demonstrated a significant downregulation of cyp19ab1b expression in esr2b knockout embryos compared to wild-type embryos throughout development (at 2 dpf, 3 dpf and 4 dpf). Additionally, the estrogen-mediated induction expression of cyp19ab1b was attenuated, while the estradiol-induced upregulated expression of vtg1 was disrupted. These results suggest that esr2b is involved in regulating zebrafish oocyte development and sex differentiation.


Subject(s)
Estrogen Receptor beta , Zebrafish Proteins , Zebrafish , Animals , Female , Male , Aromatase/genetics , Aromatase/metabolism , Embryonic Development , Estrogen Receptor beta/genetics , Estrogen Receptor beta/metabolism , Gene Expression Regulation, Developmental , Gene Knockout Techniques , Oocytes/metabolism , Oocytes/growth & development , Sex Differentiation , Sex Ratio , Zebrafish/genetics , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
13.
Endocrinology ; 165(6)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38717933

ABSTRACT

CYP19A1 encodes aromatase, which converts testosterone to estrogen, and is induced during placental maturation. To elucidate the molecular mechanism underlying this function, histone methylation was analyzed using the placental cytotrophoblast cell line, JEG3. Treatment of JEG3 cells with 3-deazaneplanocin A, an inhibitor of several methyltransferases, resulted in increased CYP19A1 expression, accompanied by removal of the repressive mark H3K27me3 from the CYP19A1 promoter. However, this increase was not observed in cells treated with GSK126, another specific inhibitor for H3K27me3 methylation. Expression of TFAP2C, which encodes AP-2γ, a transcription factor that regulates CYP19A1, was also elevated on 3-deazaneplanocin A treatment. Interestingly, TFAP2C messenger RNA (mRNA) was readily degraded in JEG3 cells but protected from degradation in the presence of 3-deazaneplanocin A. TFAP2C mRNA contained N6-methyladenosines, which were reduced on drug treatment. These observations indicate that the TFAP2C mRNA undergoes adenosine methylation and rapid degradation, whereas 3-deazaneplanocin A suppresses methylation, resulting in an increase in AP-2γ levels. We conclude that the increase in AP-2γ expression via stabilization of the TFAP2C mRNA is likely to underlie the increased CYP19A1 expression.


Subject(s)
Aromatase , Placenta , RNA Stability , Transcription Factor AP-2 , Humans , Transcription Factor AP-2/metabolism , Transcription Factor AP-2/genetics , Aromatase/genetics , Aromatase/metabolism , Female , Placenta/metabolism , Placenta/drug effects , Pregnancy , RNA Stability/drug effects , Adenosine/analogs & derivatives , Adenosine/pharmacology , RNA, Messenger/metabolism , RNA, Messenger/genetics , Cell Line, Tumor , Histones/metabolism
14.
Mar Biotechnol (NY) ; 26(3): 423-431, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38649627

ABSTRACT

This study is the first investigation for using sex-related gene expression in tail fin tissues of seabass as early sex determination without killing the fish. The European seabass (Dicentrarchus labrax) is gonochoristic and lacks distinguishable sex chromosomes, so, sex determination is referred to molecular actions for some sex-related genes on autosomal chromosomes which are well known such as cyp19a1a, dmrt1a, and dmrt1b genes which play crucial role in gonads development and sex differentiation. cyp19a1a is expressed highly in females for ovarian development and dmrt1a and dmrt1b are for testis development in males. In this study, we evaluated the difference in the gene expression levels of studied genes by qPCR in tail fins and gonads. We then performed discriminant analysis (DA) using morphometric traits and studied gene expression parameters as predictor tools for fish sex. The results revealed that cyp19a1a gene expression was significantly higher in future females' gonads and tail fins (p ≥ 0.05). Statistically, cyp19a1a gene expression was the best parameter to discriminate sex even the hit rate of any other variable by itself could not correctly classify 100% of the fish sex except when it was used in combination with cyp19a1a. In contrast, Dmrt1a gene expression was higher in males than females but there were difficulties in analyzing dmrt1a and dmrt1b expressions in the tail because levels were low. So, it could be used in future research to differentiate and determine the sex of adult fish using the cyp19a1a gene expression marker without killing or sacrificing fish.


Subject(s)
Animal Fins , Aromatase , Bass , Transcription Factors , Animals , Bass/genetics , Bass/metabolism , Bass/growth & development , Male , Female , Animal Fins/metabolism , Aromatase/genetics , Aromatase/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Sex Determination Processes/genetics , Fish Proteins/genetics , Fish Proteins/metabolism , Ovary/metabolism , Gonads/metabolism , Gonads/growth & development , Gene Expression Regulation, Developmental , Sex Differentiation/genetics
15.
Gen Comp Endocrinol ; 353: 114512, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38582176

ABSTRACT

Eels are gonochoristic species whose gonadal differentiation initiates at the yellow eel stage and is influenced by environmental factors. We revealed some sex-related genes were sex dimorphically expressed in gonads during gonadal sex differentiation of Japanese eel (Anguilla japonica); however, the expression of sex-related genes in the brain-pituitary during gonadal sex differentiation in eels is still unclear. This study aimed to investigate the sex-related gene expressions in the brain-pituitary and tried to clarify their roles in the brain and gonads during gonadal sex differentiation. Based on our previous histological study, the control eels developed as males, and estradiol-17ß (E2) was used for feminization. Our results showed that during testicular differentiation, the brain cyp19a1 transcripts and aromatase proteins were increased significantly; moreover, the cyp19a1, sf-1, foxl2s, and esrs (except gperb) transcripts in the midbrain/pituitary also were increased significantly. Forebrain gnrh1 transcripts increased slightly during gonadal differentiation of both sexes, but the gnrhr1b and gnrhr2 transcripts in the midbrain/pituitary were stable during gonadal differentiation. The expression levels of gths and gh in the midbrain/pituitary were significantly increased during testicular differentiation and were much higher in males than in E2-feminized females. These results implied that endogenous estrogens might play essential roles in the brain/pituitary during testicular differentiation, sf-1, foxl2s, and esrs may have roles in cyp19a1 regulation in the midbrain/pituitary of Japanese eels. For the GnRH-GTH axis, gths, especially fshb, may be regulated by esrs and involved in regulating testicular differentiation and development in Japanese eels.


Subject(s)
Aromatase , Brain , Pituitary Gland , Sex Differentiation , Animals , Sex Differentiation/genetics , Sex Differentiation/physiology , Male , Aromatase/genetics , Aromatase/metabolism , Female , Brain/metabolism , Pituitary Gland/metabolism , Anguilla/genetics , Anguilla/metabolism , Anguilla/growth & development , Steroidogenic Factor 1/genetics , Steroidogenic Factor 1/metabolism , Testis/metabolism , Gonads/metabolism , Gonads/growth & development
16.
J Reprod Dev ; 70(3): 169-176, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38644218

ABSTRACT

Metabolic stress and subsequent hepatic dysfunction in high-producing dairy cows are associated with inflammatory diseases and declining fertility. Lipopolysaccharide (LPS)-binding protein (LBP) is produced by hepatocytes and controls the immune response, suggesting that it is involved in the pathophysiology of inflammation-related attenuation of reproductive functions during metabolic stress. This study investigated the effect of LBP on the inflammatory status, oocyte quality, and steroidogenesis in the follicular microenvironment of dairy cows. Using bovine ovaries obtained from a slaughterhouse, follicular fluid and granulosa cells were collected from large follicles to evaluate the follicular status of metabolism, inflammation, and steroidogenesis. Cumulus-oocyte complexes were aspirated from small follicles and subjected to in vitro embryo production. The results showed that follicular fluid LBP concentrations were significantly higher in cows with fatty livers and hepatitis than in those with healthy livers. Follicular fluid LBP and LPS concentrations were negatively correlated, whereas LPS concentration showed a positive correlation with the concentrations of non-esterified fatty acids (NEFA) and ß-hydroxybutyric acid in follicular fluid. The blastulation rate of oocytes after in vitro fertilization was impaired in cows in which coexisting large follicles had high NEFA levels. Follicular fluid NEFA concentration was negatively correlated with granulosa cell expression of the estradiol (E2) synthesis-related gene (CYP19A1). Follicular fluid LBP concentration was positively correlated with follicular fluid E2 concentration and granulosa cell CYP19A1 expression. In conclusion, follicular fluid LBP may be associated with favorable conditions in the follicular microenvironment, including low LPS levels and high E2 production by granulosa cells.


Subject(s)
Acute-Phase Proteins , Carrier Proteins , Follicular Fluid , Granulosa Cells , Inflammation , Membrane Glycoproteins , Ovarian Follicle , Animals , Female , Follicular Fluid/metabolism , Cattle , Granulosa Cells/metabolism , Acute-Phase Proteins/metabolism , Carrier Proteins/metabolism , Ovarian Follicle/metabolism , Membrane Glycoproteins/metabolism , Inflammation/metabolism , Inflammation/veterinary , Lipopolysaccharides/pharmacology , Oocytes/metabolism , Estradiol/metabolism , Fertilization in Vitro/veterinary , Fatty Acids, Nonesterified/metabolism , Cattle Diseases/metabolism , Aromatase/metabolism
17.
Arch Pharm (Weinheim) ; 357(7): e2400010, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38578079

ABSTRACT

A series of enantioenriched ß-indolyl ketones as aromatase inhibitors (AI) is synthesized through the Michael-type Friedel-Crafts alkylation of indole. A highly efficient bifunctionalized amino catalyst is developed to access structurally diverse ß-indolyl ketones in high yields (up to 91%) and excellent enantioselectivity (enantiomeric ratio up to 98:2). All the synthesized compounds demonstrated promising aromatase inhibitory potential, where ortho-substituted analogs (3c and 3e) were found most active with IC50 values of 0.68 and 0.90 µM, respectively. Both of these compounds exhibited significant cytotoxicity (IC50 = 0.34 and 0.37 µM) against the MCF-7 breast cancer cell line in the (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) assay. Molecular docking studies of the synthesized compounds demonstrate favorable binding interactions with the estrogens controlling CYP19A1 (3EQM) and metabolizing CYP3A4 (5VCC) enzymes. Molecular dynamic (MD) simulation analysis revealed the essentiality of heme-ligand interactions to build a stable protein-ligand complex. An average root mean square deviation of 0.35 nm observed during a 100-ns MD simulation and binding free energy in the range of -190 to -227 kJ/mol calculated by g_mmpbsa analysis authenticated the stability of the 3c-3EQM complex. ADMET and drug-likeness parameters supported the suitability of these indole derivatives as the drug lead to develop potent inhibitors for estrogen-dependent breast cancer.


Subject(s)
Aromatase Inhibitors , Aromatase , Indoles , Ketones , Molecular Docking Simulation , Molecular Dynamics Simulation , Humans , Indoles/pharmacology , Indoles/chemistry , Indoles/chemical synthesis , Ligands , Ketones/pharmacology , Ketones/chemistry , Ketones/chemical synthesis , Aromatase Inhibitors/pharmacology , Aromatase Inhibitors/chemical synthesis , Aromatase Inhibitors/chemistry , MCF-7 Cells , Structure-Activity Relationship , Aromatase/metabolism , Stereoisomerism , Heme/metabolism , Heme/chemistry , Molecular Structure , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor
18.
Future Med Chem ; 16(11): 1127-1145, 2024.
Article in English | MEDLINE | ID: mdl-38629440

ABSTRACT

Aim: The aim of this study was the synthesis of steroid compounds with heterocyclic rings and good anticancer properties. Materials & methods: The synthesis, in silico and in vitro anticancer testing of novel pyridin-2-yl estra-1,3,5(10)-triene derivatives was performed. Results: All synthesized compounds have shown promising results for, antiproliferative activity, relative binding affinities for the ligand binding domains of estrogen receptors α, ß and androgen receptor, aromatase binding potential, and inhibition of AKR1C3 enzyme. Conclusion: 3-Benzyloxy (17E)-pycolinilidene derivative 9 showed the best antitumor potential against MDA-MB-231 cell line, an activity that can be explained by its moderate inhibition of AKR1C3. Molecular docking simulation indicates that it binds to AKR1C3 in a very similar orientation and geometry as steroidal inhibitor EM1404.


The series of pyridine-containing estra-1,3,5(10)-triene derivatives was synthesized. One novel derivative stood out by its excellent activity against the MDA-MB-231 cell line. This activity can be explained by its moderate inhibition of the AKR1C3 enzyme.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Drug Screening Assays, Antitumor , Molecular Docking Simulation , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cell Line, Tumor , Aldo-Keto Reductase Family 1 Member C3/antagonists & inhibitors , Aldo-Keto Reductase Family 1 Member C3/metabolism , Structure-Activity Relationship , Molecular Structure , Receptors, Androgen/metabolism , Aromatase/metabolism , Estrogen Receptor alpha/metabolism , Estrogen Receptor alpha/antagonists & inhibitors
19.
Neurosci Biobehav Rev ; 161: 105679, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38642866

ABSTRACT

In this mini-review, we summarize the brain distribution of aromatase, the enzyme catalyzing the synthesis of estrogens from androgens, and the mechanisms responsible for regulating estrogen production within the brain. Understanding this local synthesis of estrogens by neurons is pivotal as it profoundly influences various facets of social behavior. Neuroestrogen action spans from the initial processing of socially pertinent sensory cues to integrating this information with an individual's internal state, ultimately resulting in the manifestation of either pro-affiliative or - aggressive behaviors. We focus here in particular on aggressive and sexual behavior as the result of correct individual recognition of intruders and potential mates. The data summarized in this review clearly point out the crucial role of locally synthesized estrogens in facilitating rapid adaptation to the social environment in rodents and birds of both sexes. These observations not only shed light on the evolutionary significance but also indicate the potential implications of these findings in the realm of human health, suggesting a compelling avenue for further investigation.


Subject(s)
Estrogens , Social Behavior , Animals , Humans , Estrogens/metabolism , Aromatase/metabolism , Brain/physiology , Brain/metabolism , Recognition, Psychology/physiology , Sexual Behavior, Animal/physiology , Sexual Behavior/physiology
20.
Clin Cancer Res ; 30(13): 2709-2718, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38640040

ABSTRACT

PURPOSE: Aromatase inhibitor (AI)-associated musculoskeletal symptoms (AIMSS) are common and frequently lead to AI discontinuation. SNPs in candidate genes have been associated with AIMSS and AI discontinuation. E1Z11 is a prospective cohort study designed to validate the association between 10 SNPs and AI discontinuation due to AIMSS. PATIENTS AND METHODS: Postmenopausal women with stage I to III hormone receptor-positive breast cancer received anastrozole 1 mg daily and completed patient-reported outcome measures to assess AIMSS (Stanford Health Assessment Questionnaire) at baseline, 3, 6, 9, and 12 months. We estimated that 40% of participants would develop AIMSS and 25% would discontinue AI treatment within 12 months. Enrollment of 1,000 women with a fixed number per racial stratum provided 80% power to detect an effect size of 1.5 to 4. SNPs were found in ESR1 (rs2234693, rs2347868, and rs9340835), CYP19A1 (rs1062033 and rs4646), TCL1A (rs11849538, rs2369049, rs7158782, and rs7159713), and HTR2A (rs2296972). RESULTS: Of the 970 evaluable women, 43% developed AIMSS and 12% discontinued AI therapy within 12 months. Although more Black and Asian women developed AIMSS than White women (49% vs. 39%, P = 0.017; 50% vs. 39%, P = 0.004, respectively), the AI discontinuation rates were similar across groups. None of the SNPs were significantly associated with AIMSS or AI discontinuation in the overall population or in distinct cohorts. The OR for rs2296972 (HTR2A) approached significance for developing AIMSS. CONCLUSIONS: We were unable to prospectively validate candidate SNPs previously associated with AI discontinuation due to AIMSS. Future analyses will explore additional genetic markers, patient-reported outcome predictors of AIMSS, and differences by race.


Subject(s)
Aromatase Inhibitors , Breast Neoplasms , Polymorphism, Single Nucleotide , Humans , Female , Aromatase Inhibitors/therapeutic use , Aromatase Inhibitors/adverse effects , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Middle Aged , Aged , Prospective Studies , Anastrozole/therapeutic use , Anastrozole/adverse effects , Anastrozole/administration & dosage , Cohort Studies , Postmenopause , Aged, 80 and over , Patient Reported Outcome Measures , Aromatase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL