Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.363
Filter
1.
J Am Heart Assoc ; 13(17): e034760, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39206732

ABSTRACT

BACKGROUND: Ventricular repolarization time (ECG QT and JT intervals) is associated with malignant arrhythmia. Genome-wide association studies have identified 230 independent loci for QT and JT; however, 50% of their heritability remains unexplained. Previous work supports a causal effect of lower serum calcium concentrations on longer ventricular repolarization time. We hypothesized calcium interactions with QT and JT variant associations could explain a proportion of the missing heritability. METHODS AND RESULTS: We performed genome-wide calcium interaction analyses for QT and JT intervals. Participants were stratified by their calcium level relative to the study distribution (top or bottom 20%). We performed a 2-stage analysis (genome-wide discovery [N=62 532] and replication [N=59 861] of lead variants) and a single-stage genome-wide meta-analysis (N=122 393, [European ancestry N=117 581, African ancestry N=4812]). We also calculated 2-degrees of freedom joint main and interaction and 1-degree of freedom interaction P values. In 2-stage and single-stage analyses, 50 and 98 independent loci, respectively, were associated with either QT or JT intervals (2-degrees of freedom joint main and interaction P value <5×10-8). No lead variant had a significant interaction result after correcting for multiple testing and sensitivity analyses provided similar findings. Two loci in the single-stage meta-analysis were not reported previously (SPPL2B and RFX6). CONCLUSIONS: We have found limited support for an interaction effect of serum calcium on QT and JT variant associations despite sample sizes with suitable power to detect relevant effects. Therefore, such effects are unlikely to explain a meaningful proportion of the heritability of QT and JT, and factors including rare variation and other environmental interactions need to be considered.


Subject(s)
Calcium , Genome-Wide Association Study , Humans , Calcium/blood , Male , Female , Middle Aged , Electrocardiography , Adult , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/physiopathology , Arrhythmias, Cardiac/blood , Arrhythmias, Cardiac/diagnosis , Aged , Action Potentials , Polymorphism, Single Nucleotide , Time Factors , Heart Rate/genetics , Heart Rate/physiology , Genetic Predisposition to Disease , Risk Factors
2.
Nat Commun ; 15(1): 7000, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39143095

ABSTRACT

Mutations in the nuclear envelope (NE) protein lamin A/C (encoded by LMNA), cause a severe form of dilated cardiomyopathy (DCM) with early-onset life-threatening arrhythmias. However, molecular mechanisms underlying increased arrhythmogenesis in LMNA-related DCM (LMNA-DCM) remain largely unknown. Here we show that a frameshift mutation in LMNA causes abnormal Ca2+ handling, arrhythmias and disformed NE in LMNA-DCM patient-specific iPSC-derived cardiomyocytes (iPSC-CMs). Mechanistically, lamin A interacts with sirtuin 1 (SIRT1) where mutant lamin A/C accelerates degradation of SIRT1, leading to mitochondrial dysfunction and oxidative stress. Elevated reactive oxygen species (ROS) then activates the Ca2+/calmodulin-dependent protein kinase II (CaMKII)-ryanodine receptor 2 (RYR2) pathway and aggravates the accumulation of SUN1 in mutant iPSC-CMs, contributing to arrhythmias and NE deformation, respectively. Taken together, the lamin A/C deficiency-mediated ROS disorder is revealed as central to LMNA-DCM development. Manipulation of impaired SIRT1 activity and excessive oxidative stress is a potential future therapeutic strategy for LMNA-DCM.


Subject(s)
Cardiomyopathy, Dilated , Induced Pluripotent Stem Cells , Lamin Type A , Myocytes, Cardiac , Oxidative Stress , Reactive Oxygen Species , Sirtuin 1 , Cardiomyopathy, Dilated/metabolism , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/pathology , Lamin Type A/metabolism , Lamin Type A/genetics , Induced Pluripotent Stem Cells/metabolism , Reactive Oxygen Species/metabolism , Humans , Sirtuin 1/metabolism , Sirtuin 1/genetics , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Phenotype , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/pathology , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Frameshift Mutation , Calcium/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Ryanodine Receptor Calcium Release Channel/genetics , Nuclear Envelope/metabolism , Mitochondria/metabolism , Male , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics
4.
Nat Cardiovasc Res ; 3(4): 420-430, 2024 Apr.
Article in English | MEDLINE | ID: mdl-39196215

ABSTRACT

Inherited arrhythmias are a heterogeneous group of conditions that confer risk of sudden death. Many inherited arrhythmias have been linked to pathogenic genetic variants that result in ion channel dysfunction, although current genetic testing panels fail to identify variants in many patients, potentially secondary to their underlying substrates being oligogenic or polygenic. Here we review the current state of knowledge surrounding the cellular mechanisms of inherited arrhythmias generated from stem cell models with a focus on integrating genetic and mechanistic data. The utility and limitations of human induced pluripotent stem cell models in disease modeling and drug development are also explored with a particular focus on examples of pharmacogenetics and precision medicine. We submit that progress in understanding inherited arrhythmias is likely to be made by using human induced pluripotent stem cells to model probable polygenic cases as well as to interrogate the diverse and potentially complex molecular networks implicated by genome-wide association studies.


Subject(s)
Arrhythmias, Cardiac , Genetic Predisposition to Disease , Induced Pluripotent Stem Cells , Humans , Arrhythmias, Cardiac/genetics , Induced Pluripotent Stem Cells/metabolism , Animals , Phenotype , Precision Medicine/methods , Multifactorial Inheritance/genetics , Action Potentials , Myocytes, Cardiac/metabolism , Heredity , Anti-Arrhythmia Agents/therapeutic use , Risk Factors , Genome-Wide Association Study
5.
Cells ; 13(15)2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39120296

ABSTRACT

Arrhythmogenic cardiomyopathy (AC) is a hereditary cardiac disorder characterized by the gradual replacement of cardiomyocytes with fibrous and adipose tissue, leading to ventricular wall thinning, chamber dilation, arrhythmias, and sudden cardiac death. Despite advances in treatment, disease management remains challenging. Animal models, particularly mice and zebrafish, have become invaluable tools for understanding AC's pathophysiology and testing potential therapies. Mice models, although useful for scientific research, cannot fully replicate the complexity of the human AC. However, they have provided valuable insights into gene involvement, signalling pathways, and disease progression. Zebrafish offer a promising alternative to mammalian models, despite the phylogenetic distance, due to their economic and genetic advantages. By combining animal models with in vitro studies, researchers can comprehensively understand AC, paving the way for more effective treatments and interventions for patients and improving their quality of life and prognosis.


Subject(s)
Disease Models, Animal , Animals , Humans , Zebrafish , Arrhythmias, Cardiac/pathology , Arrhythmias, Cardiac/physiopathology , Arrhythmias, Cardiac/genetics , Arrhythmogenic Right Ventricular Dysplasia/genetics , Arrhythmogenic Right Ventricular Dysplasia/pathology , Mice , Cardiomyopathies/pathology , Cardiomyopathies/genetics
6.
Einstein (Sao Paulo) ; 22: eAO0549, 2024.
Article in English | MEDLINE | ID: mdl-39082507

ABSTRACT

OBJECTIVE: This study aimed to provide a long-term follow-up of PRKAG2 syndrome and describe the new phenotypic aspects of the condition. PRKAG2 syndrome is a rare autosomal-dominant glycogen storage disease characterized by cardiac hypertrophy, ventricular pre-excitation, and conduction system disease. Fatal arrhythmias occur frequently. METHODS: A family cohort of 66 participants was recruited. Clinical and genetic analyses were performed. RESULTS: Median age of 36.97±17.28 years, with 69.9% being men. Nineteen subjects carried the deleterious variant p.K290I of the PRKAG2 gene. This group experienced many malignant events, including eight pacemaker implants, three sudden cardiac deaths, five aborted cardiac arrests, four strokes, four premature neonatal deaths, two spontaneous abortions, five forceps deliveries, and 12 cesarean procedures. Extracardiac involvement, such as in neurocognitive and psychiatric disorders, has been observed only in carriers of mutations. Palpitations, Syncope, atrial fibrillation, atrial flutter, sinus pauses, and bradycardia were strongly and significantly associated with major or severe adverse events (sudden cardiac death, aborted cardiac arrest, pacemaker use, stroke, and congestive heart failure). Early diagnosis and intervention through antiarrhythmic drugs, anticoagulation, pacemaker implantation, radiofrequency catheter ablation, and cesarean section surgery improved the symptoms and survival rates. Mutations carriers were advised to avoid pregnancy. CONCLUSION: This study identified that the p.K291I_PRKAG2 mutation is associated with poor prognosis, highlighting the need for early intervention. Further research may uncover the potential connections between intellectual disability, miscarriage, and neonatal death in individuals with this syndrome.


Subject(s)
Cardiomyopathy, Hypertrophic , Humans , Female , Male , Adult , Follow-Up Studies , Young Adult , Middle Aged , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/complications , Brazil/epidemiology , Adolescent , Mutation , AMP-Activated Protein Kinases/genetics , Phenotype , Child , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/etiology , Syndrome , Aged
7.
Eur Heart J ; 45(32): 2968-2979, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39011630

ABSTRACT

BACKGROUND AND AIMS: Pathogenic desmoplakin (DSP) gene variants are associated with the development of a distinct form of arrhythmogenic cardiomyopathy known as DSP cardiomyopathy. Patients harbouring these variants are at high risk for sustained ventricular arrhythmia (VA), but existing tools for individualized arrhythmic risk assessment have proven unreliable in this population. METHODS: Patients from the multi-national DSP-ERADOS (Desmoplakin SPecific Effort for a RAre Disease Outcome Study) Network patient registry who had pathogenic or likely pathogenic DSP variants and no sustained VA prior to enrolment were followed longitudinally for the development of first sustained VA event. Clinically guided, step-wise Cox regression analysis was used to develop a novel clinical tool predicting the development of incident VA. Model performance was assessed by c-statistic in both the model development cohort (n = 385) and in an external validation cohort (n = 86). RESULTS: In total, 471 DSP patients [mean age 37.8 years, 65.6% women, 38.6% probands, 26% with left ventricular ejection fraction (LVEF) < 50%] were followed for a median of 4.0 (interquartile range: 1.6-7.3) years; 71 experienced first sustained VA events {2.6% [95% confidence interval (CI): 2.0, 3.5] events/year}. Within the development cohort, five readily available clinical parameters were identified as independent predictors of VA and included in a novel DSP risk score: female sex [hazard ratio (HR) 1.9 (95% CI: 1.1-3.4)], history of non-sustained ventricular tachycardia [HR 1.7 (95% CI: 1.1-2.8)], natural logarithm of 24-h premature ventricular contraction burden [HR 1.3 (95% CI: 1.1-1.4)], LVEF < 50% [HR 1.5 (95% CI: .95-2.5)], and presence of moderate to severe right ventricular systolic dysfunction [HR 6.0 (95% CI: 2.9-12.5)]. The model demonstrated good risk discrimination within both the development [c-statistic .782 (95% CI: .77-.80)] and external validation [c-statistic .791 (95% CI: .75-.83)] cohorts. The negative predictive value for DSP patients in the external validation cohort deemed to be at low risk for VA (<5% at 5 years; n = 26) was 100%. CONCLUSIONS: The DSP risk score is a novel model that leverages readily available clinical parameters to provide individualized VA risk assessment for DSP patients. This tool may help guide decision-making for primary prevention implantable cardioverter-defibrillator placement in this high-risk population and supports a gene-first risk stratification approach.


Subject(s)
Desmoplakins , Humans , Desmoplakins/genetics , Female , Male , Risk Assessment/methods , Adult , Middle Aged , Arrhythmias, Cardiac/genetics , Heterozygote , Tachycardia, Ventricular/genetics
8.
PLoS One ; 19(7): e0305248, 2024.
Article in English | MEDLINE | ID: mdl-38968219

ABSTRACT

Long QT Syndrome type 8 (LQT8) is a cardiac arrhythmic disorder associated with Timothy Syndrome, stemming from mutations in the CACNA1C gene, particularly the G406R mutation. While prior studies hint at CACNA1C mutations' role in ventricular arrhythmia genesis, the mechanisms, especially in G406R presence, are not fully understood. This computational study explores how the G406R mutation, causing increased transmural dispersion of repolarization, induces and sustains reentrant ventricular arrhythmias. Using three-dimensional numerical simulations on an idealized left-ventricular model, integrating the Bidomain equations with the ten Tusscher-Panfilov ionic model, we observe that G406R mutation with 11% and 50% heterozygosis significantly increases transmural dispersion of repolarization. During S1-S4 stimulation protocols, these gradients facilitate conduction blocks, triggering reentrant ventricular tachycardia. Sustained reentry pathways occur only with G406R mutation at 50% heterozygosis, while neglecting transmural heterogeneities of action potential duration prevents stable reentry, regardless of G406R mutation presence.


Subject(s)
Action Potentials , Calcium Channels, L-Type , Computer Simulation , Long QT Syndrome , Syndactyly , Humans , Long QT Syndrome/genetics , Long QT Syndrome/physiopathology , Calcium Channels, L-Type/genetics , Syndactyly/genetics , Syndactyly/physiopathology , Mutation , Autistic Disorder/genetics , Autistic Disorder/physiopathology , Heart Ventricles/physiopathology , Models, Cardiovascular , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/physiopathology , Tachycardia, Ventricular/genetics , Tachycardia, Ventricular/physiopathology
9.
Oncol Nurs Forum ; 51(4): 332-348, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38950091

ABSTRACT

OBJECTIVES: To evaluate for associations between the occurrence of palpitations reported by women prior to breast cancer surgery and single nucleotide polymorphisms (SNPs) for neurotransmitter genes. SAMPLE & SETTING: A total of 398 women, who were scheduled for unilateral breast cancer surgery, provided detailed information on demographic and clinical characteristics and the occurrence of palpitations prior to breast cancer surgery. METHODS & VARIABLES: The occurrence of palpitations was assessed using a single item (i.e., "heart races/pounds" in the past week ["yes"/"no"]). Blood samples were collected for genomic analyses. Multiple logistic regression analyses were used to identify associations between the occurrence of palpitations and variations in neurotransmitter genes. RESULTS: Nine SNPs and two haplotypes among 11 candidate genes were associated with the occurrence of palpitations. These genes encode for a number of neurotransmitters and/or their receptors, including serotonin, norepinephrine, dopamine, gamma-amino butyric acid, Substance P, and neurokinin. IMPLICATIONS FOR NURSING: These findings suggest that alterations in a variety of neurotransmitters contribute to the development of this symptom.


Subject(s)
Breast Neoplasms , Neurotransmitter Agents , Polymorphism, Single Nucleotide , Humans , Female , Breast Neoplasms/genetics , Middle Aged , Adult , Aged , Arrhythmias, Cardiac/genetics
10.
BMC Cardiovasc Disord ; 24(1): 390, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39068400

ABSTRACT

BACKGROUND: Genetic diagnostics support the diagnosis of hereditary arrhythmogenic diseases, but variants of uncertain significance (VUS) complicate matters, emphasising the need for regular reassessment. Our study aims to reanalyse rare variants in different genes in order to decrease VUS diagnoses and thus improve risk stratification and personalized treatment for patients with arrhythmogenic disorders. METHODS: Genomic DNA was analysed using Sanger sequencing and next-generation sequencing (NGS). The Data was evaluated using various databases and in silico prediction tools and classified according to current ACMG standards by two independent experts. RESULTS: We identified 53 VUS in 30 genes, of which 17 variants (32%) were reclassified. 13% each were downgraded to likely benign (LB) and benign (B) and 6% were upgraded to likely pathogenic (LP). Reclassifications mainly occurred among variants initially classified in 2017-2019, with rates ranging from 50 to 60%. CONCLUSION: The results support the assumption that regular reclassification of VUS is important, as it provides new insights for genetic diagnostics, that benefit patients and guide therapeutic approach.


Subject(s)
Arrhythmias, Cardiac , Genetic Predisposition to Disease , Genetic Testing , Genetic Variation , High-Throughput Nucleotide Sequencing , Phenotype , Predictive Value of Tests , Humans , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/diagnosis , Heredity , Risk Assessment , Risk Factors , Databases, Genetic
11.
Inn Med (Heidelb) ; 65(8): 787-797, 2024 Aug.
Article in German | MEDLINE | ID: mdl-38977442

ABSTRACT

Genetic arrhythmia disorders are rare diseases; however, they are a common cause of sudden cardiac death in children, adolescents, and young adults. In principle, a distinction can be made between channelopathies and cardiomyopathies in the context of genetic diseases. This paper focuses on the channelopathies long and short QT syndrome, Brugada syndrome, and catecholaminergic polymorphic ventricular tachycardia (CPVT). Early diagnosis of these diseases is essential, as drug therapy, behavioral measures, and if necessary, implantation of a cardioverter defibrillator can significantly improve the prognosis and quality of life of patients. This paper highlights the pathophysiological and genetic basis of these channelopathies, describes their clinical manifestations, and comments on the principles of diagnosis, risk stratification and therapy.


Subject(s)
Arrhythmias, Cardiac , Brugada Syndrome , Channelopathies , Humans , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/diagnosis , Arrhythmias, Cardiac/therapy , Arrhythmias, Cardiac/physiopathology , Channelopathies/genetics , Channelopathies/diagnosis , Channelopathies/therapy , Brugada Syndrome/genetics , Brugada Syndrome/diagnosis , Brugada Syndrome/physiopathology , Brugada Syndrome/therapy , Tachycardia, Ventricular/genetics , Tachycardia, Ventricular/therapy , Tachycardia, Ventricular/diagnosis , Tachycardia, Ventricular/physiopathology , Adolescent , Child , Long QT Syndrome/genetics , Long QT Syndrome/diagnosis , Long QT Syndrome/therapy , Long QT Syndrome/physiopathology , Death, Sudden, Cardiac/prevention & control , Death, Sudden, Cardiac/etiology , Adult , Defibrillators, Implantable , Electrocardiography
12.
J Cell Biochem ; 125(8): e30619, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38946237

ABSTRACT

Calmodulin (CaM) is a ubiquitous, small cytosolic calcium (Ca2+)-binding sensor that plays a vital role in many cellular processes by binding and regulating the activity of over 300 protein targets. In cardiac muscle, CaM modulates directly or indirectly the activity of several proteins that play a key role in excitation-contraction coupling (ECC), such as ryanodine receptor type 2 (RyR2), l-type Ca2+ (Cav1.2), sodium (NaV1.5) and potassium (KV7.1) channels. Many recent clinical and genetic studies have reported a series of CaM mutations in patients with life-threatening arrhythmogenic syndromes, such as long QT syndrome (LQTS) and catecholaminergic polymorphic ventricular tachycardia (CPVT). We recently showed that four arrhythmogenic CaM mutations (N98I, D132E, D134H, and Q136P) significantly reduce the binding of CaM to RyR2. Herein, we investigate in vivo functional effects of these CaM mutations on the normal zebrafish embryonic heart function by microinjecting complementary RNA corresponding to CaMN98I, CaMD132E, CaMD134H, and CaMQ136P mutants. Expression of CaMD132E and CaMD134H mutants results in significant reduction of the zebrafish heart rate, mimicking a severe form of human bradycardia, whereas expression of CaMQ136P results in an increased heart rate mimicking human ventricular tachycardia. Moreover, analysis of cardiac ventricular rhythm revealed that the CaMD132E and CaMN98I zebrafish groups display an irregular pattern of heart beating and increased amplitude in comparison to the control groups. Furthermore, circular dichroism spectroscopy experiments using recombinant CaM proteins reveals a decreased structural stability of the four mutants compared to the wild-type CaM protein in the presence of Ca2+. Finally, Ca2+-binding studies indicates that all CaM mutations display reduced CaM Ca2+-binding affinities, with CaMD132E exhibiting the most prominent change. Our data suggest that CaM mutations can trigger different arrhythmogenic phenotypes through multiple and complex molecular mechanisms.


Subject(s)
Arrhythmias, Cardiac , Calmodulin , Zebrafish , Animals , Calmodulin/metabolism , Calmodulin/genetics , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/metabolism , Mutation , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Humans , Ryanodine Receptor Calcium Release Channel/genetics , Ryanodine Receptor Calcium Release Channel/metabolism , Mutation, Missense , Tachycardia, Ventricular/genetics , Tachycardia, Ventricular/metabolism , Calcium/metabolism
13.
Clin Genet ; 106(4): 500-504, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38860409

ABSTRACT

DSP-cardiomyopathy has recently been recognised as a specific type of cardiomyopathy. Using an in-house Mendelian disease registry, we aimed to identify probands with likely pathogenic or pathogenic DSP variants. We detected these variants in 4.8% and 77.8% of genotype-positive probands referred for dilated and non-dilated left ventricular cardiomyopathy (NDLVC), respectively. We identified six Slovenian probands with the DSP:c.3793G>T and characterised them along with further eight of their relatives at the molecular and phenotypic level. Medical records revealed NDLVC with arrhythmia in six individuals (five probands, one relative; 33 ± 14 years; three males, three females). All had subepicardial late gadolinium enhancement on cardiac MRI (CMRI), and five received an ICD. Four individuals (one proband, three relatives; 48 ± 14 years; all female) had no ECG and/or cardiac abnormalities on CMRI detected. Our analysis presents a Slovenian-specific molecular pathology of DSP cardiomyopathy, delineates the clinical manifestation of DSP:c.3793C>T, and thereby improves the understanding of the clinical outcomes associated with truncating DSP variants.


Subject(s)
Arrhythmias, Cardiac , Humans , Female , Male , Slovenia/epidemiology , Adult , Middle Aged , Arrhythmias, Cardiac/genetics , Codon, Nonsense/genetics , Pedigree , Cardiomyopathies/genetics , Cardiomyopathies/diagnostic imaging , Phenotype , Genetic Predisposition to Disease , Genotype , Young Adult
14.
Am J Physiol Heart Circ Physiol ; 327(2): H521-H532, 2024 08 01.
Article in English | MEDLINE | ID: mdl-38904853

ABSTRACT

Williams-Beuren syndrome (WBS) is a rare genetic condition caused by a chromosomal microdeletion at 7q11.23. It is a multisystem disorder characterized by distinct facies, intellectual disability, and supravalvar aortic stenosis (SVAS). Those with WBS are at increased risk of sudden death, but mechanisms underlying this remain poorly understood. We recently demonstrated autonomic abnormalities in those with WBS that are associated with increased susceptibility to arrhythmia and sudden cardiac death (SCD). A recently introduced method for heart rate variability (HRV) analysis called "heart rate fragmentation" (HRF) correlates with adverse cardiovascular events (CVEs) and death in studies where heart rate variability (HRV) failed to identify high-risk subjects. Some argue that HRF quantifies nonautonomic cardiovascular modulators. We, therefore, sought to apply HRF analysis to a WBS cohort to determine 1) if those with WBS show differences in HRF compared with healthy controls and 2) if HRF helps characterize HRV abnormalities in those with WBS. Similar to studies of those with coronary artery disease (CAD) and atherosclerosis, we found significantly higher HRF (4 out of 7 metrics) in those with WBS compared with healthy controls. Multivariable analyses showed a weak-to-moderate association between HRF and HRV, suggesting that HRF may reflect HRV characteristics not fully captured by traditional HRV metrics (autonomic markers). We also introduce a new metric inspired by HRF methodology, significant acute rate drop (SARD), which may detect vagal activity more directly. HRF and SARD may improve on traditional HRV measures to identify those at greatest risk for SCD both in those with WBS and in other populations.NEW & NOTEWORTHY This work is the first to apply heart rate fragmentation analyses to individuals with Williams syndrome and posits that the heart rate fragmentation parameter W3 may enable detection and investigation of phenomena underlying the proarrhythmic short-long-short RR interval sequences paradigm known to precede ventricular fibrillation and ventricular tachycardia. It also forwards a novel method for quantifying sinus arrhythmia and sinus pauses that likely correlate with parasympathetic activity.


Subject(s)
Death, Sudden, Cardiac , Heart Rate , Williams Syndrome , Williams Syndrome/physiopathology , Williams Syndrome/genetics , Williams Syndrome/complications , Humans , Death, Sudden, Cardiac/etiology , Female , Male , Adolescent , Adult , Young Adult , Case-Control Studies , Risk Factors , Autonomic Nervous System/physiopathology , Child , Risk Assessment , Arrhythmias, Cardiac/physiopathology , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/diagnosis
15.
JCI Insight ; 9(11)2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38855866

ABSTRACT

TANGO2-deficiency disorder (TDD) is an autosomal-recessive genetic disease caused by biallelic loss-of-function variants in the TANGO2 gene. TDD-associated cardiac arrhythmias are recalcitrant to standard antiarrhythmic medications and constitute the leading cause of death. Disease modeling for TDD has been primarily carried out using human dermal fibroblast and, more recently, in Drosophila by multiple research groups. No human cardiomyocyte system has been reported, which greatly hinders the investigation and understanding of TDD-associated arrhythmias. Here, we established potentially novel patient-derived induced pluripotent stem cell differentiated cardiomyocyte (iPSC-CM) models that recapitulate key electrophysiological abnormalities in TDD. These electrophysiological abnormalities were rescued in iPSC-CMs with either adenoviral expression of WT-TANGO2 or correction of the pathogenic variant using CRISPR editing. Our natural history study in patients with TDD suggests that the intake of multivitamin/B complex greatly diminished the risk of cardiac crises in patients with TDD. In agreement with the clinical findings, we demonstrated that high-dose folate (vitamin B9) virtually abolishes arrhythmias in TDD iPSC-CMs and that folate's effect was blocked by the dihydrofolate reductase inhibitor methotrexate, supporting the need for intracellular folate to mediate antiarrhythmic effects. In summary, data from TDD iPSC-CM models together with clinical observations support the use of B vitamins to mitigate cardiac crises in patients with TDD, providing potentially life-saving treatment strategies during life-threatening events.


Subject(s)
Arrhythmias, Cardiac , Folic Acid , Induced Pluripotent Stem Cells , Myocytes, Cardiac , Humans , Induced Pluripotent Stem Cells/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Folic Acid/metabolism , Folic Acid/therapeutic use , Arrhythmias, Cardiac/drug therapy , Arrhythmias, Cardiac/genetics , Male , Female , Child
16.
Europace ; 26(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38875491

ABSTRACT

AIMS: Patients with mutations in SCN5A encoding NaV1.5 often display variable severity of electrical and structural alterations, but the underlying mechanisms are not fully elucidated. We here investigate the combined modulatory effect of genetic background and age on disease severity in the Scn5a1798insD/+ mouse model. METHODS AND RESULTS: In vivo electrocardiogram and echocardiograms, ex vivo electrical and optical mapping, and histological analyses were performed in adult (2-7 months) and aged (8-28 months) wild-type (WT) and Scn5a1798insD/+ (mutant, MUT) mice from the FVB/N and 129P2 inbred strains. Atrio-ventricular (AV) conduction, ventricular conduction, and ventricular repolarization are modulated by strain, genotype, and age. An aging effect was present in MUT mice, with aged MUT mice of both strains showing prolonged QRS interval and right ventricular (RV) conduction slowing. 129P2-MUT mice were severely affected, with adult and aged 129P2-MUT mice displaying AV and ventricular conduction slowing, prolonged repolarization, and spontaneous arrhythmias. In addition, the 129P2 strain appeared particularly susceptible to age-dependent electrical, functional, and structural alterations including RV conduction slowing, reduced left ventricular (LV) ejection fraction, RV dilatation, and myocardial fibrosis as compared to FVB/N mice. Overall, aged 129P2-MUT mice displayed the most severe conduction defects, RV dilatation, and myocardial fibrosis, in addition to the highest frequency of spontaneous arrhythmia and inducible arrhythmias. CONCLUSION: Genetic background and age both modulate disease severity in Scn5a1798insD/+ mice and hence may explain, at least in part, the variable disease expressivity observed in patients with SCN5A mutations. Age- and genetic background-dependent development of cardiac structural alterations furthermore impacts arrhythmia risk. Our findings therefore emphasize the importance of continued assessment of cardiac structure and function in patients carrying SCN5A mutations.


Subject(s)
Arrhythmias, Cardiac , Disease Models, Animal , Fibrosis , Genetic Predisposition to Disease , Mutation , NAV1.5 Voltage-Gated Sodium Channel , Animals , NAV1.5 Voltage-Gated Sodium Channel/genetics , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/physiopathology , Age Factors , Severity of Illness Index , Heart Conduction System/physiopathology , Action Potentials , Electrocardiography , Phenotype , Genetic Background , Mice, 129 Strain , Male , Heart Rate/genetics , Myocardium/pathology , Aging/genetics
17.
Diabetes Res Clin Pract ; 213: 111725, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823455

ABSTRACT

BACKGROUND: Clinical studies have shown that cardiovascular diseases in patients with type 1 diabetes (T1D) are often atypical or asymptomatic. The link between T1D and arrhythmia remains unclear. To infer causality between T1D and arrhythmia at the genetic level, we conducted a Mendelian randomization study through the genetic tools of T1D. METHODS: In this study, we used genetic variables and summary statistics from genome-wide association studies of T1D and arrhythmia. Single nucleotide polymorphisms were selected based on the assumptions of instrumental variables. The inverse variance-weighted method was used as the primary analysis to summarize the causal effects between exposure and outcome. The weighted median and weighted mode methods were used as secondary methods. We tested for horizontal pleiotropy using the MR-Egger method and detected heterogeneity using the Q-test. A leave-one-out sensitivity analysis was performed. Scatter plots, forest plots, and funnel plots were used to visualize the results of the MR analysis. RESULTS: In this study, we selected 28 T1D-related SNPs as instrumental variables. The IVW [odds ratio (OR) = 0.98, 95 % confidence interval (CI) = 0.97-1.00, P = 0.008], weighted median (OR = 0.98, 95 % CI = 0.96 - 0.99, P = 0.009), and weighted mode (OR = 0.98, 95 % CI = 0.96-0.99, P = 0.018) analysis methods suggested a causal effect of T1D on arrhythmia. The MR-Egger method indicated no horizontal pleiotropy (P = 0.649), and the Q-test showed no heterogeneity (IVW, P = 0.653). CONCLUSIONS: Our MR analysis revealed a causal association between T1D and the development of arrhythmia, indicating that patients with T1D had a higher risk of arrhythmia.


Subject(s)
Arrhythmias, Cardiac , Diabetes Mellitus, Type 1 , Genome-Wide Association Study , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Humans , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/epidemiology , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/epidemiology , Arrhythmias, Cardiac/etiology , Genetic Predisposition to Disease
18.
Int J Mol Sci ; 25(11)2024 May 27.
Article in English | MEDLINE | ID: mdl-38892025

ABSTRACT

Pathogenic variants in LMNA have been associated with a wide spectrum of muscular conditions: the laminopathies. LMNA-related congenital muscular dystrophy is a laminopathy characterised by the early onset of symptoms and often leads to a fatal outcome at young ages. Children face a heightened risk of malignant arrhythmias. No established paediatric protocols for managing this condition are available. We review published cases and provide insights into disease progression in two twin sisters with LMNA-related muscular dystrophy. Our objective is to propose a cardiac surveillance and management plan tailored specifically for paediatric patients. We present a family of five members, including two twin sisters with LMNA-related muscular dystrophy. A comprehensive neuromuscular and cardiac work-up was performed in all family members. Genetic analysis using massive sequencing technology was performed in both twins. Clinical assessment showed that only the twins showed diagnoses of LMNA-related muscular dystrophy. Follow-up showed an early onset of symptoms and life-threatening arrhythmias, with differing disease progressions despite both twins passing away. Genetic analysis identified a de novo rare missense deleterious variant in the LMNA gene. Other additional rare variants were identified in genes associated with myasthenic syndrome. Early-onset neuromuscular symptoms could be related to a prognosis of worse life-threatening arrhythmias in LMNA related muscular dystrophy. Being a carrier of other rare variants may be a modifying factor in the progression of the phenotype, although further studies are needed. There is a pressing need for specific cardiac recommendations tailored to the paediatric population to mitigate the risk of malignant arrhythmias.


Subject(s)
Lamin Type A , Muscular Dystrophies , Twins, Monozygotic , Humans , Lamin Type A/genetics , Twins, Monozygotic/genetics , Female , Muscular Dystrophies/genetics , Muscular Dystrophies/therapy , Male , Child , Pedigree , Child, Preschool , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/etiology
19.
J Cachexia Sarcopenia Muscle ; 15(4): 1463-1472, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38853292

ABSTRACT

BACKGROUND: Cross-sectional evidence suggests a possible link between frailty and atrial fibrillation (AF). It remains unclear whether frailty and incident arrhythmias are longitudinally associated. This study aimed to determine whether the frailty phenotype is longitudinally associated with incident arrhythmias, especially AF. METHODS: In this prospective cohort of UK Biobank, individuals with arrhythmias at baseline, those without data for frailty phenotype, and no genetic data were excluded. Five domains of physical frailty, including weight loss, exhaustion, low physical activity, low grip strength, and slow gait speed, were assessed. A total of 142 single-nucleotide polymorphisms was used to calculate the polygenic risk score (PRS) for AF. Hospital inpatient records and death records were used to identify incident arrhythmias. RESULTS: This study included 464 154 middle-aged and older adults (mean age 56.4 ± 8.1 years, 54.7% female) without arrhythmia at baseline. During a median follow-up of 13.4 years (over 5.9 million person-years), 46 454 new-onset arrhythmias cases were recorded. In comparison with non-frailty, the multivariable-adjusted hazard ratios (HRs) of AF were 1.12 (95% CI: 1.09, 1.15, P < 0.0001) and 1.44 (95% CI: 1.36, 1.51, P < 0.0001) for participants with pre-frailty and frailty, respectively. Similar associations were observed for other arrhythmias. We found that slow gait speed presented the strongest risk factor in predicting all arrhythmias, including AF (HR 1.34, 95% CI: 1.30, 1.39), bradyarrhythmias (HR 1.30, 95% CI: 1.22, 1.37), conduction system diseases (HR 1.29, 95% CI: 1.22, 1.36), supraventricular arrhythmias (HR 1.32, 95% CI: 1.19, 1.47), and ventricular arrhythmias (HR 1.37, 95% CI: 1.25, 1.51), with all P values <0.0001. In addition to slow gait speed, weight loss (HR 1.13, 95% CI: 1.09, 1.16, P < 0.0001) and exhaustion (HR 1.11, 95% CI: 1.07, 1.14, P < 0.0001) were significantly associated with incident AF, whereas insignificant associations were observed for physical activity (HR 1.03, 95% CI: 0.996, 1.08, P = 0.099) and low grip strength (HR 1.00, 95% CI: 0.97, 1.03, P = 0.89). We observed a significant interaction between genetic predisposition and frailty on incident AF (P for interaction <0.0001), where those with frailty and the highest tertile of PRS had the highest risk of AF (HR 3.34, 95% CI: 3.08, 3.61, P < 0.0001) compared with those with non-frailty and the lowest tertile of PRS. CONCLUSIONS: Physical pre-frailty and frailty were significantly and independently associated with incident arrhythmias. Although direct causal inference still needs to be further validated, these results suggested the importance of assessing and managing frailty for arrhythmia prevention.


Subject(s)
Arrhythmias, Cardiac , Frailty , Genetic Predisposition to Disease , Humans , Female , Male , Frailty/epidemiology , Middle Aged , Arrhythmias, Cardiac/epidemiology , Arrhythmias, Cardiac/genetics , Aged , Prospective Studies , Incidence , Risk Factors , Atrial Fibrillation/genetics , Atrial Fibrillation/epidemiology
20.
Mol Med ; 30(1): 97, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937697

ABSTRACT

BACKGROUND: Ubiquitin-specific protease 38 (USP38), belonging to the USP family, is recognized for its role in controlling protein degradation and diverse biological processes. Ventricular arrhythmias (VAs) following heart failure (HF) are closely linked to ventricular electrical remodeling, yet the specific mechanisms underlying VAs in HF remain inadequately explored. In this study, we examined the impact of USP38 on VAs in pressure overload-induced HF. METHODS: Cardiac-specific USP38 knockout mice, cardiac-specific USP38 transgenic mice and their matched control littermates developed HF induced by aortic banding (AB) surgery. After subjecting the mice to AB surgery for a duration of four weeks, comprehensive investigations were conducted, including pathological analysis and electrophysiological assessments, along with molecular analyses. RESULTS: We observed increased USP38 expression in the left ventricle of mice with HF. Electrocardiogram showed that the USP38 knockout shortened the QRS interval and QTc, while USP38 overexpression prolonged these parameters. USP38 knockout decreased the susceptibility of VAs by shortening action potential duration (APD) and prolonging effective refractory period (ERP). In addition, USP38 knockout increased ion channel and Cx43 expression in ventricle. On the contrary, the increased susceptibility of VAs and the decreased expression of ventricular ion channels and Cx43 were observed with USP38 overexpression. In both in vivo and in vitro experiments, USP38 knockout inhibited TBK1/AKT/CAMKII signaling, whereas USP38 overexpression activated this pathway. CONCLUSION: Our data indicates that USP38 increases susceptibility to VAs after HF through TBK1/AKT/CAMKII signaling pathway, Consequently, USP38 may emerge as a promising therapeutic target for managing VAs following HF.


Subject(s)
Heart Failure , Mice, Knockout , Ubiquitin-Specific Proteases , Ventricular Remodeling , Animals , Male , Mice , Arrhythmias, Cardiac/etiology , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/genetics , Disease Models, Animal , Electrocardiography , Heart Failure/metabolism , Heart Failure/etiology , Heart Failure/genetics , Heart Failure/physiopathology , Heart Ventricles/metabolism , Heart Ventricles/physiopathology , Mice, Transgenic , Signal Transduction , Ubiquitin-Specific Proteases/metabolism , Ubiquitin-Specific Proteases/genetics , Ventricular Remodeling/genetics
SELECTION OF CITATIONS
SEARCH DETAIL