Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 271
Filter
1.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(8): 1450-1458, 2024 Aug 20.
Article in Chinese | MEDLINE | ID: mdl-39276040

ABSTRACT

OBJECTIVE: To investigate the effects of Huangqin Qingrechubi Capsule (HQC) on inflammation and uric acid and lipid metabolism in rats with gouty arthritis (GA) and its mechanism. METHODS: SD rat models of GA established by injecting monosodium urate into the right ankle joint were treated with saline, colchicine and HQC at low, medium and high doses (n=10) by gavage for 7 days. Toe swelling of the rats was detected at 4, 8, 24, 48 and 72 h after modeling, and synovial histological changes were observed with HE staining. Serum levels of interleukin-10 (IL-10), IL-18, tumor necrosis factor-α (TNF-α), transforming growth factor-ß1 (TGF-ß1), adiponectin, leptin, resistin and visfatin were measured by ELISA, and the levels of high-density lipoprotein cholesterol (HDL-C), triglyceride (TG), total cholesterol (TC), and uric acid (BUA) were detected. RTqPCR and Western blotting were used to detect the mRNA expressions of phosphatase and tensin homolog (PTEN), phosphatidylinositol-3-kinase (PI3K) and protein kinase B (AKT) and the protein expressions of PTEN, PI3K, p-PI3K, AKT and p-AKT. RESULTS: The rat models of GA showed obvious toe swelling, which reached the peak level at 48 h. HE staining revealed massive inflammatory cell infiltration and synovial tissue hyperplasia. The rat models showed significantly increased expressions of TNF-α, TGF-ß1, IL-18, TC, TG, leptin, resistin and visfatin, BUA, p-PI3K, and p-AKT and lowered levels of IL-10, APN, HDL-C, and PTEN. Treatment with HQC and colchicine obviously improved these changes and alleviated synovial pathologies and toe swelling in the rat models. CONCLUSION: HQC can improve inflammation and correct the imbalance of uric acid and lipid metabolism in GA rats possibly by inhibiting the PTEN/PI3K/AKT signaling pathway.


Subject(s)
Arthritis, Gouty , Drugs, Chinese Herbal , Inflammation , Lipid Metabolism , PTEN Phosphohydrolase , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Rats, Sprague-Dawley , Signal Transduction , Uric Acid , Animals , Arthritis, Gouty/drug therapy , Arthritis, Gouty/metabolism , Rats , PTEN Phosphohydrolase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/drug effects , Uric Acid/blood , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Lipid Metabolism/drug effects , Inflammation/metabolism , Male , Transforming Growth Factor beta1/metabolism , Interleukin-10/metabolism , Tumor Necrosis Factor-alpha/metabolism , Interleukin-18/metabolism
2.
Medicine (Baltimore) ; 103(22): e38221, 2024 May 31.
Article in English | MEDLINE | ID: mdl-39259129

ABSTRACT

Gouty arthritis (GA) is a common metabolic rheumatological disease. Si-Miao decoction has therapeutic effects on GA. In our study, we investigated the mechanism of Si-Miao decoction against GA using network pharmacology and molecular docking analytical methods. The Traditional Chinese Medicine Systems Pharmacology Database was used as the basis for screening the main targets and agents of the Si-Miao decoction, and the Genecards, OMIM, and Drugbank databases were used to screen GA-related targets. They were analyzed using Venn with the drug targets to obtain the intersection targets. We used Cytoscape 3.9.1 to draw the "Drugs-Compounds-Targets" network and the String database for creative protein-protein interaction networks of target genes and filtered core targets. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes were used to analyze the core targets. Molecular docking was performed using AutoDockTools to predict the binding capacity between nuclear targets and active components in the Si-Miao decoction. A total of 50 chemically active components containing 53 common targets of Si-Miao decoction anti-GA and 53 potential drug target proteins were identified. Core targets, namely, TNF, STAT3, SRC, PPARG, TLR4, PTGS2, MMP9, RELA, TGFB1, and SIRT1, were obtained through PPI network analysis. GO and KEGG analyses showed that the mechanism of anti-GA in Si-Miao decoction may proceed by regulating biological processes such as inflammatory factor levels, cell proliferation, apoptosis, and lipid and glucose metabolism, and modulating the NOD-like receptor signaling pathway, IL-17 signaling pathway, TNF signaling pathway, NF-kappa B signaling pathway, and Toll-like receptor signaling pathway. We further screened the core targets, including PTGS2, MMP9, and PPAGR, as receptor proteins based on their degree value and molecular docking with the main active compounds in Si-Miao decoction, and found that baicalein had high affinity. In conclusion, Si-Miao decoction, through anti-inflammatory, apoptosis-regulating, and anti-oxidative stress action mechanisms in the treatment of GA.


Subject(s)
Arthritis, Gouty , Drugs, Chinese Herbal , Molecular Docking Simulation , Network Pharmacology , Arthritis, Gouty/drug therapy , Arthritis, Gouty/metabolism , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/chemistry , Humans , Protein Interaction Maps , Medicine, Chinese Traditional/methods , Signal Transduction/drug effects
3.
Front Immunol ; 15: 1386939, 2024.
Article in English | MEDLINE | ID: mdl-39100670

ABSTRACT

Objective: This study aimed to evaluate the role of absent in melanoma 2 (AIM2) inflammasome-mediated pyroptosis in the pathogenesis of acute gouty arthritis (AGA) and asymptomatic hyperuricemia(AHU). Methods: A cohort of 30 AGA patients, 30 AHU individuals, and 30 healthy controls (HC) was assembled. Demographic and biochemical data, along with blood samples, were collected. Serum double-stranded DNA (dsDNA) levels were quantified using a fluorescent assay. Transcriptomic and proteomic analysis of AIM2, Caspase-1, GSDMD, IL-1ß, and IL-18 in peripheral blood mononuclear cells was performed using qRT-PCR and Western blot. Enzyme-linked immunosorbent assay (ELISA) was employed to measure serum IL-1ß and IL-18. Spearman correlation analysis was utilized to assess relationships between variables. Results: Both AGA and AHU groups demonstrated elevated metabolic indicators and serum levels of dsDNA, IL-1ß, and IL-18 compared to the HC group. AGA patients exhibited higher inflammatory markers than the AHU group. In the AGA group, there was a significant increase in the mRNA and protein levels of AIM2, Caspase-1, GSDMD, IL-1ß, and IL-18 (P<0.05 to P<0.001). The AHU group showed higher AIM2, Caspase-1, GSDMD, and IL-18 mRNA levels than the HC group (P<0.001 to P<0.01), with a non-significant increase in AIM2, GSDMD, and IL-1ß proteins (P>0.05). In contrast, Caspase-1 and IL-18 proteins were significantly higher in the AHU group (P<0.05). Notable correlations were observed between AIM2 protein expression and levels of Caspase-1 and GSDMD in both AGA and AHU groups. In the AGA group, AIM2 protein correlated with IL-1ß, but not in the AHU group. The AIM2 protein in the AHU group was positively associated with IL-18, with no such correlation in the AGA group. Conclusion: AIM2 inflammasome may play a role in the inflammatory processes of AGA and AHU and that its activation may be related to the pyroptosis pathway.


Subject(s)
Arthritis, Gouty , DNA-Binding Proteins , Hyperuricemia , Inflammasomes , Pyroptosis , Humans , Male , Inflammasomes/metabolism , Arthritis, Gouty/immunology , Arthritis, Gouty/blood , Arthritis, Gouty/metabolism , Middle Aged , Hyperuricemia/blood , Hyperuricemia/immunology , Female , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Adult , Interleukin-18/blood , Aged , Case-Control Studies , Biomarkers/blood , Caspase 1/metabolism
4.
Biomolecules ; 14(8)2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39199366

ABSTRACT

Gouty arthritis (GA) is an inflammatory disease caused by monosodium urate (MSU) crystals deposited in the joint tissues causing severe pain. The disease can recur frequently and tends to form tophus in the joints. Current therapeutic drugs for the acute phase of GA have many side effects and limitations, are unable to prevent recurrent GA attacks and tophus formation, and overall efficacy is unsatisfactory. Therefore, we need to advance research on the microscopic mechanism of GA and seek safer and more effective drugs through relevant targets to block the GA disease process. Current research shows that the pathogenesis of GA is closely related to NLRP3 inflammation, oxidative stress, MAPK, NET, autophagy, and Ferroptosis. However, after synthesizing and sorting out the above mechanisms, it is found that the presence of ROS is throughout almost the entire spectrum of micro-mechanisms of the gout disease process, which combines multiple immune responses to form a large network diagram of complex and tight connections involved in the GA disease process. Current studies have shown that inflammation, oxidative stress, cell necrosis, and pathological signs of GA in GA joint tissues can be effectively suppressed by modulating ROS network-related targets. In this article, on the one hand, we investigated the generative mechanism of ROS network generation and its association with GA. On the other hand, we explored the potential of related targets for the treatment of gout and the prevention of tophus formation, which can provide effective reference ideas for the development of highly effective drugs for the treatment of GA.


Subject(s)
Arthritis, Gouty , Oxidative Stress , Reactive Oxygen Species , Arthritis, Gouty/drug therapy , Arthritis, Gouty/immunology , Arthritis, Gouty/metabolism , Reactive Oxygen Species/metabolism , Humans , Oxidative Stress/drug effects , Animals , Uric Acid/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammation/metabolism , Inflammation/drug therapy
5.
Immunol Lett ; 269: 106907, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39122094

ABSTRACT

The present study focused on the efficacy and role of triptolide (TPL) in relieving symptoms of acute gouty arthritis (AGA) in vivo and in vitro. The effects of TPL in AGA were investigated in monosodium urate (MSU)-treated rat ankles, RAW264.7 macrophages, and neutrophils isolated from mouse peritoneal cavity. Observation of pathological changes in the ankle joint of rats. Enzyme-linked immunosorbent assay and real-time quantitative polymerase chain reaction (RT-qPCR) were performed to detect the expression levels of inflammatory factors and chemokines. The levels of the indicators of macrophage M1/M2 polarization, and the mechanistic targets of Akt and rapamycin complex 2, were determined via western blotting and RT-qPCR. The expression levels of CD86 and CD206 were detected using immunohistochemistry. Neutrophil migration was observed via air pouch experiments in vivo and Transwell cell migration assay in vitro. Myeloperoxidase (MPO) and Neutrophil elastase (NE) release was analyzed by via immunohistochemistry and immunofluorescence. The expression levels of beclin-1, LC3B, Bax, Bcl-2, and cleaved caspase-3 in neutrophils were determined via western blotting and immunofluorescence. Neutrophil apoptosis was detected using the terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Our results suggest that TPL inhibited inflammatory cell infiltration in rat ankle joints and inflammatory factor and chemokine secretion in rat serum, regulated macrophage polarization through the PI3K/AKT signaling pathway, suppressed inflammatory factor and chemokine expression in neutrophils, and inhibited neutrophil migration, neutrophil extracellular trap formation, transitional autophagy, and apoptosis. This suggests that TPL can prevent and treat MSU-induced AGA by regulating macrophage polarization through the PI3K/Akt pathway and modulating neutrophil activity.


Subject(s)
Arthritis, Gouty , Diterpenes , Epoxy Compounds , Macrophages , Neutrophils , Phenanthrenes , Uric Acid , Animals , Diterpenes/pharmacology , Diterpenes/therapeutic use , Neutrophils/immunology , Neutrophils/drug effects , Neutrophils/metabolism , Rats , Phenanthrenes/pharmacology , Phenanthrenes/therapeutic use , Arthritis, Gouty/drug therapy , Arthritis, Gouty/chemically induced , Arthritis, Gouty/metabolism , Arthritis, Gouty/immunology , Macrophages/immunology , Macrophages/metabolism , Macrophages/drug effects , Mice , Epoxy Compounds/pharmacology , Male , Disease Models, Animal , RAW 264.7 Cells , Signal Transduction/drug effects , Macrophage Activation/drug effects , Apoptosis/drug effects , Neutrophil Activation/drug effects , Humans , Rats, Sprague-Dawley , Cell Movement/drug effects
6.
Commun Biol ; 7(1): 828, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38972919

ABSTRACT

Crystallization of monosodium urate monohydrate (MSU) leads to painful gouty arthritis. Despite extensive research it is still unknown how this pathological biomineralization occurs, which hampers its prevention. Here we show how inflammatory MSU crystals form after a non-inflammatory amorphous precursor (AMSU) that nucleates heterogeneously on collagen fibrils from damaged articular cartilage of gout patients. This non-classical crystallization route imprints a nanogranular structure to biogenic acicular MSU crystals, which have smaller unit cell volume, lower microstrain, and higher crystallinity than synthetic MSU. These distinctive biosignatures are consistent with the template-promoted crystallization of biotic MSU crystals after AMSU at low supersaturation, and their slow growth over long periods of time (possibly years) in hyperuricemic gout patients. Our results help to better understand gout pathophysiology, underline the role of cartilage damage in promoting MSU crystallization, and suggest that there is a time-window to treat potential gouty patients before a critical amount of MSU has slowly formed as to trigger a gout flare.


Subject(s)
Crystallization , Gout , Uric Acid , Uric Acid/metabolism , Humans , Gout/metabolism , Gout/pathology , Biomineralization , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Arthritis, Gouty/metabolism , Arthritis, Gouty/pathology
7.
Drug Des Devel Ther ; 18: 3089-3112, 2024.
Article in English | MEDLINE | ID: mdl-39050804

ABSTRACT

Purpose: Yinhua Gout Granules (YGG) is a traditional Chinese medicine preparation with a variety of pharmacological effects, and its clinical efficacy in the treatment of gouty arthritis (GA) has been fully confirmed. However, the pharmacodynamic basis of YGG and its anti-inflammatory mechanism of action in GA are unknown. The objective of this study was to identify the active components and molecular mechanisms of YGG in the treatment of GA. Methods: Ultra-performance liquid chromatography-electrospray ionization tandem mass spectrometry (UPLC-ESI-MS/MS) and network pharmacology were used to identify and predict the potential active ingredients and related signaling pathways. Then, we revealed the anti-GA effects of YGG based on pharmacodynamic experiments in GA rats. Finally, we integrated transcriptomics and network pharmacology to elucidate the potential mechanism of action and verified the putative mechanism by molecular docking, immunohistochemical (IHC) and Western blot. Results: We have identified 10 major active components of YGG that may have anti-GA effects, such as ferulic acid, rutin, luteolin, etc. Using molecular docking, we found that 10 major compounds could bind well to TNF, PTGS2, IL-6, IL1ß, NOS2 and PTGS1, and the binding energies were all less than -5 kcal/mol. Animal studies have shown that YGG can improve joint inflammation and inflammatory cell infiltration, reduce serum UA, BUN and Cr levels (p<0.01), and decrease IL-1ß, IL-6, TNF-α, COX-2 and PGE2 levels in synovial tissue (p<0.01), which are associated with the pathogenesis of GA. IHC and Western blot results showed that YGG could regulate TLR4/MYD88/NF-κB pathway to inhibit the inflammatory response induced by GA. Conclusion: This study found that YGG could not only improve the disease of GA by inhibiting the production of UA in the body, but also target the regulation of TLR4/MYD88/NF-κB signaling pathway through a variety of active components to achieve effective therapeutic effects on GA.


Subject(s)
Arthritis, Gouty , Drugs, Chinese Herbal , Network Pharmacology , Rats, Sprague-Dawley , Arthritis, Gouty/drug therapy , Arthritis, Gouty/metabolism , Arthritis, Gouty/pathology , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Animals , Rats , Male , Transcriptome/drug effects , Molecular Docking Simulation , Medicine, Chinese Traditional , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Chromatography, High Pressure Liquid
8.
J Ethnopharmacol ; 334: 118566, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39002823

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Trifolium alexandrinum L. (TA), has traditionally been used in folk medicine for its anti-inflammatory properties against hyperuricemia and gout. However, the specific mechanisms of action of TA have not been thoroughly studied. AIM OF THE WORK: This study aimed to evaluate the protective effects of irradiated (TR25) and non-irradiated (TR0) Trifolium alexandrinum L. aqueous extract (TAAE), along with two isolated compounds, caffeine (CAF) and saponin (SAP), in a rat model of acute gouty arthritis (GA). MATERIALS AND METHODS: The GA model was established by injecting a monosodium urate (MSU) suspension into the knee joint. Synovial tissue pathology was assessed, and levels of TNF-α, IL-6, IL-1ß, NF-κB, mTOR, AKT1, PI3K, NLRP3, and ASC were measured by ELISA. mRNA expression of ERK1, JNK, and p-38 MAPK was detected using qRT-PCR, and Caspase-1 protein expression was assessed by immunohistochemical analysis. Knee swelling, uric acid levels, liver and kidney function, and oxidative stress markers were also evaluated. RESULTS: TAAE analysis identified 170 compounds, with 73 successfully identified using LC-HR-MS/MS, including caffeine citrate and theasapogenol B glycoside as the main constituents. The studied materials demonstrated significant protective effects against GA. TR25 administration significantly mitigated knee joint circumference compared to other treatments. It demonstrated potential in alleviating hyperuricemia, renal and hepatic impairments induced by MSU crystals. TR25 also alleviated oxidative stress and reduced levels of IL1ß, IL-6, TNF-α, and NF-κB. Weak Caspase-1 immune-positive staining was observed in the TR25 group. TR25 decreased NLRP3 and ASC expression, reducing inflammatory cytokine levels in GA. It effectively inhibited the PI3K, AKT, and mTOR signaling pathways, promoting autophagy. Additionally, TR25 suppressed ERK1, JNK, and p-38 MAPK gene expression in synovial tissue. These effects were attributed to various components in TAAE, such as flavonoids, phenolic acids, tannins, alkaloids, and triterpenes. CONCLUSION: Importantly, irradiation (25 KGy) enhanced the antioxidant effects and phtchemical contents of TAAE. Additionally, TR0, TR25, CAF, and SAP exhibited promising protective effects against GA, suggesting their therapeutic potential for managing this condition. These effects were likely mediated through modulation of the NLRP3/ASC/Caspase-1 and ERK/JNK/p-38 MAPK signaling pathways, as well as regulation of the PI3K/AKT/mTOR pathway. Further research is warranted to fully elucidate the underlying mechanisms and optimize their clinical applications.


Subject(s)
Arthritis, Gouty , NF-kappa B , NLR Family, Pyrin Domain-Containing 3 Protein , Plant Extracts , Animals , Arthritis, Gouty/drug therapy , Arthritis, Gouty/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Extracts/therapeutic use , Male , NF-kappa B/metabolism , Rats , Rats, Sprague-Dawley , Caspase 1/metabolism , Signal Transduction/drug effects , Anti-Inflammatory Agents/pharmacology , MAP Kinase Signaling System/drug effects , Uric Acid
9.
Zhongguo Zhong Yao Za Zhi ; 49(12): 3160-3167, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-39041076

ABSTRACT

The abnormal production and/or excretion of uric acid can lead to a disorder in uric acid metabolism, resulting in hyperuricemia, uric acid nephropathy, gouty arthritis, and other diseases related to uric acid metabolism disorder. The clinical incidence of these diseases is increasing year after year, posing a significant threat to public health. In the past, hyperuricemia and gouty arthritis were often considered different diseases, with uric acid nephropathy being a complication of hyperuricemia. However, recent research has challenged this perspective, suggesting that hyperuricemia, uric acid nephropathy, and gouty arthritis are different stages of the same disease, with urate deposition as the common pathological feature. This article offered a comprehensive overview of the current understanding of hyperuricemia, uric acid nephropathy, and gouty arthritis in both traditional Chinese medicine(TCM) and western medicine. It delved into the most up-to-date insights into the involvement of urate deposition in the pathogenesis of uric acid metabolism disorders and highlighted the dominant role of TCM in the prevention and treatment of uric acid metabolism disorders, so as to provide a reference for effective intervention strategies and drug development in uric acid metabolism disorder-related diseases.


Subject(s)
Drugs, Chinese Herbal , Hyperuricemia , Medicine, Chinese Traditional , Uric Acid , Humans , Uric Acid/metabolism , Hyperuricemia/drug therapy , Hyperuricemia/metabolism , Drugs, Chinese Herbal/therapeutic use , Arthritis, Gouty/metabolism , Arthritis, Gouty/drug therapy , Arthritis, Gouty/prevention & control , Animals
10.
Int Immunopharmacol ; 138: 112598, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38981223

ABSTRACT

Euphorbia L. is a traditionally used herb and contains many newly identified compounds with novel chemical structures. Euphorbia factor L2 (EFL2), a diterpenoid derived from Euphorbia seeds, is reported to alleviate acute lung injury and arthritis by exerting anti-inflammatory effects. In this study, we aimed to test the therapeutic benefit and mechanisms of EFL2 in NLRP3 inflammasome-mediated gouty models and identified the potential molecular mechanism. A cell-based system was used to test the specific inhibitory effect of EFL2 on NLRP3-related inflammation. The gouty arthritis model and an air pouch inflammation model induced by monosodium urate monohydrate (MSU) crystals were used for in vivo experiments. Nlrp3-/- mice and in vitro studies were used for mechanistic exploration. Virtual molecular docking and biophysical assays were performed to identify the direct binding and regulatory target of EFL2. The inhibitory effect of EFL2 on inflammatory cell infiltration was determined by flow cytometry in vivo. The mechanism by which EFL2 activates the NLRP3 inflammasome signaling pathway was evaluated by immunological experiment and transmission electron microscopy. In vitro, EFL2 specifically reduced NLRP3 inflammasome-mediated IL-1ß production and alleviated MSU crystal-induced arthritis, as well as inflammatory cell infiltration. EFL2 downregulated NF-κB phosphorylation and NLRP3 inflammasome expression by binding to glucocorticoid receptors. Moreover, EFL2 could specifically suppress the lysosome damage-mediated NLRP3 inflammasome activation process. It is expected that this work may be useful to accelerate the development of anti-inflammatory drugs originated from traditional herbs and improve therapeutics in gout and its complications.


Subject(s)
Anti-Inflammatory Agents , Euphorbia , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , Humans , Male , Mice , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Arthritis, Gouty/drug therapy , Arthritis, Gouty/immunology , Arthritis, Gouty/metabolism , Arthritis, Gouty/chemically induced , Disease Models, Animal , Diterpenes/pharmacology , Diterpenes/therapeutic use , Euphorbia/chemistry , Gout/drug therapy , Gout/immunology , Gout/pathology , Inflammasomes/metabolism , Interleukin-1beta/metabolism , Mice, Inbred C57BL , Mice, Knockout , Molecular Docking Simulation , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Signal Transduction/drug effects , Uric Acid
11.
Theranostics ; 14(8): 3082-3103, 2024.
Article in English | MEDLINE | ID: mdl-38855180

ABSTRACT

Background: Gouty arthritis causes severe pain and inflammation. Alginate oligosaccharides (AOSs) are natural products derived from alginate and have anti-inflammatory properties. We explored the potential effects of AOSs with different degrees of polymerization (Dp) on gouty arthritis and associated mechanisms. Methods: We established a mouse model of gouty arthritis by injecting monosodium urate (MSU) into ankle joint. Nocifensive behavior, gait and ankle swelling were used to study AOS's effects. Biochemical assays, in vivo imaging, live cell Ca2+ imaging, electrophysiology, RNA-sequencing, etc. were used for mechanism exploration. Results: AOS2 (Dp=2), AOS3 (Dp=3) and AOS4 (Dp=4) all inhibited ankle swelling, whereas AOS2&3 produced the most obvious analgesia on model mice. AOS3, which was picked for further evaluation, produced dose-dependent ameliorative effects on model mice. AOS3 reversed gait impairments but did not alter locomotor activity. AOS3 inhibited NLRP3 inflammasome activation and inflammatory cytokine up-regulation in ankle joint. AOS3 ameliorated MSU-induced oxidative stress and reactive oxygen species (ROS) production both in vivo and in vitro and reversed the impaired mitochondrial bioenergetics. AOS3 activated the Nrf2 pathway and promoted Nrf2 disassociation from Keap1-bound complex and Nrf2 nuclear translocation, thus facilitating antioxidant gene expression via Nrf2-dependent mechanism. Nrf2 gene deficiency abolished AOS3's ameliorative effects on pain, inflammation and oxidative stress in ankle joints of model mice. AOS3 reduced TRPV1 functional enhancement in DRG neurons and constrained neuroactive peptide release. Conclusions: AOS3 ameliorates gouty arthritis via activating Nrf2-dependent antioxidant signaling, resulting in suppression of ROS-mediated NLRP3 inflammasome activation and TRPV1 enhancement. AOS3 may be novel therapeutics for gouty arthritis.


Subject(s)
Alginates , Arthritis, Gouty , Disease Models, Animal , Inflammation , Oligosaccharides , Animals , Arthritis, Gouty/drug therapy , Arthritis, Gouty/metabolism , Mice , Oligosaccharides/pharmacology , Alginates/pharmacology , Inflammation/drug therapy , Inflammation/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Male , Arthralgia/drug therapy , Arthralgia/metabolism , Uric Acid/metabolism , Mice, Inbred C57BL , Anti-Inflammatory Agents/pharmacology , Inflammasomes/metabolism , Inflammasomes/drug effects , Ankle Joint/pathology , NF-E2-Related Factor 2/metabolism , Oxidative Stress/drug effects
12.
Arthritis Res Ther ; 26(1): 119, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38863059

ABSTRACT

OBJECTIVE: In gout, monosodium urate crystals are taken up by macrophages, triggering the activation of the NLRP3 inflammasome and the maturation of IL-1ß. This study aimed to investigate the role of integrin CD11b in inflammasome activation in macrophages stimulated by MSU. METHODS: BMDM from WT and CD11b KO mice were stimulated in vitro with MSU crystals. Cellular supernatants were collected to assess the expression of the inflammatory cytokines by enzyme-linked immunosorbent assay and western blot methods. The role of integrin CD11b in MSU-induced gouty arthritis in vivo was investigated by intra-articular injection of MSU crystals. Real-time extracellular acidification rate and oxygen consumption rate of BMDMs were measured by Seahorse Extracellular Flux Analyzer. RESULTS: We demonstrate that CD11b-deficient mice developed exacerbated gouty arthritis with increased recruitment of leukocytes in the joint and higher IL-1ß levels in the sera. In macrophages, genetic deletion of CD11b induced a shift of macrophage metabolism from oxidative phosphorylation to glycolysis, thus decreasing the overall generation of intracellular ATP. Upon MSU stimulation, CD11b-deficient macrophages showed an exacerbated secretion of IL-1ß. Treating wild-type macrophages with a CD11b agonist, LA1, inhibited MSU-induced release of IL-1ß in vitro and attenuated the severity of experimental gouty arthritis. Importantly, LA1, was also effective in human cells as it inhibited MSU-induced release of IL-1ß by peripheral blood mononuclear cells from healthy donors. CONCLUSION: Our data identified the CD11b integrin as a principal cell membrane receptor that modulates NLRP3 inflammasome activation by MSU crystal in macrophages, which could be a potential therapeutic target to treat gouty arthritis in human patients.


Subject(s)
Arthritis, Gouty , CD11b Antigen , Inflammasomes , Macrophages , Mice, Inbred C57BL , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein , Uric Acid , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Macrophages/metabolism , CD11b Antigen/metabolism , Inflammasomes/metabolism , Arthritis, Gouty/chemically induced , Arthritis, Gouty/metabolism , Mice , Male
13.
J Med Chem ; 67(12): 10233-10247, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38874515

ABSTRACT

P2Y14 receptor (P2Y14R) is activated by uridine 5'-diphosphate-glucose, which is involved in many human inflammatory diseases. Based on the molecular docking analysis of currently reported P2Y14R antagonists and the crystallographic overlap study between the reported P2Y14R antagonist compounds 6 and 9, a series of N-substituted-acetamide derivatives were designed, synthesized, and identified as novel and potent P2Y14R antagonists. The most potent antagonist, compound I-17 (N-(1H-benzo[d]imidazol-6-yl)-2-(4-bromophenoxy)acetamide, IC50 = 0.6 nM) without zwitterionic character, showed strong binding ability to P2Y14R, high selectivity, moderate oral bioactivity, and improved pharmacokinetic profiles. In vitro and in vivo evaluation demonstrated that compound I-17 had satisfactory inhibitory activity on the inflammatory response of monosodium urate (MSU)-induced acute gouty arthritis. I-17 decreased inflammatory factor release and cell pyroptosis through the NOD-like receptor family pyrin domain-containing 3 (NLRP3)/gasdermin D (GSDMD) signaling pathway. Thus, compound I-17, with potent P2Y14R antagonistic activity, in vitro and in vivo efficacy, and favorable bioavailability (F = 75%), could be a promising lead compound for acute gouty arthritis.


Subject(s)
Acetamides , Molecular Docking Simulation , Receptors, Purinergic P2 , Acetamides/pharmacology , Acetamides/chemistry , Acetamides/chemical synthesis , Acetamides/pharmacokinetics , Humans , Animals , Receptors, Purinergic P2/metabolism , Mice , Male , Arthritis, Gouty/drug therapy , Arthritis, Gouty/metabolism , Structure-Activity Relationship , Purinergic P2 Receptor Antagonists/pharmacology , Purinergic P2 Receptor Antagonists/chemistry , Purinergic P2 Receptor Antagonists/chemical synthesis , Drug Discovery , Rats , Crystallography, X-Ray , Rats, Sprague-Dawley , Molecular Structure
14.
Front Biosci (Landmark Ed) ; 29(6): 222, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38940057

ABSTRACT

BACKGROUND: Persistent hyperuricemia can lead to the generation and deposition of monosodium urate (MSU) crystals. This can trigger gouty arthritis (GA), which in turn induces inflammation. Activation of the Nod-like receptor pyrin domain containing 3 (NLRP3) inflammasome plays a critical role in the onset and progression of GA. Autophagy may have a dual effect on GA with regard to the NLRP3 inflammasome. Therefore, the present study aimed to gain a deeper comprehension of the interaction between autophagy and NLRP3 inflammasome activation is imperative for developing more efficacious treatments for GA. METHODS: Peripheral blood monocytes (PBMCs) were first isolated from GA patients and healthy controls and underwent bulk RNA sequencing analysis. Overexpression and knockdown of dual specificity phosphatase 1 (DUSP1) was performed in THP-1 monocytes to investigate its role in the immune response and mitochondrial damage. The luciferase assay and Western blot analysis were used to study the interaction between autophagy and NLRP3 inflammasome activation. RESULTS: Bulk RNA sequencing analysis showed significant upregulation of DUSP1 expression in PBMCs from GA patients compared to healthy controls. This result was subsequently verified by reverse transcription quantitative polymerase chain reaction (RT-qPCR). DUSP1 expression in human THP-1 monocytes was also shown to increase after MSU treatment. Downregulation of DUSP1 expression increased the secretion of inflammatory cytokines after MSU treatment, whereas the overexpression of DUSP1 decreased the secretion levels. Lipopolysaccharides (LPS) combined with adenosine-triphosphate (ATP) led to mitochondrial damage, which was rescued by overexpressing DUSP1. DUSP1 overexpression further increased the level of autophagy following MSU treatment, whereas downregulation of DUSP1 decreased autophagy. Treatment with the autophagy inhibitor 3-Methyladenine (3-MA) restored inflammatory cytokine secretion levels in the DUSP1 overexpression group. MSU caused pronounced pathological ankle swelling in vivo. However, DUSP1 overexpression significantly mitigated this phenotype, accompanied by significant downregulation of inflammatory cytokine secretion levels in the joint tissues. CONCLUSIONS: This study revealed a novel function and mechanism for DUSP1 in promoting autophagy to mitigate the MSU-induced immune response in GA. This finding suggests potential diagnostic biomarkers and anti-inflammatory targets for more effective GA therapy.


Subject(s)
Arthritis, Gouty , Autophagy , Dual Specificity Phosphatase 1 , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Uric Acid , Humans , Autophagy/drug effects , Dual Specificity Phosphatase 1/genetics , Dual Specificity Phosphatase 1/metabolism , Arthritis, Gouty/genetics , Arthritis, Gouty/metabolism , Arthritis, Gouty/immunology , Arthritis, Gouty/chemically induced , Uric Acid/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Inflammasomes/metabolism , Inflammasomes/immunology , THP-1 Cells , Male , Monocytes/metabolism , Monocytes/immunology , Monocytes/drug effects , Case-Control Studies , Female , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/immunology , Middle Aged
15.
Basic Clin Pharmacol Toxicol ; 135(2): 133-147, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38828789

ABSTRACT

The aim of this study was to validate the preventive effects of koumine (KM), a monoterpene indole alkaloid, on gouty arthritis (GA) and to explore its possible mechanisms. C57BL/6 mice were intraperitoneally administered KM (0.8, 2.4 or 7.2 mg/kg), colchicine (3.0 mg/kg) or sterile saline. One hour later, a monosodium urate (MSU) suspension was injected into the right hind paws of the mice to establish an acute gout model. Inflammation symptoms were evaluated at 0, 3, 6, 12 and 24 h, and the mechanical withdrawal threshold was evaluated at 0, 6 and 24 h. After 24 h, the mice were euthanized, and the joint tissue, kidney and blood were collected for subsequent experiments. Histological examination and antioxidant enzyme, kidney index and serum uric acid (UA) measurements were taken. The expression levels of the signalling pathway components were determined. KM effectively alleviated the symptoms of redness, swelling and pain; counteracted inflammatory cell infiltration; and increased antioxidant enzyme levels, reduced kidney index and serum UA levels through regulating UA excretion in MSU-induced mice. The expression of toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB)/nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing 3 (NLRP3) signalling pathway proteins and mRNA were reduced in the KM group. These results suggest that KM may be effective in alleviating GA through the TLR4/NF-κB/NLRP3 pathway.


Subject(s)
Arthritis, Gouty , Mice, Inbred C57BL , NF-kappa B , NLR Family, Pyrin Domain-Containing 3 Protein , Signal Transduction , Toll-Like Receptor 4 , Uric Acid , Animals , Arthritis, Gouty/chemically induced , Arthritis, Gouty/drug therapy , Arthritis, Gouty/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Toll-Like Receptor 4/metabolism , NF-kappa B/metabolism , Uric Acid/blood , Signal Transduction/drug effects , Male , Mice , Indole Alkaloids/pharmacology , Disease Models, Animal , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Colchicine/pharmacology
16.
Trends Mol Med ; 30(9): 809-823, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38853086

ABSTRACT

Crystalline material can cause a multitude of acute and chronic inflammatory diseases, such as gouty arthritis, silicosis, kidney disease, and atherosclerosis. Crystals of various types are thought to cause similar inflammatory responses, including the release of proinflammatory mediators and formation of neutrophil extracellular traps (NETs), processes that further promote necroinflammation and tissue damage. It has become apparent that the intensity of inflammation and the related mechanisms of NET formation and neutrophil death in crystal-associated diseases can vary depending on the crystal type, amount, and site of deposition. This review details new mechanistic insights into crystal biology, highlights the differential effects of various crystals on neutrophils and extracellular trap (ET) formation, and discusses treatment strategies and potential future approaches for crystal-associated disorders.


Subject(s)
Extracellular Traps , Neutrophils , Extracellular Traps/metabolism , Extracellular Traps/immunology , Humans , Neutrophils/metabolism , Neutrophils/immunology , Animals , Inflammation/pathology , Arthritis, Gouty/immunology , Arthritis, Gouty/metabolism , Arthritis, Gouty/pathology , Silicosis/pathology , Silicosis/immunology
17.
Mol Med ; 30(1): 67, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773379

ABSTRACT

BACKGROUND: Gouty arthritis (GA) is characterized by monosodium urate (MSU) crystal accumulation that instigates NLRP3-mediated pyroptosis; however, the underlying regulatory mechanisms have yet to be fully elucidated. The present research endeavors to elucidate the regulatory mechanisms underpinning this MSU-induced pyroptotic cascade in GA. METHODS: J774 cells were exposed to lipopolysaccharide and MSU crystals to establish in vitro GA models, whereas C57BL/6 J male mice received MSU crystal injections to mimic in vivo GA conditions. Gene and protein expression levels were evaluated using real-time quantitative PCR, Western blotting, and immunohistochemical assays. Inflammatory markers were quantified via enzyme-linked immunosorbent assays. Pyroptosis was evaluated using immunofluorescence staining for caspase-1 and flow cytometry with caspase-1/propidium iodide staining. The interaction between MDM2 and PPARγ was analyzed through co-immunoprecipitation assays, whereas the interaction between BRD4 and the MDM2 promoter was examined using chromatin immunoprecipitation and dual-luciferase reporter assays. Mouse joint tissues were histopathologically evaluated using hematoxylin and eosin staining. RESULTS: In GA, PPARγ was downregulated, whereas its overexpression mitigated NLRP3 inflammasome activation and pyroptosis. MDM2, which was upregulated in GA, destabilized PPARγ through the ubiquitin-proteasome degradation pathway, whereas its silencing attenuated NLRP3 activation by elevating PPARγ levels. Concurrently, BRD4 was elevated in GA and exacerbated NLRP3 activation and pyroptosis by transcriptionally upregulating MDM2, thereby promoting PPARγ degradation. In vivo experiments showed that BRD4 silencing ameliorated GA through this MDM2-PPARγ-pyroptosis axis. CONCLUSION: BRD4 promotes inflammation and pyroptosis in GA through MDM2-mediated PPARγ degradation, underscoring the therapeutic potential of targeting this pathway in GA management.


Subject(s)
Arthritis, Gouty , PPAR gamma , Proto-Oncogene Proteins c-mdm2 , Pyroptosis , Transcription Factors , Animals , Male , Mice , Arthritis, Gouty/metabolism , Arthritis, Gouty/genetics , Arthritis, Gouty/pathology , Arthritis, Gouty/chemically induced , Bromodomain Containing Proteins , Cell Line , Disease Models, Animal , Inflammasomes/metabolism , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Nuclear Proteins , PPAR gamma/metabolism , PPAR gamma/genetics , Proteolysis , Proto-Oncogene Proteins c-mdm2/metabolism , Proto-Oncogene Proteins c-mdm2/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Uric Acid/metabolism
18.
Arthritis Res Ther ; 26(1): 96, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711064

ABSTRACT

BACKGROUND: Gout is caused by monosodium urate (MSU) crystals deposition to trigger immune response. A recent study suggested that inhibition of Class I Histone deacetylases (HDACs) can significantly reduce MSU crystals-induced inflammation. However, which one of HDACs members in response to MSU crystals was still unknown. Here, we investigated the roles of HDAC3 in MSU crystals-induced gouty inflammation. METHODS: Macrophage specific HDAC3 knockout (KO) mice were used to investigate inflammatory profiles of gout in mouse models in vivo, including ankle arthritis, foot pad arthritis and subcutaneous air pouch model. In the in vitro experiments, bone marrow-derived macrophages (BMDMs) from mice were treated with MSU crystals to assess cytokines, potential target gene and protein. RESULTS: Deficiency of HDAC3 in macrophage not only reduced MSU-induced foot pad and ankle joint swelling but also decreased neutrophils trafficking and IL-1ß release in air pouch models. In addition, the levels of inflammatory genes related to TLR2/4/NF-κB/IL-6/STAT3 signaling pathway were significantly decreased in BMDMs from HDAC3 KO mice after MSU treatment. Moreover, RGFP966, selective inhibitor of HDAC3, inhibited IL-6 and TNF-α production in BMDMs treated with MSU crystals. Besides, HDAC3 deficiency shifted gene expression from pro-inflammatory macrophage (M1) to anti-inflammatory macrophage (M2) in BMDMs after MSU challenge. CONCLUSIONS: Deficiency of HDAC3 in macrophage alleviates MSU crystals-induced gouty inflammation through inhibition of TLR2/4 driven IL-6/STAT3 signaling pathway, suggesting that HDAC3 could contribute to a potential therapeutic target of gout.


Subject(s)
Acrylamides , Gout , Histone Deacetylases , Macrophages , Mice, Inbred C57BL , Mice, Knockout , Phenylenediamines , Uric Acid , Animals , Uric Acid/toxicity , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , Histone Deacetylases/deficiency , Macrophages/metabolism , Macrophages/drug effects , Gout/metabolism , Gout/pathology , Mice , Inflammation/metabolism , Inflammation/chemically induced , Male , Arthritis, Gouty/chemically induced , Arthritis, Gouty/metabolism , Arthritis, Gouty/pathology , Disease Models, Animal , Signal Transduction/drug effects
19.
Mol Med Rep ; 30(2)2024 08.
Article in English | MEDLINE | ID: mdl-38818832

ABSTRACT

The present review expounds the advancements in the application and mechanisms of flavonoids in gouty arthritis, highlighting their significance in managing the disease. Gouty arthritis is among the most common and severe inflammatory diseases, caused by hyperuricemia and the deposition of sodium urate crystals in the joints and surrounding tissues, posing a serious threat to human life and health. Flavonoids, extracted from various herbs, have attracted significant attention due to their efficacy in improving gouty arthritis. The present study systematically reviews the in vivo studies and in vitro animal studies on flavonoids from herbal medicines for the treatment of gouty arthritis that have been previously published in the PubMed, ScienceDirect, Google Scholar and China National Knowledge Infrastructure databases between 2000 and 2023. The review of the literature indicated that flavonoids can improve gouty arthritis through multiple mechanisms. These include lowering xanthine oxidase activity, inhibiting uric acid (UA) synthesis, regulating UA transporters to promote UA excretion, reducing the inflammatory response and improving oxidative stress. These mechanisms predominantly involve regulating the NOD­like receptor 3 inflammasome, the Toll­like receptor 4/myeloid differentiation factor 88/nuclear factor­κB signaling pathway, and the levels of UA transporter proteins, namely recombinant urate transporter 1, glucose transporter 9, organic anion transporter (OAT)1 and OAT3. Various flavonoids used in traditional Chinese medicine hold therapeutic promise for gouty arthritis and are anticipated to pave the way for novel pharmaceuticals and clinical applications.


Subject(s)
Arthritis, Gouty , Flavonoids , Uric Acid , Arthritis, Gouty/drug therapy , Arthritis, Gouty/metabolism , Humans , Flavonoids/therapeutic use , Flavonoids/pharmacology , Flavonoids/chemistry , Animals , Uric Acid/metabolism , Signal Transduction/drug effects , Xanthine Oxidase/metabolism , Xanthine Oxidase/antagonists & inhibitors , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Oxidative Stress/drug effects , Hyperuricemia/drug therapy , Hyperuricemia/metabolism
20.
Inflamm Res ; 73(7): 1173-1184, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38739197

ABSTRACT

OBJECTIVE AND DESIGN: To elucidate Sirt1's role in gouty arthritis inflammation and its potential mechanisms. MATERIAL: Constructed murine models of gouty arthritis and conducted THP-1 cell experiments. TREATMENT: 1 mg of MSU crystals injected into mice ankle joints for a 72-h intervention. After a 3-h pre-treatment with Sirt1-specific inhibitor (EX527) and agonist (SRT2104), inflammation was induced for 21 h using lipopolysaccharide (LPS) plus MSU crystals. METHODS: We assessed gouty arthritis severity through joint inflammation index, swelling, and hematoxylin and eosin (H&E) staining, and measured CD68 mononuclear macrophages and Sirt1 expression in synovial tissue via immunohistochemistry. ELISA, NO assay, RT-qPCR, Flow cytometry, and Western blot were utilized to examine macrophage inflammatory factors, polarization, reactive oxygen species(ROS), MAPK/NF-κB/AP-1 and Nrf2/HO-1 pathways proteins. RESULTS: Significant joint swelling, synovial tissue edema, and inflammatory cell infiltration were observed. CD68 mononuclear macrophages and Sirt1 expression were elevated in synovium. Sirt1 activation decreased inflammatory factors, M1 polarization, and ROS generation. Sirt1 activation reduced p38/JNK phosphorylation, thereby inhibiting downstream NF-κB p65/AP-1 and enhancing Nrf2/HO-1, thus suppressing inflammation. CONCLUSIONS: Sirt1 alleviates M1 macrophage polarization and inflammation in gouty arthritis by inhibiting the MAPK/NF-κB/AP-1 pathway and activating the Nrf2/HO-1 pathway. Thus, activating Sirt1 may provide a new therapeutic target for gouty arthritis.


Subject(s)
Arthritis, Gouty , Heme Oxygenase-1 , Macrophages , NF-E2-Related Factor 2 , NF-kappa B , Sirtuin 1 , Transcription Factor AP-1 , Animals , Arthritis, Gouty/drug therapy , Arthritis, Gouty/metabolism , Arthritis, Gouty/immunology , Sirtuin 1/metabolism , Sirtuin 1/genetics , Macrophages/drug effects , Macrophages/metabolism , Macrophages/immunology , NF-E2-Related Factor 2/metabolism , Humans , Male , NF-kappa B/metabolism , Heme Oxygenase-1/metabolism , Mice , Transcription Factor AP-1/metabolism , THP-1 Cells , Mice, Inbred C57BL , Inflammation , Signal Transduction/drug effects , Lipopolysaccharides/pharmacology , Carbazoles , Membrane Proteins
SELECTION OF CITATIONS
SEARCH DETAIL