Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.801
Filter
1.
Turkiye Parazitol Derg ; 48(2): 120-127, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38958490

ABSTRACT

Parasites are commonly associated with harm, but they also have beneficial aspects that are still being discovered. It is important to acknowledge both the harmful and beneficial aspects of parasites. They have been found to have positive effects on non-healing wounds, surgical wounds, obesity, glucose metabolism disorders, nerve repair, cancer treatments, and fertility. Research has shown that helminths, protozoa, and arthropods have the ability to correct, prevent, and cure certain disorders through the use of the parasite itself, its molecules, or even its eggs. This article includes studies on the beneficial aspects of parasites. However, further research is needed to fully understand the mechanisms by which parasites stimulate or affect the immune system and how they can be used therapeutically.


Subject(s)
Parasites , Animals , Humans , Parasites/classification , Arthropods , Helminths/classification , Parasitic Diseases/parasitology
2.
J Environ Manage ; 365: 121619, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38963962

ABSTRACT

Increasing food production while avoiding negative impacts on biodiversity constitutes one of the main challenges of our time. Traditional silvopastoral systems like Iberian oak savannas ("dehesas") set an example, where free-range livestock has been reared for centuries while preserving a high natural value. Nevertheless, factors decreasing productivity need to be addressed, one being acorn losses provoked by pest insects. An increased and focalized grazing by livestock on infested acorns would kill the larvae inside and decrease pest numbers, but increased livestock densities could have undesired side effects on ground arthropod communities as a whole. We designed an experimental setup including areas under trees with livestock exclosures of different ages (short-term: 1-year exclusion, long-term: 10-year exclusion), along with controls (continuous grazing), using DNA metabarcoding (mitochondrial markers COI and 16S) to rapidly assess arthropod communities' composition. Livestock removal quickly increased grass cover and arthropod taxonomic richness and diversity, which was already higher in short-term (1-year exclosures) than beneath the canopies of control trees. Interestingly, arthropod diversity was not highest at long-term exclosures (≥10 years), although their community composition was the most distinct. Also, regardless of treatment, we found that functional diversity strongly correlated with the vegetation structure, being higher at trees beneath which there was higher grass cover and taller herbs. Overall, the taxonomic diversity peak at short term exclosures would support the intermediate disturbance hypothesis, which relates it with the higher microhabitat heterogeneity at moderately disturbed areas. Thus, we propose a rotatory livestock management in dehesas: plots with increased grazing should co-exist with temporal short-term exclosures. Ideally, a few long-term excluded areas should be also kept for the singularity of their arthropod communities. This strategy would make possible the combination of biological pest control and arthropod conservation in Iberian dehesas.


Subject(s)
Arthropods , Biodiversity , Livestock , Quercus , Animals , Grassland , DNA Barcoding, Taxonomic
3.
Am Nat ; 204(2): 191-199, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39008836

ABSTRACT

AbstractThe sub-Antarctic terrestrial ecosystems survive on isolated oceanic islands in the path of circumpolar currents and winds that have raged for more than 30 million years and are shaped by climatic cycles that surpass the tolerance limits of many species. Surprisingly little is known about how these ecosystems assembled their native terrestrial fauna and how such processes have changed over time. Here, we demonstrate the patterns and timing of colonization and speciation in the largest and dominant arthropod predators in the eastern sub-Antarctic: spiders of the genus Myro. Our results indicate that this lineage originated from Australia before the Plio-Pleistocenic glacial cycles and underwent an adaptive radiation on the Crozet archipelago, from where one native species colonized multiple remote archipelagos via the Antarctic circumpolar current across thousands of kilometers. The results indicate limited natural connectivity between terrestrial macroinvertebrate faunas in the eastern sub-Antarctic and partial survival of repeated glaciations in the Plio-Pleistocene. Furthermore, our findings highlight that by integrating arthropod taxa from multiple continents, the climatically more stable volcanic Crozet archipelago played a critical role in the evolution and distribution of arthropod life in the sub-Antarctic.


Subject(s)
Animal Distribution , Biological Evolution , Spiders , Animals , Antarctic Regions , Spiders/physiology , Ecosystem , Predatory Behavior , Phylogeny , Arthropods/physiology
4.
Proc Biol Sci ; 291(2027): 20240622, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39043240

ABSTRACT

The diversity of cephalic morphologies in mandibulates (myriapods and pancrustaceans) was key to their evolutionary success. A group of Cambrian bivalved arthropods called hymenocarines exhibit diagnostic mandibulate traits that illustrate this diversity, but many forms are still poorly known. These include the odaraiids, typified by Odaraia alata from the Burgess Shale (Wuliuan), characterized by its unique tubular carapace and rudder-like tail fan, and one of the largest Cambrian euarthropods at nearly 20 cm in length. Unfortunately, odaraiid cephalic anatomy has been largely unknown, limiting evolutionary scenarios and putting their mandibulate affinities into question. Here, we reinvestigate Odaraia based on new specimens from the Burgess Shale and describe exquisitely preserved mandibles with teeth and adjacent structures: a hypostome, maxillae and potential paragnaths. These structures can be homologized with those of Cambrian fuxianhuiids and extant mandibulates, and suggest that the ancestral mandibulate head could have had a limbless segment but retained its plasticity, allowing for limb re-expression within Pancrustacea. Furthermore, we show the presence of limbs with spinose endites which created a suspension-feeding structure. This discovery provides morphological evidence for suspension feeding among large Cambrian euarthropods and evinces the increasing exploitation of planktonic resources in Cambrian pelagic food webs.


Subject(s)
Biological Evolution , Fossils , Animals , Fossils/anatomy & histology , Arthropods/anatomy & histology , Mandible/anatomy & histology , Feeding Behavior , Phylogeny
5.
Dev Comp Immunol ; 159: 105223, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38960294

ABSTRACT

Consideration is given to previous and more recent protocols for harvesting arthropod haemocytes from Galleria, Drosophila, mosquitoes, Limulus and crustaceans. The optimal harvesting of these cells is essential for meaningful studies of invertebrate immunity in vitro. The results of such experiments, however, have often been flawed due to a lack of understanding of the fragile nature of arthropod haemocytes on exposure to bacterial lipopolysaccharides, resulting in the aggregation and loss of cell types during haemolymph clotting. This article emphasizes that although there are similarities between mammalian neutrophils and arthropod haemocytes, the protocols required for the successful harvesting of these cells vary significantly. The various stages for the successful harvesting of arthropod haemocytes are described in detail and should provide invaluable advice to those requiring both high cell viability and recovery of the different cell types for subsequent experimentation.


Subject(s)
Arthropods , Hemocytes , Animals , Hemocytes/immunology , Arthropods/immunology , Cell Separation/methods , Hemolymph/immunology , Lipopolysaccharides/immunology , Cell Survival
6.
Commun Biol ; 7(1): 820, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38969778

ABSTRACT

Lobopodians represent a key step in the early history of ecdysozoans since they were the first animals to evolve legs within this clade. Their Cambrian representatives share a similar body plan with a typically cylindrical annulated trunk and a series of non-jointed legs. However, they do not form a monophyletic group and likely include ancestors of the three extant panarthropod lineages (Tardigrada, Onychophora, Euarthropoda). Some species display astonishing protective devices such as cuticular plates and spines. We describe here the armor and molting process of Microdictyon from the early Cambrian of China. Microdictyon secreted ovoid paired cuticular sclerites that were duplicated in a non-synchronous way along the animal's body. The reticulated pattern and cuticular architecture of these sclerites have similarities to extant armored tardigrades that recently served in hypothesizing that tardigrades are possibly miniaturized lobopodians. Ecdysis and hard cuticular protection are now well documented in the whole spectrum of early Cambrian ecdysozoans such as soft-bodied scalidophorans, lobopodians and fully articulated euarthropods. We hypothesize that the secretion of sclerotized cuticular elements periodically renewed via ecdysis was a key innovation that opened large-scale evolutionary opportunities to invertebrate animal life, specifically ecdysozoans, both in terms of anatomical functionalities and ecological success.


Subject(s)
Fossils , Molting , Animals , Molting/physiology , Fossils/anatomy & histology , Biological Evolution , Arthropods/anatomy & histology , Arthropods/classification , Arthropods/physiology , China , Phylogeny
7.
PeerJ ; 12: e17420, 2024.
Article in English | MEDLINE | ID: mdl-38832046

ABSTRACT

Previous difficulties in arthropod taxonomy (such as limitations in conventional morphological approaches, the possibility of cryptic species and a shortage of knowledgeable taxonomists) has been overcome by the powerful tool of DNA barcoding. This study presents a thorough analysis of DNA barcoding in regards to Pakistani arthropods, which were collected from Lahore's Jinnah Garden. The 88 % (9,451) of the 10,792 specimens that were examined were able to generate DNA barcodes and 83% (8,974) of specimens were assigned 1,361 barcode index numbers (BINs). However, the success rate differed significantly between the orders of arthropods, from 77% for Thysanoptera to an astounding 93% for Diptera. Through morphological exams, DNA barcoding, and cross-referencing with the Barcode of Life Data system (BOLD), the Barcode Index Numbers (BINs) were assigned with a high degree of accuracy, both at the order (100%) and family (98%) levels. Though, identifications at the genus (37%) and species (15%) levels showed room for improvement. This underscores the ongoing need for enhancing and expanding the DNA barcode reference library. This study identified 324 genera and 191 species, underscoring the advantages of DNA barcoding over traditional morphological identification methods. Among the 17 arthropod orders identified, Coleoptera, Diptera, Hemiptera, Hymenoptera, and Lepidoptera from the class Insecta dominated, collectively constituting 94% of BINs. Expected malaise trap Arthropod fauna in Jinnah Garden could contain approximately 2,785 BINs according to Preston log-normal species distribution, yet the Chao-1 Index predicts 2,389.74 BINs. The Simpson Index of Diversity (1-D) is 0.989, signaling high species diversity, while the Shannon Index is 5.77, indicating significant species richness and evenness. These results demonstrated that in Pakistani arthropods, DNA barcoding and BOLD are an invaluable tool for improving taxonomic understanding and biodiversity assessment, opening the door for further eDNA and metabarcoding research.


Subject(s)
Arthropods , Biodiversity , DNA Barcoding, Taxonomic , Animals , DNA Barcoding, Taxonomic/methods , Pakistan , Arthropods/genetics , Arthropods/classification , Gardens
8.
Braz J Biol ; 84: e281588, 2024.
Article in English | MEDLINE | ID: mdl-38896730

ABSTRACT

Terminalia argentea tree, native to Brazil, is widely used in landscaping, recovering degraded areas, its wood, coal production, and the bark or leaf extracts has medicinal use. Despite of its importance, the arthropod fauna associated to this plant and its interspecific relationships still needs further studies. The objectives of this study were to evaluate the arthropods, their ecological indices and the distribution in the leaf faces on T. argentea saplings. The numbers of phytophagous insects (e.g., Cephalocoema sp.), pollinators (e.g., Tetragonisca angustula), and natural enemies (e.g., Oxyopidae), and their ecological indices (e.g., species richness), were higher on the adaxial leaf faces on T. argentea saplings. Aggregated distribution of phytophagous insects (e.g., Aphis spiraecola), pollinators (e.g., Trigona spinipes), and natural enemies (e.g., Camponotus sp.) on T. argentea saplings was observed. Abundance, diversity, and species richness of natural enemies correlated, positively, with those of phytophagous and pollinators insects. Predators and tending ants followed their prey and sucking insects, respectively. Tending ants protected sucking insects against predators, and reduced chewing insects. The high number of Cephalocoema sp. on T. argentea saplings is a problem, because this insect can feed on leaves of this plant, but its preference for the adaxial leaf face favors its control. The aggregation behavior of arthropods on T. argentea saplings favors the control of potential pests of this plant. There seems to be competition between tending ants for space and food resources on T. argentea saplings.


Subject(s)
Arthropods , Plant Leaves , Terminalia , Animals , Plant Leaves/parasitology , Arthropods/classification , Arthropods/physiology , Terminalia/classification , Population Density , Biodiversity , Brazil , Insecta/classification , Insecta/physiology
9.
Sci Rep ; 14(1): 14247, 2024 06 20.
Article in English | MEDLINE | ID: mdl-38902417

ABSTRACT

Megalurothrips usitatus (Bagnall) (Thysanoptera: Thripidae) is an important pest in Vigna unguiculata (L.) Walp. Neoseiulus barkeri (Hughes) (Acari: Phytoseiidae) is widely used for control of pest mites and insects worldwide. We evaluated its effect on M. usitatus when predators (N. barkeri) or insecticides (Spinetoram) were applied in the fields. Neoseiulus barkeri Hughes consumed 80% of M. usitatus prey offered within 6 h, and predation showed Type III functional response with prey density. The maximum consumption of N. barkeri was 27.29 ± 1.02 individuals per d per arena (1.5 cm diameter), while the optimal prey density for the predatory mite was 10.35 ± 0.68 individuals per d per arena (1.5 cm diameter). The developmental duration of N. barkeri fed with M. usitatus was significantly shorter than those fed with the dried fruit mite, Carpoglyphus lactis (L.) (Acari: Astigmata). In field trials, the efficiency of N. barkeri against M. usitatus was not significantly different from that of applications of the insecticide spinetoram. Biodiversity of other insects in treated fields was assessed, and there were 21 insect species in garden plots treated with N. barkeri releases. The total abundance (N), Shannon's diversity index (H), Pielou's evenness index (J) and Simpson's diversity index (D) of the garden plots treated with predatory mites were all significantly higher than that in the garden plots treated with spinetoram, where we found no species of predators or parasitoids and 7 herbivores. Our results show that N. barkeri is a potential means to control M. usitatus while preserving arthropod diversity at the level of treated gardens.


Subject(s)
Biodiversity , Mites , Predatory Behavior , Animals , Predatory Behavior/physiology , Mites/physiology , Pest Control, Biological/methods , Insecticides/pharmacology , Arthropods/physiology , Macrolides
10.
Mol Ecol ; 33(14): e17426, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38825980

ABSTRACT

The animal gut microbiota is strongly influenced by environmental factors that shape their temporal dynamics. Although diet is recognized as a major driver of gut microbiota variation, dietary patterns have seldom been linked to gut microbiota dynamics in wild animals. Here, we analysed the gut microbiota variation between dry and rainy seasons across four Sceloporus species (S. aeneus, S. bicanthalis, S. grammicus and S. spinosus) from central Mexico in light of temporal changes in diet composition. The lizard microbiota was dominated by Firmicutes (now Bacillota) and Bacteroidota, and the closely related species S. aeneus and S. bicanthalis shared a great number of core bacterial taxa. We report species-specific seasonal changes in gut microbiota diversity and composition: greater alpha diversity during the dry compared to the rainy season in S. bicanthalis, the opposite pattern in S. aeneus, and no seasonal differences in S. grammicus and S. spinosus. Our findings indicated a positive association between gut bacterial composition and dietary composition for S. bicanthalis and S. grammicus, but bacterial diversity did not increase linearly with dietary richness in any lizard species. In addition, seasonality affected bacterial composition, and microbial community similarity increased between S. aeneus and S. bicanthalis, as well as between S. grammicus and S. spinosus. Together, our results illustrate that seasonal variation and dietary composition play a role in shaping gut microbiota in lizard populations, but this is not a rule and other ecological factors influence microbiota variation.


Subject(s)
Bacteria , Diet , Gastrointestinal Microbiome , Lizards , Seasons , Animals , Gastrointestinal Microbiome/genetics , Lizards/microbiology , Mexico , Bacteria/classification , Bacteria/genetics , Arthropods/microbiology , RNA, Ribosomal, 16S/genetics , Biodiversity
11.
Science ; 384(6703): 1429-1435, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38935712

ABSTRACT

Knowledge of Cambrian animal anatomy is limited by preservational processes that result in compaction, size bias, and incompleteness. We documented pristine three-dimensional (3D) anatomy of trilobites fossilized through rapid ash burial from a pyroclastic flow entering a shallow marine environment. Cambrian ellipsocephaloid trilobites from Morocco are articulated and undistorted, revealing exquisite details of the appendages and digestive system. Previously unknown anatomy includes a soft-tissue labrum attached to the hypostome, a slit-like mouth, and distinctive cephalic feeding appendages. Our findings resolve controversy over whether the trilobite hypostome is the labrum or incorporates it and establish crown-group euarthropod homologies in trilobites. This occurrence of moldic fossils with 3D soft parts highlights volcanic ash deposits in marine settings as an underexplored source for exceptionally preserved organisms.


Subject(s)
Arthropods , Fossils , Volcanic Eruptions , Animals , Arthropods/anatomy & histology , Arthropods/classification , Fossils/anatomy & histology , Morocco
12.
BMC Biol ; 22(1): 135, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38867210

ABSTRACT

BACKGROUND: Evolution of novelty is a central theme in evolutionary biology, yet studying the origins of traits with an apparently discontinuous origin remains a major challenge. Venom systems are a well-suited model for the study of this phenomenon because they capture several aspects of novelty across multiple levels of biological complexity. However, while there is some knowledge on the evolution of individual toxins, not much is known about the evolution of venom systems as a whole. One way of shedding light on the evolution of new traits is to investigate less specialised serial homologues, i.e. repeated traits in an organism that share a developmental origin. This approach can be particularly informative in animals with repetitive body segments, such as centipedes. RESULTS: Here, we investigate morphological and biochemical aspects of the defensive telopodal glandular organs borne on the posterior legs of venomous stone centipedes (Lithobiomorpha), using a multimethod approach, including behavioural observations, comparative morphology, proteomics, comparative transcriptomics and molecular phylogenetics. We show that the anterior venom system and posterior telopodal defence system are functionally convergent serial homologues, where one (telopodal defence) represents a model for the putative early evolutionary state of the other (venom). Venom glands and telopodal glandular organs appear to have evolved from the same type of epidermal gland (four-cell recto-canal type) and while the telopodal defensive secretion shares a great degree of compositional overlap with centipede venoms in general, these similarities arose predominantly through convergent recruitment of distantly related toxin-like components. Both systems are composed of elements predisposed to functional innovation across levels of biological complexity that range from proteins to glands, demonstrating clear parallels between molecular and morphological traits in the properties that facilitate the evolution of novelty. CONCLUSIONS: The evolution of the lithobiomorph telopodal defence system provides indirect empirical support for the plausibility of the hypothesised evolutionary origin of the centipede venom system, which occurred through functional innovation and gradual specialisation of existing epidermal glands. Our results thus exemplify how continuous transformation and functional innovation can drive the apparent discontinuous emergence of novelties on higher levels of biological complexity.


Subject(s)
Arthropods , Animals , Arthropods/physiology , Arthropod Venoms/chemistry , Biological Evolution , Transcriptome , Phylogeny
13.
Microb Ecol ; 87(1): 80, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829422

ABSTRACT

The Gypsum Karst of Sorbas, Almeria, southeast Spain, includes a few caves whose entrances are open and allow the entry and roosting of numerous bats. Caves are characterized by their diversity of gypsum speleothems, such as stalactites, coralloids, gypsum crusts, etc. Colored biofilms can be observed on the walls of most caves, among which the Covadura and C3 caves were studied. The objective was to determine the influence that bat mycobiomes may have on the fungal communities of biofilms. The results indicate that the fungi retrieved from white and yellow biofilms in Covadura Cave (Ascomycota, Mortierellomycota, Basidiomycota) showed a wide diversity, depending on their location, and were highly influenced by the bat population, the guano and the arthropods that thrive in the guano, while C3 Cave was more strongly influenced by soil- and arthropod-related fungi (Ascomycota, Mortierellomycota), due to the absence of roosting bats.


Subject(s)
Arthropods , Biofilms , Calcium Sulfate , Caves , Chiroptera , Fungi , Caves/microbiology , Chiroptera/microbiology , Chiroptera/physiology , Animals , Fungi/classification , Fungi/physiology , Fungi/genetics , Fungi/isolation & purification , Arthropods/microbiology , Spain , Biodiversity , Mycobiome , Soil Microbiology
14.
Sci Total Environ ; 944: 173845, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-38871314

ABSTRACT

Terrestrial ectotherms are vulnerable to climate change since their biological rates depend on the ambient temperature. As temperature may interact with toxicant exposure, climate change may cause unpredictable responses to toxic stress. A population's thermal adaptation will impact its response to temperature change, but also to interactive effects from temperature and toxicants, but these effects are still not fully understood. Here, we assessed the combined effects of exposure to the insecticide imidacloprid across the temperatures 10-25 °C of two populations of the Collembola Hypogastrura viatica (Tullberg, 1872), by determining their responses in multiple life history traits. The con-specific populations differ considerably in thermal adaptations; one (arctic) is a temperature generalist, while the other (temperate) is a warm-adapted specialist. For both populations, the sub-lethal concentrations of imidacloprid became lethal with increasing temperature. Although the thermal maximum is higher for the warm-adapted population, the reduction in survival was stronger. Growth was reduced by imidacloprid in a temperature-dependent manner, but only at the adult life stage. The decrease in adult body size combined with the absence of an effect on the age at first reproduction suggests a selection on the timing of maturation. Egg production was reduced by imidacloprid in both populations, but the negative effect was only dependent on temperature in the warm-adapted population, with no effect at 10 °C, and decreases of 41 % at 15 °C, and 74 % at 20 °C. For several key traits, the population best adapted to utilize high temperatures was also the most sensitive to toxic stress at higher temperatures. It could be that by allocating more energy to faster growth, development, and reproduction at higher temperatures, the population had less energy for maintenance, making it more sensitive to toxic stress. Our findings demonstrate the need to take into account a population's thermal adaptation when assessing the interactive effects between temperature and other stressors.


Subject(s)
Climate Change , Insecticides , Neonicotinoids , Nitro Compounds , Temperature , Neonicotinoids/toxicity , Nitro Compounds/toxicity , Animals , Insecticides/toxicity , Arthropods/drug effects , Arthropods/physiology , Soil Pollutants/toxicity , Soil/chemistry , Adaptation, Physiological , Imidazoles/toxicity
15.
Glob Chang Biol ; 30(6): e17356, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38853470

ABSTRACT

Seasonally abundant arthropods are a crucial food source for many migratory birds that breed in the Arctic. In cold environments, the growth and emergence of arthropods are particularly tied to temperature. Thus, the phenology of arthropods is anticipated to undergo a rapid change in response to a warming climate, potentially leading to a trophic mismatch between migratory insectivorous birds and their prey. Using data from 19 sites spanning a wide temperature gradient from the Subarctic to the High Arctic, we investigated the effects of temperature on the phenology and biomass of arthropods available to shorebirds during their short breeding season at high latitudes. We hypothesized that prolonged exposure to warmer summer temperatures would generate earlier peaks in arthropod biomass, as well as higher peak and seasonal biomass. Across the temperature gradient encompassed by our study sites (>10°C in average summer temperatures), we found a 3-day shift in average peak date for every increment of 80 cumulative thawing degree-days. Interestingly, we found a linear relationship between temperature and arthropod biomass only below temperature thresholds. Higher temperatures were associated with higher peak and seasonal biomass below 106 and 177 cumulative thawing degree-days, respectively, between June 5 and July 15. Beyond these thresholds, no relationship was observed between temperature and arthropod biomass. Our results suggest that prolonged exposure to elevated temperatures can positively influence prey availability for some arctic birds. This positive effect could, in part, stem from changes in arthropod assemblages and may reduce the risk of trophic mismatch.


Subject(s)
Arthropods , Biomass , Seasons , Temperature , Animals , Arctic Regions , Arthropods/physiology , Climate Change , Food Chain , Charadriiformes/physiology , Animal Migration
16.
Bioinspir Biomim ; 19(5)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38866026

ABSTRACT

This research presents a 10-year systematic review based on bibliometric analysis of the bio-inspired design of hard-bodied mobile robot mechatronic systems considering the anatomy of arthropods. These are the most diverse group of animals whose flexible biomechanics and adaptable morphology, thus, it can inspire robot development. Papers were reviewed from two international databases (Scopus and Web of Science) and one platform (Aerospace Research Central), then they were classified according to: Year of publication (January 2013 to April 2023), arthropod group, published journal, conference proceedings, editorial publisher, research teams, robot classification according to the name of arthropod, limb's locomotion support, number of legs/arms, number of legs/body segments, limb's degrees of freedom, mechanical actuation type, modular system, and environment adaptation. During the screening, more than 33 000 works were analyzed. Finally, a total of 174 studies (90 journal-type, 84 conference-type) were selected for in-depth study: Insecta-hexapods (53.8%), Arachnida-octopods (20.7%), Crustacea-decapods (16.1%), and Myriapoda-centipedes and millipedes (9.2%). The study reveals that the most active editorials are the Institute of Electrical and Electronics Engineers Inc., Springer, MDPI, and Elsevier, while the most influential researchers are located in the USA, China, Singapore, and Japan. Most works pertained to spiders, crabs, caterpillars, cockroaches, and centipedes. We conclude that 'arthrobotics' research, which merges arthropods and robotics, is constantly growing and includes a high number of relevant studies with findings that can inspire new methods to design biomechatronic systems.


Subject(s)
Arthropods , Bibliometrics , Robotics , Animals , Robotics/instrumentation , Arthropods/physiology , Arthropods/anatomy & histology , Biomimetics/methods , Equipment Design , Locomotion/physiology , Biomechanical Phenomena
17.
mBio ; 15(7): e0059024, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38832779

ABSTRACT

Rapid climate change in the Arctic is altering microbial structure and function, with important consequences for the global ecosystem. Emerging evidence suggests organisms in higher trophic levels may also influence microbial communities, but whether warming alters these effects is unclear. Wolf spiders are dominant Arctic predators whose densities are expected to increase with warming. These predators have temperature-dependent effects on decomposition via their consumption of fungal-feeding detritivores, suggesting they may indirectly affect the microbial structure as well. To address this, we used a fully factorial mesocosm experiment to test the effects of wolf spider density and warming on litter microbial structure in Arctic tundra. We deployed replicate litter bags at the surface and belowground in the organic soil profile and analyzed the litter for bacterial and fungal community structure, mass loss, and nutrient characteristics after 2 and 14 months. We found there were significant interactive effects of wolf spider density and warming on fungal but not bacterial communities. Specifically, higher wolf spider densities caused greater fungal diversity under ambient temperature but lower fungal diversity under warming at the soil surface. We also observed interactive treatment effects on fungal composition belowground. Wolf spider density influenced surface bacterial composition, but the effects did not change with warming. These findings suggest a widespread predator can have indirect, cascading effects on litter microbes and that effects on fungi specifically shift under future expected levels of warming. Overall, our study highlights that trophic interactions may play important, albeit overlooked, roles in driving microbial responses to warming in Arctic terrestrial ecosystems. IMPORTANCE: The Arctic contains nearly half of the global pool of soil organic carbon and is one of the fastest warming regions on the planet. Accelerated decomposition of soil organic carbon due to warming could cause positive feedbacks to climate change through increased greenhouse gas emissions; thus, changes in ecological dynamics in this region are of global relevance. Microbial structure is an important driver of decomposition and is affected by both abiotic and biotic conditions. Yet how activities of soil-dwelling organisms in higher trophic levels influence microbial structure and function is unclear. In this study, we demonstrate that predicted changes in abundances of a dominant predator and warming interactively affect the structure of litter-dwelling fungal communities in the Arctic. These findings suggest predators may have widespread, indirect cascading effects on microbial communities, which could influence ecosystem responses to future climate change.


Subject(s)
Bacteria , Climate Change , Fungi , Soil Microbiology , Spiders , Animals , Arctic Regions , Fungi/classification , Spiders/microbiology , Spiders/physiology , Bacteria/classification , Bacteria/isolation & purification , Bacteria/genetics , Mycobiome , Food Chain , Predatory Behavior , Tundra , Microbiota , Ecosystem , Temperature , Arthropods/microbiology , Soil/chemistry , Biodiversity
18.
J Insect Physiol ; 156: 104670, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38945435

ABSTRACT

Ecoimmunology explores how ecological factors and evolutionary processes influence immune responses across various taxa and how immune responses trade-off with other traits. Studying immune responses requires biologically meaningful immunoassays applicable to a broad range of taxa and are sensitive enough to detect changes in the immune response. Useful immunoassays should also correlate with immunocompetence and fitness. The encapsulation response, a complex immune mechanism in arthropods, serves as a robust method for ecoimmunological investigations. However, traditional methods to test the encapsulation response can require long training. This study introduces an innovative, cost-effective method for assessing the encapsulation immune response in arthropods, which simplifies the procedure by reducing the training time and skill required. Our modified device utilizes a pen and syringe assembly for inserting monofilaments into arthropod larvae. We compared our device against traditional methods. Despite the new method being 22% faster, it did not compromise the accuracy or effectiveness of the encapsulation response when compared with traditional techniques, demonstrating similar degrees of melanization and encapsulation. Our method allowed for more accessible participation by less experienced researchers, such as undergraduates, facilitating their involvement in ecoimmunological research.


Subject(s)
Larva , Animals , Larva/immunology , Larva/physiology , Arthropods/physiology
19.
Appl Environ Microbiol ; 90(7): e0039424, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38916291

ABSTRACT

Microbial communities perform various functions, many of which contribute to ecosystem-level nutrient cycling via decomposition. Factors influencing leaf detrital decomposition are well understood in terrestrial and aquatic ecosystems, but much less is known about arthropod detrital inputs. Here, we sought to infer how differences in arthropod detritus affect microbial-driven decomposition and community function in a carnivorous pitcher plant, Sarracenia purpurea. Using sterile mesh bags filled with different types of sterile arthropod prey, we assessed if prey type influenced the rate of decomposition in pitcher plants over 7 weeks. Additionally, we measured microbial community composition and function, including hydrolytic enzyme activity and carbon substrate use. When comparing decomposition rates, we found that ant and beetle prey with higher exoskeleton content lost less mass compared with fly prey. We observed the highest protease activity in the fly treatment, which had the lowest exoskeleton content. Additionally, we saw differences in the pH of the pitcher fluid, driven by the ant treatment which had the lowest pH. According to our results from 16S rRNA gene metabarcoding, prey treatments with the highest bacterial amplicon sequence variant (ASV) richness (ant and beetle) were associated with prey that lost a lower proportion of mass over the 7 weeks. Overall, arthropod detritus provides unique nutrient sources to decomposer communities, with different prey influencing microbial hydrolytic enzyme activity and composition. IMPORTANCE: Microbial communities play pivotal roles in nutrient cycling via decomposition and nutrient transformation; however, it is often unclear how different substrates influence microbial activity and community composition. Our study highlights how different types of insects influence decomposition and, in turn, microbial composition and function. We use the aquatic pools found in a carnivorous pitcher plant as small, discrete ecosystems that we can manipulate and study independently. We find that some insect prey (flies) breaks down faster than others (beetles or ants) likely because flies contain more things that are easy for microbes to eat and derive essential nutrients from. This is also reflected in higher enzyme activity in the microbes decomposing the flies. Our work bridges a knowledge gap about how different substrates affect microbial decomposition, contributing to the broader understanding of ecosystem function in a nutrient cycling context.


Subject(s)
Ants , Microbiota , Sarraceniaceae , Animals , Sarraceniaceae/microbiology , Sarraceniaceae/metabolism , Ants/microbiology , Arthropods , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacteria/isolation & purification , Coleoptera/microbiology , RNA, Ribosomal, 16S/genetics , Ecosystem , Food Chain
20.
Environ Toxicol Chem ; 43(8): 1820-1835, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38837715

ABSTRACT

Springtails (subclass: Collembola) represent one of the most extensively studied invertebrate groups in soil ecotoxicology. This is because of their ease of laboratory culture, significant ecological role, and sensitivity to environmental contaminants. Folsomia candida (family: Isotomidae) is a globally widespread parthenogenetic species that is prevalent in laboratory toxicity testing with springtails. Conversely, Arrhopalites caecus (family: Arrhopalitidae), a parthenogenic globular springtail species, remains untested in soil ecotoxicology. This species is found in diverse habitats, including cave systems and forest leaf litter, and has a global distribution. The sensitivity of A. caecus to environmental contaminants, such as neonicotinoid insecticides, as well as its life history and optimal culturing conditions, are largely unknown. The present study describes the establishment of a pure A. caecus laboratory culture and characterization of its life cycle and culturing conditions. We assessed the sensitivity of A. caecus to various insecticides, including exposures to the neonicotinoid thiamethoxam in soil and through a novel feeding assay as well as to clothianidin and cyantraniliprole in spiked soil exposures. In 7- and 14-day exposures to thiamethoxam in agricultural soil, the 50% lethal concentration (LC50) values were determined to be 0.129 mg/kg dry weight and 0.010 mg/kg dry weight, respectively. The 14-day LC50 for exposure to thiamethoxam via spiked food was determined to be 0.307 mg/kg dry weight. In addition, the 28-day 50% effect concentration for inhibition of juvenile production from cyantraniliprole exposure in the same soil type was 0.055 mg/kg dry weight. Challenges encountered in using this species included susceptibility to mite infestation and low adult survival rates in the 28-day cyantraniliprole test. Environ Toxicol Chem 2024;43:1820-1835. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Subject(s)
Arthropods , Insecticides , Soil Pollutants , Toxicity Tests , Animals , Arthropods/drug effects , Soil Pollutants/toxicity , Insecticides/toxicity , Neonicotinoids/toxicity , Soil/chemistry , Thiamethoxam/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL