Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.508
Filter
1.
BMC Plant Biol ; 24(1): 642, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38972980

ABSTRACT

Among the several threats to humanity by anthropogenic activities, contamination of the environment by heavy metals is of great concern. Upon entry into the food chain, these metals cause serious hazards to plants and other organisms including humans. Use of microbes for bioremediation of the soil and stress mitigation in plants are among the preferred strategies to provide an efficient, cost-effective, eco-friendly solution of the problem. The current investigation is an attempt in this direction where fungal strain PH1 was isolated from the rhizosphere of Parthenium hysterophorus which was identified as Aspergillus niger by sequence homology of the ITS 1 and ITS 4 regions of the rRNA. The strain was tested for its effect on growth and biochemical parameters as reflection of its potential to mitigate Pb stress in Zea mays exposed to 100, 200 and 500 µg of Pb/g of soil. In the initial screening, it was revealed that the strain has the ability to tolerate lead stress, solubilize insoluble phosphate and produce plant growth promoting hormones (IAA and SA) and other metabolites like phenolics, flavonoids, sugar, protein and lipids. Under 500 µg of Pb/g of soil, Z. mays exhibited significant growth retardation with a reduction of 31% in root length, 30.5% in shoot length, 57.5% in fresh weight and 45.2% in dry weight as compared to control plants. Inoculation of A. niger to Pb treated plants not only restored root and shoot length, rather promoted it to a level significantly higher than the control plants. Association of the strain modulated the physio-hormonal attributes of maize plants that resulted in their better growth which indicated a state of low stress. Additionally, the strain boosted the antioxidant defence system of the maize there by causing a significant reduction in the ascorbic acid peroxidase (1.5%), catalase (19%) and 1,1-diphenyl-2 picrylhydrazyl (DPPH) radical scavenging activity (33.3%), indicating a lower stress condition as compared to their non-inoculated stressed plants. Based on current evidence, this strain can potentially be used as a biofertilizer for Pb-contaminated sites where it will improve overall plant health with the hope of achieving better biological and agricultural yields.


Subject(s)
Antioxidants , Aspergillus niger , Lead , Phosphates , Photosynthesis , Zea mays , Zea mays/growth & development , Zea mays/microbiology , Zea mays/drug effects , Zea mays/metabolism , Aspergillus niger/metabolism , Lead/metabolism , Antioxidants/metabolism , Photosynthesis/drug effects , Phosphates/metabolism , Soil Pollutants/metabolism , Stress, Physiological , Biodegradation, Environmental
2.
Food Res Int ; 190: 114628, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945581

ABSTRACT

Aromatic compounds serve as the primary source of floral and fruity aromas in sauce-flavor (Maotai flavor) baijiu, constituting the skeleton components of its flavor profile. Nevertheless, the formation mechanism of these compounds and key aroma-producing enzymes in sauce-flavor Daqu (fermentation agent, SFD) remain elusive. Here, we combined metagenomics, metaproteomics, metabolomics, and key enzyme activity to verify the biosynthesis pathway of aromatic compounds and to identify key enzymes, genes, and characteristic microorganisms in SFD. The results showed that the later period of fermentation was critical for the generation of aromatic compounds in SFD. In-situ verification was conducted on the potential key enzymes and profiles in various metabolites, providing comprehensive evidence for the main synthetic pathways of aromatic compounds in SFD. Notably, our results showed that primary amine oxidase (PrAO) and aldehyde dehydrogenase (ALDH) emerged as two key enzymes promoting aromatic compound synthesis. Additionally, two potential key functional genes regulating aromatics generation were identified during SFD fermentation through correlation analysis between proteins and relevant metabolites, coupled with in vitro amplification test. Furthermore, original functional strains (Aspergillus flavus-C10 and Aspergillus niger-IN2) exhibiting high PrAO and ALDH production were successfully isolated from SFD, thus validating the results of metagenomics and metaproteomics analyses. This study comprehensively elucidates the pathway of aromatic compound formation in SFD at the genetic, proteomic, enzymatic, and metabolomic levels, providing new ideas for the investigation of key flavor substances in baijiu. Additionally, these findings offer valuable insights into the regulatory mechanisms of aromatic compounds generation.


Subject(s)
Fermentation , Flavoring Agents , Flavoring Agents/metabolism , Odorants/analysis , Proteomics , Aspergillus niger/enzymology , Aspergillus niger/genetics , Aspergillus niger/metabolism , Aspergillus flavus/enzymology , Aspergillus flavus/genetics , Aspergillus flavus/metabolism , Metagenomics , Metabolomics , Fermented Foods/microbiology
3.
Sheng Wu Gong Cheng Xue Bao ; 40(6): 1909-1923, 2024 Jun 25.
Article in Chinese | MEDLINE | ID: mdl-38914500

ABSTRACT

Galactitol, a rare sugar alcohol, has promising potential in the food industry and pharmaceutical field. The available industrial production methods rely on harsh hydrogenation processes, which incur high costs and environmental concerns. It is urgent to develop environmentally friendly and efficient biosynthesis technologies. In this study, a xylose reductase named AnXR derived from Aspergillus niger CBS 513.88 was identified and characterized for the enzymatic properties. AnXR exhibited the highest activity at 25 ℃ and pH 8.0, and it belonged to the NADPH-dependent aldose reductase family. To engineer a strain for galactitol production, we deleted the galactokinase (GAL1) gene in Saccharomyes cerevisiae by using the recombinant gene technology, which significantly reduced the metabolic utilization of D-galactose by host cells. Subsequently, we introduced the gene encoding AnXR into this modified strain, creating an engineered strain capable of catalyzing the conversion of D-galactose into galactitol. Furthermore, we optimized the whole-cell catalysis conditions for the engineered strain, which achieved a maximum galactitol yield of 12.10 g/L. Finally, we tested the reduction ability of the strain for other monosaccharides and discovered that it could produce functional sugar alcohols such as xylitol and arabinitol. The engineered strain demonstrates efficient biotransformation capabilities for galactitol and other functional sugar alcohols, representing a significant advancement in environmentally sustainable production practices.


Subject(s)
Aldehyde Reductase , Aspergillus niger , Galactitol , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Aldehyde Reductase/metabolism , Aldehyde Reductase/genetics , Galactitol/metabolism , Galactitol/genetics , Aspergillus niger/metabolism , Aspergillus niger/genetics , Galactose/metabolism , Metabolic Engineering/methods , Fermentation , Industrial Microbiology , Galactokinase/genetics , Galactokinase/metabolism
4.
Int J Biol Macromol ; 273(Pt 2): 133224, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38897518

ABSTRACT

In recent years, with the booming of the edible mushroom industry, chitin production has become increasingly dependent on fungi and other non-traditional sources. Fungal chitin has advantages including superior performance, simpler separation processes, abundant raw materials, and the absence of shellfish allergens. As a kind of edible mushroom, flammulina velutipes (F. velutipes) also has the advantages of wide source and large annual yield. This provided the possibility for the extraction of chitin. Here, a procedure to extract chitin from F. velutipes waste be presented. This method comprises low-concentration acid pretreatment coupled with consolidated bioprocessing with Aspergillus niger. Characterization by SEM, FTIR, XRD, NMR, and TGA confirmed that the extracted chitin was ß-chitin. To achieve optimal fermentation of F. velutipes waste (80 g/L), ammonium sulfate and glucose were selected as nitrogen and carbon sources (5 g/L), with a fermentation time of 5 days. The extracted chitin could be further deacetylated and purified to obtain high-purity chitosan (99.2 % ± 1.07 %). This chitosan exhibited a wide degree of deacetylation (50.0 % ± 1.33 % - 92.1 % ± 0.97 %) and a molecular weight distribution of 92-192 kDa. Notably, the yield of chitosan extracted in this study was increased by 56.3 % ± 0.47 % compared to the traditional chemical extraction method.


Subject(s)
Aspergillus niger , Chitin , Fermentation , Flammulina , Aspergillus niger/metabolism , Flammulina/chemistry , Chitin/chemistry , Chitin/isolation & purification , Waste Products , Acids/chemistry , Molecular Weight
5.
Fungal Biol ; 128(4): 1868-1875, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38876539

ABSTRACT

In the development of fungal based materials for applications in construction through to biomedical materials and fashion, understanding how to regulate and direct growth is key for gaining control over the form of material generated. Here, we show how simple 'chemical food' cues can be used to manipulate the growth of fungal networks by taking Aspergillus niger as an exemplar species. Chemotrophic responses towards a range of nitrogen and carbon containing biomolecules including amino acids, sugars and sugar alcohols were quantified in terms of chemotrophic index (CI) under a range of basal media compositions (low and high concentrations of N and C sources). Growth of filamentous networks was followed using fluorescence microscopy at single time points and during growth by an AI analytical approach to explore chemo sensing behaviour of the fungus when exposed to pairs (C-C, C-N, N-N) of biomolecules simultaneously. Data suggests that the directive growth of A. niger can be controlled towards simple biomolecules with CI values giving a good approximation for expected growth under a range of growth conditions. This is a first step towards identifying conditions for researcher-led directed growth of hyphae to make mycelial mats with tuneable morphological, physicochemical, and mechanical characteristics.


Subject(s)
Aspergillus niger , Culture Media , Hyphae , Nitrogen , Aspergillus niger/growth & development , Aspergillus niger/metabolism , Hyphae/growth & development , Culture Media/chemistry , Nitrogen/metabolism , Carbon/metabolism , Amino Acids/metabolism , Microscopy, Fluorescence
6.
Nat Commun ; 15(1): 4486, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802389

ABSTRACT

Bacterial-fungal interactions influence microbial community performance of most ecosystems and elicit specific microbial behaviours, including stimulating specialised metabolite production. Here, we use a co-culture experimental evolution approach to investigate bacterial adaptation to the presence of a fungus, using a simple model of bacterial-fungal interactions encompassing the bacterium Bacillus subtilis and the fungus Aspergillus niger. We find in one evolving population that B. subtilis was selected for enhanced production of the lipopeptide surfactin and accelerated surface spreading ability, leading to inhibition of fungal expansion and acidification of the environment. These phenotypes were explained by specific mutations in the DegS-DegU two-component system. In the presence of surfactin, fungal hyphae exhibited bulging cells with delocalised secretory vesicles possibly provoking an RlmA-dependent cell wall stress. Thus, our results indicate that the presence of the fungus selects for increased surfactin production, which inhibits fungal growth and facilitates the competitive success of the bacterium.


Subject(s)
Adaptation, Physiological , Aspergillus niger , Bacillus subtilis , Lipopeptides , Bacillus subtilis/physiology , Bacillus subtilis/metabolism , Bacillus subtilis/genetics , Bacillus subtilis/growth & development , Aspergillus niger/metabolism , Aspergillus niger/physiology , Aspergillus niger/growth & development , Lipopeptides/metabolism , Peptides, Cyclic/metabolism , Hyphae/growth & development , Hyphae/metabolism , Microbial Interactions/physiology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Coculture Techniques , Mutation , Cell Wall/metabolism
7.
J Food Sci ; 89(6): 3412-3429, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38767939

ABSTRACT

Fermentation of pulses as a clean processing technique has been reported to have a favorable impact on the functional and nutritional quality of the starting materials. Compared to commonly fermented pulses such as peas and chickpeas, limited information is available on the effect of fermentation on lentils, especially when using a high protein isolate (>80% protein) as compared to seeds or flours. Therefore, in the present work, lentil protein isolate was used as a feedstock for submerged fermentation with Aspergillus niger, Aspergillus oryzae, or Lactobacillus plantarum. After 48 h, the samples showed increased protein content with enhanced solubility and oil-holding capacity. Controlled fermentation, as opposed to spontaneous fermentation, maintained the high foaming capacity; however, all fermented samples had lower foam and emulsion stabilizing properties and reduced water-holding capacity compared to the control. The fermented proteins were also less digestible, possibly due to an increase in phenolics and saponins. New volatile compounds were identified in fermented samples that show promise for improved sensory attributes. Significant differences were observed in specific quality attributes depending on the microbial strain used. Further research is required to better understand the fermentative metabolism of microbial communities when provided high-protein lentil ingredients as growth substrates. PRACTICAL APPLICATION: Fermented lentil protein isolate has promising flavor profiles that may improve its sensory properties for food application.


Subject(s)
Aspergillus niger , Fermentation , Lactobacillus plantarum , Lens Plant , Nutritive Value , Volatile Organic Compounds , Lens Plant/microbiology , Lens Plant/chemistry , Lactobacillus plantarum/metabolism , Volatile Organic Compounds/analysis , Volatile Organic Compounds/metabolism , Aspergillus niger/metabolism , Plant Proteins/metabolism , Aspergillus oryzae/metabolism , Seeds/chemistry , Seeds/microbiology , Taste , Food Handling/methods
8.
Biotechnol J ; 19(5): e2400014, 2024 May.
Article in English | MEDLINE | ID: mdl-38719614

ABSTRACT

Microbial production of L-malic acid from renewable carbon sources has attracted extensive attention. The reduced cofactor NADPH plays a key role in biotransformation because it participates in both biosynthetic reactions and cellular stress responses. In this study, NADPH or its precursors nicotinamide and nicotinic acid were added to the fermentation medium of Aspergillus niger RG0095, which significantly increased the yield of malic acid by 11%. To further improve the titer and productivity of L-malic acid, we increased the cytoplasmic NADPH levels of A. niger by upregulating the NAD kinases Utr1p and Yef1p. Biochemical analyses demonstrated that overexpression of Utr1p and Yef1p reduced oxidative stress, while also providing more NADPH to catalyze the conversion of glucose into malic acid. Notably, the strain overexpressing Utr1p reached a malate titer of 110.72 ± 1.91 g L-1 after 108 h, corresponding to a productivity of 1.03 ± 0.02 g L-1 h-1. Thus, the titer and productivity of malate were increased by 24.5% and 44.7%, respectively. The strategies developed in this study may also be useful for the metabolic engineering of fungi to produce other industrially relevant bulk chemicals.


Subject(s)
Aspergillus niger , Fermentation , Malates , Metabolic Engineering , NADP , Aspergillus niger/metabolism , Aspergillus niger/genetics , Malates/metabolism , Metabolic Engineering/methods , NADP/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Glucose/metabolism , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism
9.
PLoS One ; 19(5): e0302185, 2024.
Article in English | MEDLINE | ID: mdl-38805421

ABSTRACT

In this investigation, we explore the harnessing of bamboo shoot residues (BSR) as a viable source for ruminant feed through fungal treatment, with the overarching objective of elevating feed quality and optimizing bamboo shoot utilization. The white-rot fungi (Wr.fungi), Aspergillus niger (A.niger), and its co-cultures (A.niger&Wr.fungi) were employed to ferment BSR. And the impact of different fermentation methods and culture time on the chemical composition (Crude protein Ash, neutral detergent fibre and acid detergent fibers), enzyme activity (Cellulase, Laccase, Filter paperase and Lignin peroxidase activities), and rumen digestibility in vitro were assessed. The findings reveal a nota ble 30.39% increase in crude protein in fermented BSR, accompanied by respective decreases of 13.02% and 17.31% in acid detergent fiber and neutral detergent fibre content. Enzyme activities experienced augmentation post-fermentation with A.niger&Wr.fungi. Specifically, the peak Cellulase, Laccase, and Lignin peroxidase activities for BSR with Wr.fungi treatment reached 748.4 U/g, 156.92 U/g, and 291.61 U/g, respectively, on the sixth day of fermentation. Concurrently, NH3-N concentration exhibited an upward trend with prolonged fermentation time. Total volatile fatty acids registered a decline, and the Acetate/Propionate ratio reached its nadir after 6 days of fermentation under the A.niger&Wr.fungi treatment. These outcomes furnish a theoretical foundation for the development of ruminant feeds treated via fungal co-culture.


Subject(s)
Animal Feed , Fermentation , Ruminants , Animals , Animal Feed/analysis , Aspergillus niger/metabolism , Plant Shoots/chemistry , Rumen/microbiology , Fungi/metabolism
10.
Sci Total Environ ; 933: 173171, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38740208

ABSTRACT

Phosphogypsum (PG) is the produced solid waste during phosphorus (P) extraction from phosphate rocks. PG is featured by its abundant PO43- and SO42-. This study investigated the utilization of PG as a material for lead (Pb) remediation, with the assistance of functional fungus. Aspergillus niger (A. niger) is a typical phosphate-solubilizing fungi (PSF), which has high ability to secret organic acids. Oxalic acid is its major secreted organic acid, which is often applied to enhance the P release from phosphate minerals. In this study, synthetic oxalic acid increased the immobilization rate of Pb2+ up to >99 % with the addition of PG. Then, it was observed that biogenic oxalic acid from A. niger can achieve comparable remediation effects. This was due to that PG could provide sufficient P for fungal growth, which allowed sustainable remediation. Subsequently, oxalic acid secreted by A. niger significantly increased the release of active P from PG, and then induced the formation of PPb minerals. In addition, other metabolites of A. niger (such as tyrosine-like substance) can also be complexed with Pb2+. Simultaneously, A. niger did not induce evidently elevation water-soluble fluorine (F) as PG contained abundant Ca2+. Moreover, this study elucidated that oversupply of PG promoted the formation of anglesite (Ksp = 1.6 × 10-8, relatively unstable), whereas the formation of lead oxalate (Ksp = 4.8 × 10-10, relatively stable) was reduced. This study hence shed a bright light on the sustainable utilization of PG for fungus-assisted remediation of heavy metals.


Subject(s)
Aspergillus niger , Biodegradation, Environmental , Calcium Sulfate , Lead , Phosphates , Phosphorus , Soil Pollutants , Lead/metabolism , Phosphorus/metabolism , Aspergillus niger/metabolism , Phosphates/metabolism , Soil Pollutants/metabolism , Environmental Restoration and Remediation/methods
11.
Sci Rep ; 14(1): 11537, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773211

ABSTRACT

The Martian surface and shallow subsurface lacks stable liquid water, yet hygroscopic salts in the regolith may enable the transient formation of liquid brines. This study investigated the combined impact of water scarcity, UV exposure, and regolith depth on microbial survival under Mars-like environmental conditions. Both vegetative cells of Debaryomyces hansenii and Planococcus halocryophilus, alongside with spores of Aspergillus niger, were exposed to an experimental chamber simulating Martian environmental conditions (constant temperatures of about - 11 °C, low pressure of approximately 6 mbar, a CO2 atmosphere, and 2 h of daily UV irradiation). We evaluated colony-forming units (CFU) and water content at three different regolith depths before and after exposure periods of 3 and 7 days, respectively. Each organism was tested under three conditions: one without the addition of salts to the regolith, one containing sodium chlorate, and one with sodium perchlorate. Our results reveal that the residual water content after the exposure experiments increased with regolith depth, along with the organism survival rates in chlorate-containing and salt-free samples. The survival rates of the three organisms in perchlorate-containing regolith were consistently lower for all organisms and depths compared to chlorate, with the most significant difference being observed at a depth of 10-12 cm, which corresponds to the depth with the highest residual water content. The postulated reason for this is an increase in the salt concentration at this depth due to the freezing of water, showing that for these organisms, perchlorate brines are more toxic than chlorate brines under the experimental conditions. This underscores the significance of chlorate salts when considering the habitability of Martian environments.


Subject(s)
Chlorates , Extraterrestrial Environment , Mars , Perchlorates , Perchlorates/metabolism , Chlorates/metabolism , Aspergillus niger/metabolism , Saccharomycetales/metabolism , Water/chemistry , Microbial Viability
12.
Fungal Genet Biol ; 172: 103894, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38657897

ABSTRACT

Inactivation of flbA in Aspergillus niger results in thinner cell walls, increased cell lysis, abolished sporulation, and an increased secretome complexity. A total of 36 transcription factor (TF) genes are differentially expressed in ΔflbA. Here, seven of these genes (abaA, aslA, aslB, azf1, htfA, nosA, and srbA) were inactivated. Inactivation of each of these genes affected sporulation and, with the exception of abaA, cell wall integrity and protein secretion. The impact on secretion was strongest in the case of ΔaslA and ΔaslB that showed increased pepsin, cellulase, and amylase activity. Biomass was reduced of agar cultures of ΔabaA, ΔaslA, ΔnosA, and ΔsrbA, while biomass was higher in liquid shaken cultures of ΔaslA and ΔaslB. The ΔaslA and ΔhtfA strains showed increased resistance to H2O2, while ΔaslB was more sensitive to this reactive oxygen species. Together, inactivation of the seven TF genes impacted biomass formation, sporulation, protein secretion, and stress resistance, and thereby these genes explain at least part of the pleiotropic phenotype of ΔflbA of A. niger.


Subject(s)
Aspergillus niger , Cell Wall , Fungal Proteins , Gene Expression Regulation, Fungal , Phenotype , Spores, Fungal , Transcription Factors , Aspergillus niger/genetics , Aspergillus niger/metabolism , Aspergillus niger/growth & development , Transcription Factors/genetics , Transcription Factors/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal/genetics , Spores, Fungal/genetics , Spores, Fungal/growth & development , Cell Wall/metabolism , Cell Wall/genetics , Hydrogen Peroxide/pharmacology , Genetic Pleiotropy
13.
World J Microbiol Biotechnol ; 40(6): 175, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38647735

ABSTRACT

The demand for environment-friendly cleanup techniques has arisen due to an increase in environmental pollutants. Fungi is the most prevalent and effective class of heavy metal-resistant microorganisms with the ability to leach metals. The objective of the present study was to isolate the fungi from the agricultural soil of Kashmir valley, investigate their multi-metal tolerance to heavy metals and evaluate the metal uptake capacities of the resistant fungi. The fungi were isolated and identified on the basis of morphological and molecular approach (ITS1 and ITS4). The tolerance limits of the isolated fungal strains to various doses of lead (Pb), cadmium (Cd), zinc (Zn), chromium (Cr), copper (Cu), nickel (Ni), and cobalt (Co) was evaluated. Five fungal strains, Aspergillus niger, Fusarium oxysporum, Fusarium verticillioides, Aspergillus fischeri, Epicoccum mackenziei were isolated from the soil samples. To the best of our knowledge, this is the first report on the study of metal resistance of Aspergillus fischeri and Epicoccum mackenziei. Among the identified fungal species, Aspergillus niger and Fusarium oxysporum were found to be most tolerant with a minimum inhibitory concentration (MIC) of 600 ppm against Cu and Cr respectively. Results indicated removal of considerable amount of heavy metals by some of the fungi. The highest metal uptake of 8.31 mg/g was found in Fusarium verticillioides for Zn. Surprisingly, these fungal strains demonstrated resistance to metal concentrations above the levels that are universally acceptable for polluted soils, and hence prove to be appealing contenders for use as bioremediation agents for cleaning up heavy metal-polluted environments.


Subject(s)
Fungi , Fusarium , Metals, Heavy , Microbial Sensitivity Tests , Soil Microbiology , Soil Pollutants , Metals, Heavy/metabolism , Soil Pollutants/metabolism , Fungi/drug effects , Fungi/isolation & purification , Fungi/classification , Fungi/metabolism , Fusarium/isolation & purification , Fusarium/drug effects , Fusarium/metabolism , Biodegradation, Environmental , Aspergillus niger/isolation & purification , Aspergillus niger/drug effects , Aspergillus niger/metabolism , Soil/chemistry , Aspergillus/drug effects , Aspergillus/metabolism , Aspergillus/isolation & purification
14.
Appl Microbiol Biotechnol ; 108(1): 302, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38639796

ABSTRACT

Alternative splicing (AS) greatly expands the protein diversity in eukaryotes. Although AS variants have been frequently reported existing in filamentous fungi, it remains unclear whether lignocellulose-degrading enzyme genes in industrially important fungi undergo AS events. In this work, AS events of lignocellulose-degrading enzymes genes in Aspergillus niger under two carbon sources (glucose and wheat straw) were investigated by RNA-Seq. The results showed that a total of 23 out of the 56 lignocellulose-degrading enzyme genes had AS events and intron retention was the main type of these AS events. The AS variant enzymes from the annotated endo-ß-1,4-xylanase F1 gene (xynF1) and the endo-ß-1,4-glucanase D gene (eglD), noted as XYNF1-AS and EGLD-AS, were characterized compared to their normal splicing products XYNF1 and EGLD, respectively. The AS variant XYNF1-AS displayed xylanase activity whereas XYNF1 did not. As for EGLD-AS and EGLD, neither of them showed annotated endo-ß-1,4-glucanase activity. Instead, both showed lytic polysaccharide monooxygenase (LPMO) activity with some differences in catalytic properties. Our work demonstrated that the AS variants in A. niger were good sources for discovering novel lignocellulose-degrading enzymes. KEY POINTS: • AS events were identified in the lignocellulose-degrading enzyme genes of A. niger. • New ß-1,4-xylanase and LPMO derived from AS events were characterized.


Subject(s)
Alternative Splicing , Aspergillus niger , Aspergillus niger/metabolism , Lignin/metabolism
15.
Molecules ; 29(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38675509

ABSTRACT

This study aimed to investigate the phytochemical profile, bioactivity, and release mechanism of bound polyphenols (BPs) released from Rosa roxburghii fruit pomace insoluble dietary fiber (RPDF) through solid-state fermentation (SSF) with Aspergillus niger. The results indicated that the amount of BPs released from RPDF through SSF was 17.22 mg GAE/g DW, which was significantly higher than that achieved through alkaline hydrolysis extraction (5.33 mg GAE/g DW). The BPs released through SSF exhibited superior antioxidant and α-glucosidase inhibitory activities compared to that released through alkaline hydrolysis. Chemical composition analysis revealed that SSF released several main compounds, including ellagic acid, epigallocatechin, p-hydroxybenzoic acid, quercetin, and 3,4-dihydroxyphenylpropionic acid. Mechanism analysis indicated that the disruption of tight structure, chemical bonds, and hemicellulose was crucial for the release of BPs from RPDF. This study provides valuable information on the potential application of SSF for the efficient release of BPs from RPDF, contributing to the utilization of RPDF as a functional food ingredient.


Subject(s)
Antioxidants , Aspergillus niger , Dietary Fiber , Fermentation , Fruit , Phytochemicals , Polyphenols , Rosa , Aspergillus niger/metabolism , Polyphenols/chemistry , Polyphenols/metabolism , Dietary Fiber/metabolism , Rosa/chemistry , Fruit/chemistry , Phytochemicals/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology
16.
Curr Biol ; 34(10): 2077-2084.e3, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38663397

ABSTRACT

Fungal biomineralization plays an important role in the biogeochemical cycling of metals in the environment and has been extensively explored for bioremediation and element biorecovery. However, the cellular and metabolic responses of fungi in the presence of toxic metals during biomineralization and their impact on organic matter transformations are unclear. This is an important question because co-contamination by toxic metals and organic pollutants is a common phenomenon in the natural environment. In this research, the biomineralization process and oxidative stress response of the geoactive soil fungus Aspergillus niger were investigated in the presence of toxic metals (Co, Cu, Mn, and Fe) and the azo dye orange II (AO II). We have found that the co-existence of toxic metals and AO II not only enhanced the fungal biomineralization of toxic metals but also accelerated the removal of AO II. We hypothesize that the fungus and in situ mycogenic biominerals (toxic metal oxalates) constituted a quasi-bioreactor, where the biominerals removed organic pollutants by catalyzing reactive oxygen species (ROS) generation resulting from oxidative stress. We have therefore demonstrated that a fungal/biomineral system can successfully achieve the goal of toxic metal immobilization and organic pollutant decomposition. Such findings inform the potential development of fungal-biomineral hybrid systems for mixed pollutant bioremediation as well as provide further understanding of fungal organic-inorganic pollutant transformations in the environment and their importance in biogeochemical cycles.


Subject(s)
Aspergillus niger , Biodegradation, Environmental , Biomineralization , Aspergillus niger/metabolism , Metals, Heavy/metabolism , Metals, Heavy/toxicity , Soil Pollutants/metabolism , Soil Pollutants/toxicity , Oxidative Stress
17.
Environ Res ; 251(Pt 2): 118714, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38518916

ABSTRACT

Disposal and recycling of heavy metal-enriched biomass is the key to measure the success of phytoremediation. This study employed innovative approach to use Aspergillus niger (A. niger) for the treatment of Cd-contaminated Helianthus annuus L. (sunflower) stalk after phytoremediation. Single-factor results showed that the removal of Cd at an initial pH of 3 was superior to sucrose and inoculation amount. 67.67% of Cd was removed by A. niger leaching system after 11 days based on response surface methodology optimum conditions (sucrose: 76.266 g L-1; inoculation amount: 10%; initial pH: 3), while the concentrations of nitrogen, phosphorus and potassium (N, P and K) of sunflower stalk were unaffected. While physicochemical pretreatment effectively enhanced the bioleaching efficiency, it also resulted in significant loss of P and K elements, thereby reducing the value of biomass for recycling and utilization. Therefore, the direct A. niger leaching method without pretreatment is more advantageous for the safe treatment and recycling of Cd-contaminated sunflower stalks.


Subject(s)
Aspergillus niger , Biodegradation, Environmental , Cadmium , Helianthus , Helianthus/metabolism , Aspergillus niger/metabolism , Cadmium/metabolism , Soil Pollutants/metabolism , Biomass
18.
Braz J Microbiol ; 55(2): 1151-1166, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38472698

ABSTRACT

Developing efficient microbiological methods to convert polysaccharide-rich materials into fermentable sugars, particularly monosaccharides, is vital for advancing the bioeconomy and producing renewable chemicals and energy sources. This study focused on optimizing the production conditions of an enzyme cocktail from Aspergillus niger ATCC 9642 using solid-state fermentation (SSF) and assessing its effectiveness in saccharifying mango peels through a simple, rapid, and efficient one-step process. A rotatable central composite design was employed to determine optimal conditions of moisture, time, and pH for enzyme production in SSF medium. The optimized enzyme cocktail exhibited cellulase activity (CMCase) at 6.28 U/g, filter paper activity (FPase) at 3.29 U/g, and pectinase activity at 117.02 U/g. These optimal activities were achieved with an SSF duration of 81 h, pH of 4.66, and a moisture content of 59%. The optimized enzyme cocktail effectively saccharified the mango peels without the need for chemical agents. The maximum saccharification yield reached approximately 81%, indicating efficient conversion of mango peels into sugars. The enzyme cocktail displayed consistent thermal stability within the tested temperature range of 30-60°C. Notably, the highest sugar release occurred within 36 h, with glucose, arabinose, galactose, and xylose being the primary monosaccharides released during saccharification. This study highlights the potential application of Aspergillus niger ATCC 9642 and SSF for enzymatic production, offering a simple and high-performance process for monosaccharide production. The optimized enzyme cocktail obtained through solid-state fermentation demonstrated efficient saccharification of mango peels, suggesting its suitability for industrial-scale applications.


Subject(s)
Aspergillus niger , Fermentation , Mangifera , Aspergillus niger/enzymology , Aspergillus niger/metabolism , Mangifera/microbiology , Mangifera/chemistry , Hydrogen-Ion Concentration , Cellulase/metabolism , Cellulase/chemistry , Temperature , Polygalacturonase/metabolism , Enzyme Stability , Hydrolysis , Fungal Proteins/metabolism
19.
Appl Environ Microbiol ; 90(4): e0000824, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38506527

ABSTRACT

Currently, the L-malic acid titer achieved through Aspergillus niger fermentation reaches 201 g/L, meeting industrial demands satisfactorily. However, the co-presence of structurally similar fumaric acid and succinic acid in fermentation products suggests a theoretical potential for further improvement in L-malic acid production. In the tricarboxylic acid cycle, fumarate reductase mediates the conversion of succinic acid to fumaric acid. Subsequently, fumarase catalyzes the conversion of fumaric acid to L-malic acid. Notably, both enzymatic reactions are reversible. Our investigation revealed that A. niger contains only one mitochondria-located fumarase FumA. Employing CRISPR-Cas9 technology, we performed a replacement of the fumA promoter with a doxycycline-induced promoter Tet. Under non-inducing condition, the conditional strain exhibited increased levels of fumaric acid and succinic acid. It strongly suggests that FumA mainly promotes the flow of fumaric acid to L-malic acid. Furthermore, a promoter PmfsA that is exclusively activated in a fermentation medium by calcium carbonate was identified through RNA-sequencing screening. Utilizing PmfsA to regulate fumA expression led to a 9.0% increase in L-malic acid titer, an 8.75% increase in yield (glucose to L-malic acid), and an 8.86% enhancement in productivity. This research serves as a significant step toward expediting the industrialization of L-malic acid synthesis via biological fermentation. Additionally, it offers valuable insights for the biosynthesis of other organic acids.IMPORTANCEThis study focuses on enhancing L-malic acid synthesis by modifying the tricarboxylic acid cycle within the mitochondria of Aspergillus niger. We emphasize the significant role of fumarase in converting fumaric acid into L-malic acid, enhancing our understanding of metabolic pathways in A. niger. The precise regulation of fumA is highlighted as a key factor in enhancing L-malic acid production. Furthermore, this research introduces a stringent conditional promoter (PmfsA), exclusively activated by CaCO3. The utilization of PmfsA for fumA expression resulted in heightened L-malic acid titers. The progress in metabolic engineering and bioprocess optimization holds promise for expediting industrial L-malic acid synthesis via biological fermentation. Moreover, it carries implications for the biosynthesis of various other organic acids.


Subject(s)
Aspergillus niger , Fumarate Hydratase , Fumarates , Aspergillus niger/genetics , Aspergillus niger/metabolism , Fumarate Hydratase/genetics , Fumarate Hydratase/metabolism , Malates/metabolism , Succinic Acid
20.
Antonie Van Leeuwenhoek ; 117(1): 58, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38502333

ABSTRACT

Genes flbA-E are involved in sporulation and vegetative growth in Aspergillus nidulans. Inactivation of either of these genes results in a fluffy phenotype with delayed or even abolished sporulation. Previously, a non-sporulating phenotype was obtained by inactivating flbA in Aspergillus niger, which was accompanied by lysis, thinner cell walls, and an increased secretome complexity. Here, we further studied the role of the flb genes of A. niger. Strains ΔflbA, ΔflbB and ΔflbE showed increased biomass formation, while inactivation of flbA-D reduced, or even abolished, formation of conidia. Strain ΔflbA was more sensitive to H2O2, DTT, and the cell wall integrity stress compounds SDS and Congo Red (CR). Also, ΔflbC was more sensitive to SDS, while ΔflbB, ΔflbD, and ΔflbE were more sensitive to CR. On the other hand, inactivation of flbE increased resistance to H2O2. Enzyme secretion was impacted when the Δflb strains were grown on xylose. Strain ΔflbE showed reduced xylanase, cellulase and amylase secretion. On the other hand, amylase secretion at the periphery of the ΔflbA colony was reduced but not in its center, while secretion of this enzyme was increased in the center of the ΔflbB colony but not at its periphery. Inactivation of flbC and flbD also impacted zonal cellulase and amylase activity. Together, the Flb protein family of A. niger function in biomass formation, sporulation, stress response, and protein secretion.


Subject(s)
Aspergillus niger , Cellulases , Animals , Aspergillus niger/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Hydrogen Peroxide/metabolism , Life Cycle Stages , Cellulases/metabolism , Amylases/metabolism , Spores, Fungal
SELECTION OF CITATIONS
SEARCH DETAIL
...