Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 5.444
1.
Biomed Pharmacother ; 175: 116788, 2024 Jun.
Article En | MEDLINE | ID: mdl-38772153

AIMS: Penicilazaphilone C (PAC) is hypothesized to potentially serve as a therapeutic treatment for allergic airway inflammation by inhibiting the NLRP3 inflammasome and reducing oxidative stress. METHODS: An allergic asthma model was induced in female BALB/c mice of the OVA, OVA+PAC, OVA+PAC+LPS, and OVA+Dex groups by sensitizing and subsequently challenging them with OVA. The OVA+PAC and Normal+PAC groups were treated with PAC, while the OVA+PAC+LPS group also received LPS. The OVA+Dex group was given dexamethasone (Dex). Samples of serum, bronchoalveolar lavage fluid (BALF), and lung tissue were collected for histological and cytological analysis. RESULTS: Allergic mice treated with PAC or Dex showed inhibited inflammation and mucus production in the lungs. There was a decrease in the number of inflammatory cells in the BALF, lower levels of inflammatory cytokines in the serum and BALF, and a reduction in the protein expression of NLRP3, ASC, cleaved caspase-1, IL-1ß, activated gasdermin D, MPO, Ly6G, and ICAM-1. Additionally, oxidative stress was reduced, as shown by a decrease in MDA and DCF, but an increase in SOD and GSH. Treatment with PAC also resulted in a decrease in pulmonary memory CD4+ T cells and an increase in regulatory T cells. However, the positive effects seen in the PAC-treated mice were reversed when the NLRP3 inflammasome was activated by LPS, almost returning to the levels of the Sham-treated mice. SIGNIFICANCE: PAC acts in a similar way to anti-allergic inflammation as Dex, suggesting it may be a viable therapeutic option for managing allergic asthma inflammation.


Asthma , Bronchoalveolar Lavage Fluid , Inflammasomes , Mice, Inbred BALB C , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Female , Inflammasomes/metabolism , Inflammasomes/drug effects , Asthma/drug therapy , Asthma/immunology , Asthma/chemically induced , Mice , Lung/drug effects , Lung/pathology , Lung/metabolism , Lung/immunology , Oxidative Stress/drug effects , Ovalbumin , Cytokines/metabolism , Inflammation/drug therapy , Inflammation/pathology , Disease Models, Animal , Dexamethasone/pharmacology , Anti-Inflammatory Agents/pharmacology
2.
Mol Biol Rep ; 51(1): 698, 2024 May 29.
Article En | MEDLINE | ID: mdl-38811424

BACKGROUND: Existing investigations suggest that the blockade of phosphoinositide 3-kinase (PI3K) activity contributes to inflammatory solution in allergic asthma, but whether this inhibition directly attenuates neutrophilic airway inflammation in vivo is still unclear. We explored the pharmacological effects of LY294002, a specific inhibitor of PI3K on the progression of neutrophilic airway inflammation and investigated the underlying mechanism. METHODS AND RESULTS: Female C57BL/6 mice were intranasally sensitized with ovalbumin (OVA) together with lipopolysaccharide (LPS) on days 0 and 6, and challenged with OVA on days 14-17 to establish a neutrophilic airway disease model. In the challenge phase, a subset of mice was treated intratracheally with LY294002. We found that treatment of LY294002 attenuates clinic symptoms of inflammatory mice. Histological studies showed that LY294002 significantly inhibited inflammatory cell infiltration and mucus production. The treatment also significantly inhibited OVA-LPS induced increases in inflammatory cell counts, especially neutrophil counts, and IL-17 levels in bronchoalveolar lavage fluid (BALF). LY294002 treated mice exhibited significantly increased IL-10 levels in BALF compared to the untreated mice. In addition, LY294002 reduced the plasma concentrations of IL-6 and IL-17. The anti-inflammatory effects of LY29402 were correlated with the downregulation of NLRP3 inflammasome. CONCLUSIONS: Our findings suggested that LY294002 as a potential pharmacological target for neutrophilic airway inflammation.


Asthma , Bronchoalveolar Lavage Fluid , Chromones , Disease Models, Animal , Inflammasomes , Lipopolysaccharides , Mice, Inbred C57BL , Morpholines , NLR Family, Pyrin Domain-Containing 3 Protein , Neutrophils , Ovalbumin , Phosphatidylinositol 3-Kinases , Phosphoinositide-3 Kinase Inhibitors , Animals , Asthma/drug therapy , Asthma/chemically induced , Asthma/metabolism , Asthma/immunology , Lipopolysaccharides/pharmacology , Mice , Inflammasomes/metabolism , Inflammasomes/drug effects , Female , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Chromones/pharmacology , Morpholines/pharmacology , Neutrophils/drug effects , Neutrophils/metabolism , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Lung/pathology , Lung/drug effects , Lung/metabolism , Interleukin-17/metabolism
3.
Nutrients ; 16(8)2024 Apr 13.
Article En | MEDLINE | ID: mdl-38674852

Probiotics may protect against asthma. We want to investigate whether probiotics can reverse the adverse effects of phthalate exposure on asthma. We selected the female offspring of BALB/c mice, born from pregnant female mice fed with diethylhexyl phthalate (DEHP). They were continuously administrated DEHP and Lactobacillus salivarius ssp. salicinius SA-03 when they were 5 weeks old, and ovalbumin (OVA) for asthma induction started at 6 weeks for 32 days. The mice were divided into four groups (n = 6/group): 1. control group (C), 2. OVA/DEHP group (OD), 3. OVA/DEHP/probiotics low-dose group (ODP-1X), and OVA/DEHP/probiotics high-dose group (ODP-5X). We found that the administration of probiotics significantly reduced the asthma severity of the mice, as well as serum IgE and IL-5. In the ODP-5X group, the proportion of CD4+ cells in the lung was reduced, whereas IL-10 in serum and CD8+ cells in BALF were increased. In histopathology, the ODP group showed reduced infiltration of inflammatory cells, bronchial epithelial cell hyperplasia, and tracheal mucus secretion. These results might indicate that high-dose probiotics may affect anti-inflammatory cytokines and reduce asthma-relative indicators. The above results may provide evidence that high-dose probiotics supplementation might play a modulating role in DEHP causes of allergic asthma in the pediatric animal model.


Asthma , Mice, Inbred BALB C , Probiotics , Animals , Asthma/chemically induced , Probiotics/pharmacology , Female , Mice , Ovalbumin , Ligilactobacillus salivarius , Diethylhexyl Phthalate/toxicity , Disease Models, Animal , Pregnancy , Lung/pathology , Lung/drug effects , Dietary Supplements , Immunoglobulin E/blood , Bronchoalveolar Lavage Fluid
4.
J Water Health ; 22(4): 735-745, 2024 Apr.
Article En | MEDLINE | ID: mdl-38678426

Swimming is a widely practiced exercise in modern society, where there is a heightened interest in health. The exceptional benefits of swimming are well-known, yet the issue of water quality management inevitably arises due to its nature as an aquatic exercise. Several studies reported that chlorine disinfectants commonly used in swimming pool water disinfection could degrade into toxic disinfection by-products (DBPs) and suggested that the DBPs might induce respiratory disorders, including asthma. Conversely, there were also reports that the DBPs had no significant effects on respiratory conditions. In this study, we investigated the influence of swimming exercise and DBPs on asthma. The decomposition products had little effect on the number of T cells in various immune organs. However, swimming exercise was found to increase the cell count in proportion to the exercise duration. Nevertheless, there were no significant changes in other immune cells and the secretion of asthma-related cytokines. These findings indicate that the effects of swimming pool DBPs on respiratory conditions during swimming exercise are either negligible or absent, and instead, the immunological benefits gained through consistent swimming exercise outweigh any potential drawbacks.


Asthma , Disinfectants , Swimming Pools , Swimming , Asthma/chemically induced , Disinfection/methods , Male , Mice , Animals , Humans , Water Pollutants, Chemical , Cytokines/metabolism
5.
Clin Respir J ; 18(4): e13742, 2024 Apr.
Article En | MEDLINE | ID: mdl-38664220

BACKGROUND: Allergic asthma is an important respiratory system problem characterized by airway inflammation, breathlessness, and bronchoconstriction. Allergic asthma and its outcomes are triggered by type 2 allergic immune responses. Tectorigenin is a methoxy-isoflavone with anti-inflammatory effects. In this study, we investigated the effects of tectorigenin on the pathophysiology of allergic asthma in an animal model. METHODS: Asthmatic mice were treated with tectorigenin. Then airway hyperresponsiveness (AHR), eosinophil percentage, levels of interleukin (IL)-33, IL-25, IL-13, IL-5, IL-4, total and ovalbumin (OVA)-specific immunoglobulin (Ig)E, and lung histopathology were evaluated. RESULT: Tectorigenin significantly (P 〈 0.05) reduced eosinophil infiltration (41 ± 7%) in the broncho-alveolar lavage fluid (BALF), serum IL-5 level (41 ± 5, pg/mL), and bronchial and vascular inflammation (scores of 1.3 ± 0.2 and 1.1 ± 0.3, respectively) but had no significant effects on AHR, serum levels of IL-33, -25, -13, and -4 (403 ± 24, 56 ± 7, 154 ± 11, and 89 ± 6 pg/mL, respectively), total and OVA-specific IgE (2684 ± 265 and 264 ± 19 ng/mL, respectively), goblet cell hyperplasia, and mucus production. CONCLUSION: Tectorigenin could control inflammation and the secretion of inflammatory mediators of asthma, so it can be regarded as a potential antiasthma treatment with the ability to control eosinophilia-related problems.


Anti-Inflammatory Agents , Antioxidants , Asthma , Disease Models, Animal , Isoflavones , Mice, Inbred BALB C , Ovalbumin , Animals , Asthma/drug therapy , Asthma/chemically induced , Asthma/metabolism , Asthma/immunology , Asthma/pathology , Mice , Ovalbumin/toxicity , Ovalbumin/adverse effects , Isoflavones/pharmacology , Isoflavones/therapeutic use , Antioxidants/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Immunoglobulin E/blood , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , Female , Lung/pathology , Lung/drug effects , Lung/metabolism , Lung/immunology , Cytokines/metabolism
6.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 29-39, 2024 Mar 31.
Article En | MEDLINE | ID: mdl-38650159

Asthma is a chronic inflammatory disease of the airways strongly associated with interleukin-4 (IL-4), a cytokine that mediates and regulates various immune responses, including allergic reactions. This study aimed to evaluate the anti-inflammatory and antioxidant effects of an Aqueous Extract of Clove (AEC) Syzygium aromaticum on the lungs and erythrocytes of an experimental asthma model in Wistar rats. For this purpose, four groups of male rats were examined: control, sensitized with ovalbumin (OVA), treated with AEC, and treated with a combination of OVA/AEC. After treatment, the antioxidant effect was determined by measuring the malondialdehyde (MDA), glutathione peroxidase (GPx), glutathione (GSH), and catalase (CAT) levels. The anti-inflammatory effect was determined by measuring IL-4 levels by performing enzyme-linked immunosorbent assay (ELISA) using serum, lung, and bronchoalveolar lavage fluid (BALF) samples. A significant reduction (p ≤ 0.05) in the MDA levels and a significant increase (p ≤ 0.05) in the levels of GPx and CAT were observed in the lungs of rats treated with cloves. However, no statistically significant variation was observed in GSH levels. In erythrocytes, no statistically significant differences were observed between the experimental batches. Regarding the anti-inflammatory effect, the administration of S. aromaticum extract to sensitized rats resulted in a recovery in the levels of total proteins and IL-4 and a decrease in the three compartments studied (lungs, serum, and bronchoalveolar liquid). These results were confirmed by microscopic examination of lung histological sections. Overall, these findings confirmed that the AEC has anti-inflammatory and antioxidant effects.


Anti-Inflammatory Agents , Antioxidants , Asthma , Bronchoalveolar Lavage Fluid , Disease Models, Animal , Glutathione Peroxidase , Glutathione , Interleukin-4 , Lung , Malondialdehyde , Plant Extracts , Rats, Wistar , Syzygium , Animals , Antioxidants/pharmacology , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Syzygium/chemistry , Male , Asthma/drug therapy , Asthma/chemically induced , Asthma/metabolism , Asthma/pathology , Bronchoalveolar Lavage Fluid/chemistry , Lung/drug effects , Lung/pathology , Lung/metabolism , Glutathione Peroxidase/metabolism , Glutathione/metabolism , Interleukin-4/metabolism , Interleukin-4/blood , Malondialdehyde/metabolism , Ovalbumin , Catalase/metabolism , Rats , Erythrocytes/drug effects , Erythrocytes/metabolism , Water/chemistry
7.
Biomed Pharmacother ; 174: 116596, 2024 May.
Article En | MEDLINE | ID: mdl-38631146

Particulate matter (PM) significantly contributes to the global health crisis of respiratory diseases. It is known to induce and exacerbate conditions such as asthma and respiratory infections. Long exposure to PM can increase the risk of combined allergic rhinitis and asthma syndrome (CARAS). Although therapeutic drugs can be used to improve symptoms of respiratory diseases caused by PM, their usage is often accompanied by side effects. Therefore, many studies are being conducted to discover functional food materials that can more effectively treat respiratory diseases while minimizing the side effects of these therapeutic drugs. This study was conducted to investigate the efficacy of Hydrangea serrata extract (HSE) in airway inflammation in a mouse model of CARAS exacerbated by PM. In the CARAS mouse model worsened by PM, the airway inflammation improvement effect of HSE was evaluated by analyzing allergic nasal symptoms, changes in inflammatory cells, OVA-specific immunoglobulin (Ig) levels, cytokines, mast cell activation, and histopathological findings of both nasal mucosa and lung tissue. HSE effectively reduced OVA-specific IgE and IgG1 and inhibited the production of T helper type 2 (Th2)-related cytokines such as IL-4 and IL-5. Importantly, HSE reduced IL-33 and ST2 expression and inhibited the activation of the NF-κB signaling pathway. In addition, HSE inhibited airway hypersensitivity, mucus production, and inflammatory cell infiltration. These results suggest that HSE may inhibit airway inflammation in CARAS/PM mice by regulating the IL-33/ST2/NF-κB signaling pathway, opening avenues for considering HSE as a potential material for treating allergic airway inflammation diseases in the future.


Asthma , Disease Models, Animal , Hydrangea , Interleukin-1 Receptor-Like 1 Protein , Interleukin-33 , Mice, Inbred BALB C , NF-kappa B , Particulate Matter , Plant Extracts , Signal Transduction , Animals , NF-kappa B/metabolism , Signal Transduction/drug effects , Plant Extracts/pharmacology , Interleukin-33/metabolism , Particulate Matter/toxicity , Particulate Matter/adverse effects , Asthma/drug therapy , Asthma/chemically induced , Mice , Hydrangea/chemistry , Interleukin-1 Receptor-Like 1 Protein/metabolism , Rhinitis, Allergic/drug therapy , Rhinitis, Allergic/chemically induced , Female , Inflammation/drug therapy , Inflammation/pathology , Cytokines/metabolism , Ovalbumin , Lung/drug effects , Lung/pathology , Lung/metabolism
8.
Int Immunopharmacol ; 132: 111985, 2024 May 10.
Article En | MEDLINE | ID: mdl-38603862

BACKGROUND: Bronchial asthma is a severe respiratory condition characterized by airway inflammation, remodeling, and oxidative stress. ß-Glucan (BG) is a polysaccharide found in fungal cell walls with powerful immunomodulatory properties. This study examined and clarified the mechanisms behind BG's ameliorativeactivitiesin an allergic asthma animal model. METHOD: BG was extracted from Chaga mushroom and characterized using FT-IR, UV-visible, zeta potential, and 1H NMR analysis. The mice were divided into five groups, including control, untreated asthmatic, dexamethasone (Dexa)-treated (1 mg/kg), and BG (30 and 100 mg/kg)-treated groups. RESULTS: BG treatment reduced nasal scratching behavior, airway-infiltrating inflammatory cells, and serum levels of IgE significantly. Additionally, BG attenuated oxidative stress biomarkers by lowering malonaldehyde (MDA) concentrations and increasing the levels of reduced glutathione (GSH), glutathione peroxidase (GPx), and catalase (CAT). Immunohistochemical and flow cytometric analyses have confirmed the suppressive effect of BG on the percentage of airway-infiltrating cytotoxic CD8+ T cells. CONCLUSION: The findings revealed the role of CD8+ T cells in the pathogenesis of asthma and the role of BG as a potential therapeutic agent for asthma management through the suppression of airway inflammation and oxidative stress.


Asthma , CD8-Positive T-Lymphocytes , Mice, Inbred BALB C , Ovalbumin , Oxidative Stress , beta-Glucans , Animals , Oxidative Stress/drug effects , beta-Glucans/pharmacology , beta-Glucans/therapeutic use , beta-Glucans/chemistry , Asthma/drug therapy , Asthma/immunology , Asthma/chemically induced , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , Ovalbumin/immunology , Mice , Disease Models, Animal , Immunoglobulin E/blood , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Lung/pathology , Lung/drug effects , Lung/immunology , Female , Anti-Asthmatic Agents/pharmacology , Anti-Asthmatic Agents/therapeutic use
9.
Aging (Albany NY) ; 16(7): 6478-6487, 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38579176

Stigmasterol is a common dietary phytosterol with high nutritional value and physiological activity. In this study, we evaluated the effects of stigmasterol on inflammatory cytokines and the TGF-ß1/Smad2 and IL-17A signaling pathway in an ovalbumin (OVA)-induced asthma mouse model. Stigmasterol treatment improved airway remodeling. In addition, it significantly attenuated the symptoms of asthma attacks, reduced the number of macrophages, lymphocytes, neutrophils, and eosinophils in BALF and inflammatory cytokines, including IL-1ß, IL-5, IL-6, and IL-13. It further decreased the level of IL-17A in BALF, serum and spleen. Spleen single-cell suspension analysis via flow cytometry showed that IL-17A level was consistent with the results obtained in BALF, serum and spleen. Stigmasterol decreased the protein expression levels of TGF-ß, p-Smad2 and IL-17A in the spleen, by increasing the protein expression level of IL-10. After 24 h of co-culture of TGF-ß, IL-6 and stigmasterol, the level of IL-17 in CD4+ T cell supernatant was lower relative to levels in the group without stigmasterol. Meanwhile, stigmasterol treatment attenuated the expression level of TGF- ß, p-Smad2 and IL-17A proteins in CD4+ T cells and enhanced the expression levels of IL-10 protein. These data suggested that stigmasterol inhibited the TGF-ß1/Smad2 and IL-17A signaling pathway to achieve anti-asthmatic effects in the OVA-induced asthma mouse model. Collectively, the results of this study are that stigmasterol has achieved preliminary efficacy in the non-clinical laboratory, further studies are needed to consider the clinical application of stigmasterol.


Asthma , Interleukin-17 , Ovalbumin , Signal Transduction , Smad2 Protein , Stigmasterol , Transforming Growth Factor beta1 , Animals , Asthma/drug therapy , Asthma/metabolism , Asthma/chemically induced , Asthma/immunology , Smad2 Protein/metabolism , Mice , Transforming Growth Factor beta1/metabolism , Signal Transduction/drug effects , Interleukin-17/metabolism , Stigmasterol/pharmacology , Disease Models, Animal , Mice, Inbred BALB C , Female , Airway Remodeling/drug effects , Inflammation/metabolism , Inflammation/drug therapy
10.
J Med Food ; 27(5): 437-448, 2024 May.
Article En | MEDLINE | ID: mdl-38608247

Fine dust concentrations come in direct contact with the human respiratory system, thereby reducing lung function and causing respiratory diseases such as asthma and rhinitis. The aim of this study was to evaluate the efficacy of GHX02 (combination of four herbs [Trichosanthes kirilowii, Prunus armeniaca, Coptis japonica, and Scutellaria baicalensis]), a herbal extract with established efficacy against bronchitis and pulmonary disease, in the treatment of asthma accompanied by rhinitis aggravated by fine dust. Therefore, we constructed an asthma-rhinitis mouse model of Balb/c mice challenged with ovalbumin (OVA) and fine diesel particulate matter, which were administered with three concentrations of GHX02. GHX02 significantly inhibited the increase of total cells and immune cells in bronchoalveolar lavage fluid, lung tissue, and nasal ductal lymphoid tissue (NALT). GHX02 also reduced the severity of histological lung injury and the expression of interleukin (IL)-1α and nuclear factor kappa B (NF-κB), which regulate inflammatory responses. The results indicate that GHX02 inhibited the inflammatory immune response in mice. Therefore, this study highlights the potential of GHX02 as a treatment for patients with asthma accompanied by rhinitis. Balb/c mice were challenged with OVA and PM10D, and then treated with three concentration of GHX02. GHX02 significantly inhibited the increase of total cells, immune cells lymphocytes, neutrophils, and macrophages, as well as their expression in lung tissue. GHX02 significantly inhibited the increase of total cells and immune cells in NALT. GHX02 decreased the severity of histological lung injury, expression of IL-1α and NF-κB. This study suggests the probability that GHX02 is effective for asthma patients with rhinitis by inhibiting inflammatory immune response.


Asthma , Bronchoalveolar Lavage Fluid , Disease Models, Animal , Mice, Inbred BALB C , Ovalbumin , Particulate Matter , Plant Extracts , Animals , Asthma/drug therapy , Asthma/immunology , Asthma/chemically induced , Mice , Plant Extracts/pharmacology , Plant Extracts/administration & dosage , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , Female , Humans , Lung/drug effects , Lung/immunology , Lung/pathology , Rhinitis/drug therapy , Rhinitis/immunology , NF-kappa B/metabolism
11.
Exp Cell Res ; 438(1): 114029, 2024 May 01.
Article En | MEDLINE | ID: mdl-38608805

Aberrant expression of airway epithelial E-cadherin is a key feature of asthma, yet the underlying mechanisms are largely unknown. Ferroptosis is a novel form of regulated cell death involved in asthma pathogenesis. This study was aimed to evaluate the role of ferroptosis and to investigate whether ferroptosis mediates E-cadherin disruption in mixed granulocyte asthma (MGA). Two murine models of MGA were established using toluene diisocyanate (TDI) or ovalbumin with Complete Freund's Adjuvant (OVA/CFA). Specific antagonists of ferroptosis, including Liproxstatin-1 (Lip-1) and Ferrostatin-1 (Fer-1) were given to the mice. The allergen-exposed mice displayed markedly shrunk mitochondria in the airway epithelia, with decreased volume and denser staining accompanied by down-regulated GPX4 as well as up-regulated FTH1 and malondialdehyde, which are markers of ferroptosis. Decreased pulmonary expression of E-cadherin was also observed, with profound loss of membrane E-cadherin in the airway epithelia, as well as increased secretion of sE-cadherin. Treatment with Lip-1 not only showed potent protective effects against the allergen-induced airway hyperresponsiveness and inflammatory responses, but also rescued airway epithelial E-cadherin expression and inhibited the release of sE-cadherin. Taken together, our data demonstrated that ferroptosis mediates airway epithelial E-cadherin dysfunction in MGA.


Asthma , Cadherins , Disease Models, Animal , Ferroptosis , Granulocytes , Animals , Female , Mice , Asthma/metabolism , Asthma/pathology , Asthma/chemically induced , Cadherins/metabolism , Cyclohexylamines/pharmacology , Epithelial Cells/metabolism , Epithelial Cells/pathology , Epithelial Cells/drug effects , Ferroptosis/drug effects , Granulocytes/metabolism , Granulocytes/pathology , Mice, Inbred BALB C , Ovalbumin , Phenylenediamines/pharmacology , Quinoxalines , Spiro Compounds
12.
Chem Biol Interact ; 394: 111002, 2024 May 01.
Article En | MEDLINE | ID: mdl-38604395

Lung inflammatory disorders are a major global health burden, impacting millions of people and raising rates of morbidity and death across many demographic groups. An industrial chemical and common environmental contaminant, formaldehyde (FA) presents serious health concerns to the respiratory system, including the onset and aggravation of lung inflammatory disorders. Epidemiological studies have shown significant associations between FA exposure levels and the incidence and severity of several respiratory diseases. FA causes inflammation in the respiratory tract via immunological activation, oxidative stress, and airway remodelling, aggravating pre-existing pulmonary inflammation and compromising lung function. Additionally, FA functions as a respiratory sensitizer, causing allergic responses and hypersensitivity pneumonitis in sensitive people. Understanding the complicated processes behind formaldehyde-induced lung inflammation is critical for directing targeted strategies aimed at minimizing environmental exposures and alleviating the burden of formaldehyde-related lung illnesses on global respiratory health. This abstract explores the intricate relationship between FA exposure and lung inflammatory diseases, including asthma, bronchitis, allergic inflammation, lung injury and pulmonary fibrosis.


Asthma , Bronchitis , Formaldehyde , Pulmonary Fibrosis , Formaldehyde/toxicity , Formaldehyde/adverse effects , Humans , Asthma/chemically induced , Pulmonary Fibrosis/chemically induced , Bronchitis/chemically induced , Animals , Environmental Exposure/adverse effects , Lung/drug effects , Lung/pathology , Pneumonia/chemically induced , Oxidative Stress/drug effects , Inflammation/chemically induced
13.
Chemosphere ; 357: 141957, 2024 Jun.
Article En | MEDLINE | ID: mdl-38641296

The current study aimed to explore whether bisphenol A (BPA) exposure aggravated the decrease in Tregs induced by ovalbumin (OVA) in adolescent female mouse models of asthma, and whether the process was associated with mTOR-mediated signaling pathways and DNA methylation levels. A total of 40 female C57BL/6 mice at the age of four weeks were used and divided into five groups after 1 week of domestication. Each group consisted of eight mice: the control group, OVA group, OVA + BPA (0.1 µg mL-1) group, OVA + BPA (0.2 µg mL-1) group, and OVA + BPA (0.4 µg mL-1) group. Results revealed that Foxp3 protein levels decreased in the spleens of mice exposed to BPA compared to those in the OVA group. After an elevation in BPA dose, the mRNAs of methyltransferases (Dnmt1, Dnmt3a, and Dnmt3b) were gradually upregulated. The mechanism was related to the activity of TLR4/NF-κB and PI3K/Akt/mTOR signaling pathways and the enhancement of Foxp3 DNA methylation. Our results, collectively, provided a new view for studying the mechanisms underlying BPA exposure-induced immune dysfunction. Investigation of the regulatory mechanisms of DNA methylation in the abnormal Th immune response caused by BPA exposure could help reveal the causes and molecular mechanisms underlying the high incidence of allergic diseases in children in recent years.


Benzhydryl Compounds , DNA Methylation , Phenols , Signal Transduction , T-Lymphocytes, Regulatory , Animals , Female , Mice , Asthma/chemically induced , Benzhydryl Compounds/toxicity , DNA Methylation/drug effects , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Mice, Inbred C57BL , Ovalbumin , Phenols/toxicity , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Spleen/drug effects , Spleen/metabolism , T-Lymphocytes, Regulatory/drug effects , TOR Serine-Threonine Kinases/metabolism , Up-Regulation/drug effects
14.
Environ Res ; 252(Pt 2): 118962, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38642637

BACKGROUND: The association between long-term exposure to ozone (O3) and adult-onset asthma (AOA) remains inconclusive, and analysis of causality is lacking. OBJECTIVES: To examine the causal association between long-term O3 exposure and AOA. METHODS: A prospective cohort study of 362,098 participants was conducted using the UK Biobank study. Incident cases of AOA were identified using health administrative data of the National Health Services. O3 exposure at participants' residential addresses was estimated by a spatio-temporal model. Instrumental variable (IV) modelling was used to analyze the causal association between O3 exposure and AOA, by incorporating wind speed and planetary boundary layer height as IVs into time-dependent Cox model. Negative control outcome (accidental injury) was also used to additionally evaluate unmeasured confounding. RESULTS: During a mean follow-up of 11.38 years, a total of 10,973 incident AOA cases were identified. A U-shaped concentration-response relationship was observed between O3 exposure and AOA in the traditional Cox models with HR of 0.916 (95% CI: 0.888, 0.945) for O3 at low levels (<38.17 ppb), and 1.204 (95% CI: 1.168, 1.242) for O3 at high levels (≥38.17 ppb). However, in the IV analysis we only found a statistically significant association between high-level O3 exposure and AOA risk, but not for low-level O3 exposure. No significant associations between O3 exposure and accidental injury were observed. CONCLUSION: Our findings suggest a potential causal relationship between long-term exposure to high-level ambient O3 and increased risks of AOA.


Air Pollutants , Asthma , Environmental Exposure , Ozone , Humans , Ozone/analysis , Ozone/adverse effects , Asthma/epidemiology , Asthma/chemically induced , Prospective Studies , Male , Female , Middle Aged , Air Pollutants/analysis , Air Pollutants/toxicity , Adult , Environmental Exposure/adverse effects , Aged , United Kingdom/epidemiology , Incidence
15.
J Neuroimmune Pharmacol ; 19(1): 13, 2024 Apr 13.
Article En | MEDLINE | ID: mdl-38613591

The occurrence of major asthma symptoms is largely attributed to airway vagal hypertonia, of which the central mechanisms remain unclear. This study tests the hypotheses that endothelin-1-mediated brainstem glial activation produces asthmatic airway vagal hypertonia via enhanced action of adenosine 5'-triphosphate on neuronal purinergic P2X4 receptors. A rat model of asthma was prepared using ovalbumin. Airway vagal tone was evaluated by the recurrent laryngeal discharge and plethysmographic measurement of pulmonary function. The changes in the brainstem were examined using ELISA, Western blot, luciferin-luciferase, quantitative reverse transcription-polymerase chain reaction, enzyme activity assay and immunofluorescent staining, respectively. The results showed that in the medulla of rats, endothelin receptor type B and P2X4 receptors were primarily expressed in astrocytes and neurons, respectively, and both of which, along with endothelin-1 content, were significantly increased after ovalbumin sensitization. Ovalbumin sensitization significantly increased recurrent laryngeal discharge, which was blocked by acute intracisternal injection of P2X4 receptor antagonist 5-BDBD, knockdown of brainstem P2X4 receptors, and chronic intraperitoneal injection of endothelin receptor type B antagonist BQ788, respectively. Ovalbumin sensitization activated microglia and astrocytes and significantly decreased ecto-5'-nucleotidase activity in the medulla, and all of which, together with the increase of medullary P2X4 receptor expression and decrease of pulmonary function, were reversed by chronic BQ788 treatment. These results demonstrated that in rats, allergic airway challenge activates both microglia and astrocytes in the medulla via enhanced endothelin-1/endothelin receptor type B signaling, which subsequently causes airway vagal hypertonia via augmented adenosine 5'-triphosphate/P2X4 receptor signaling in central neurons of airway vagal reflex.


Asthma , Polyphosphates , Receptors, Purinergic P2X4 , Rats , Animals , Rats, Sprague-Dawley , Endothelin-1 , Ovalbumin/toxicity , Asthma/chemically induced , Brain Stem , Muscle Hypertonia , Adenosine Triphosphate , Receptors, Endothelin , Adenosine
16.
Front Immunol ; 15: 1335968, 2024.
Article En | MEDLINE | ID: mdl-38545098

Background: While the association between vitamin D and several inflammatory biomarkers in asthma patients has been extensively reported, it remains unclear whether supplementation modifies these biomarkers. This review aims to evaluate the impact of vitamin D supplementation on inflammatory biomarkers measured in vivo in individuals with asthma. Methods: We conducted a systematic review of randomized controlled trials (RCTs) published until November 2022 in six electronic databases evaluating the impact of vitamin D supplementation (any dose, form, administration route, frequency, or duration) compared to placebo in children or adults. The two co-primary outcomes were serum IgE and blood eosinophils reported at the endpoint. Secondary outcomes included other markers of type 2 inflammation (e.g., sputum eosinophils, fractional exhaled nitric oxide, etc.), anti-inflammatory biomarkers (e.g., interleukin (IL)-10, etc.), markers of non-type 2 inflammation (e.g., high-sensitivity C-reactive protein, etc.), and non-specific biomarkers (e.g., macrophages, etc.). Data were aggregated using fixed or random effect models. Results: Thirteen RCTs (5 in adults, 5 in pediatric patients, and 3 in mixed age groups) testing doses of vitamin D supplementation ranging from 800 to 400,000 IU over periods of 6 weeks to 12 months were included. Eight studies provided data on serum IgE and four on blood eosinophils. As secondary outcomes, three studies reported on sputum eosinophils, four on FeNO, five on serum IL-10, and two on airway IL-10. Compared to placebo, vitamin D supplementation had no significant effect on serum IgE (Mean difference [MD] [95% CI]: 0.06 [-0.13, 0.26] IU/mL), blood eosinophils (MD [95% CI]: - 0.02 [-0.11, 0.07] 103/µL), or FeNO (MD [95% CI]: -4.10 [-10.95, 2.75] ppb) at the endpoint. However, the vitamin D supplementation group showed higher serum IL-10 levels compared to placebo (MD [95% CI]: 18.85 [1.11, 36.59] pg/ml) at the endpoint. Although data could not be aggregated, narrative synthesis suggested no significant effect of supplementation on sputum eosinophils and IL-10 in both sputum and exhaled breath condensate, at the endpoint. Conclusion: Vitamin D supplementation in individuals with asthma was not associated with lower inflammatory biomarkers related to type 2 inflammation. However, it was significantly associated with higher serum IL-10 compared to placebo. Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42022365666.


Asthma , Interleukin-10 , Adult , Humans , Child , Randomized Controlled Trials as Topic , Vitamin D , Vitamins/therapeutic use , Asthma/drug therapy , Asthma/chemically induced , Biomarkers , Inflammation/drug therapy , Inflammation/chemically induced , Immunoglobulin E , Dietary Supplements
17.
Chem Res Toxicol ; 37(3): 476-485, 2024 03 18.
Article En | MEDLINE | ID: mdl-38494904

Mechanisms underlying methylene diphenyl diisocyanate (MDI) and other low molecular weight chemical-induced asthma are unclear and appear distinct from those of high molecular weight (HMW) allergen-induced asthma. We sought to elucidate molecular pathways that differentiate asthma-like pathogenic vs nonpathogenic responses to respiratory tract MDI exposure in a murine model. Lung gene expression differences in MDI exposed immune-sensitized and nonsensitized mice vs unexposed controls were measured by microarrays, and associated molecular pathways were identified through bioinformatic analyses and further compared with published studies of a prototypic HMW asthmagen (ovalbumin). Respiratory tract MDI exposure significantly altered lung gene expression in both nonsensitized and immune-sensitized mice, vs controls. Fifty-three gene transcripts were altered in all MDI exposed lung tissue vs controls, with levels up to 10-fold higher in immune-sensitized vs nonsensitized mice. Gene transcripts selectively increased in MDI exposed immune-sensitized animals were dominated by chitinases and chemokines and showed substantial overlap with those increased in ovalbumin-induced asthma. In contrast, MDI exposure of nonsensitized mice increased type I interferon stimulated genes (ISGs) in a pattern reflecting deficiency in adenosine deaminase acting against RNA (ADAR-1), an important regulator of innate, as well as "sterile" or autoimmunity triggered by tissue damage. Thus, MDI-induced changes in lung gene expression were identified that differentiate nonpathogenic innate responses in nonsensitized hosts from pathologic adaptive responses in immune-sensitized hosts. The data suggest that MDI alters unique biological pathways involving ISGs and ADAR-1, potentially explaining its unique immunogenicity/allergenicity.


Asthma , Interferons , Animals , Mice , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , Allergens/immunology , Allergens/toxicity , Asthma/chemically induced , Asthma/genetics , Gene Expression , Interferons/immunology , Interferons/metabolism , Isocyanates , Lung/metabolism , Ovalbumin
18.
Respir Res ; 25(1): 139, 2024 Mar 23.
Article En | MEDLINE | ID: mdl-38521900

BACKGROUND: DEHP, a common plasticizer known for its hormone-disrupting properties, has been associated with asthma. However, a significant proportion of adult asthma cases are "non-atopic", lacking a clear etiology. METHODS: In a case-control study conducted between 2011 and 2015, 365 individuals with current asthma and 235 healthy controls from Kaohsiung City were enrolled. The control group comprised individuals without asthma, Type 2 Diabetes Mellitus (T2DM), hypertension, or other respiratory/allergic conditions. The study leveraged asthma clusters (Clusters A to F) established in a prior investigation. Analysis involved the examination of urinary DEHP metabolites (MEHP and MEHHP), along with the assessment of oxidative stress, sphingolipid metabolites, and inflammatory biomarkers. Statistical analyses encompassed Spearman's rank correlation coefficients, multiple logistic regression, and multinomial logistic regression. RESULTS: Asthma clusters (E, D, C, F, A) exhibited significantly higher ORs of MEHHP exposures compared to the control group. When considering asthma-related comorbidities (T2DM, hypertension, or both), patients without comorbidities demonstrated significantly higher ORs of the sum of primary and secondary metabolites (MEHP + MEHHP) and MEHHP compared to those with asthma comorbidities. A consistent positive correlation between urinary HEL and DEHP metabolites was observed, but a consistent negative correlation between DEHP metabolites and selected cytokines was identified. CONCLUSION: The current study reveals a heightened risk of MEHHP and MEHP + MEHHP exposure in specific asthma subgroups, emphasizing its complex relationship with asthma. The observed negative correlation with cytokines suggests a new avenue for research, warranting robust evidence from epidemiological and animal studies.


Asthma , Diabetes Mellitus, Type 2 , Diethylhexyl Phthalate , Diethylhexyl Phthalate/analogs & derivatives , Hypertension , Phthalic Acids , Adult , Animals , Humans , Diethylhexyl Phthalate/toxicity , Diethylhexyl Phthalate/urine , Environmental Exposure , Case-Control Studies , Asthma/chemically induced , Asthma/diagnosis , Asthma/epidemiology , Cytokines
19.
Ecotoxicol Environ Saf ; 274: 116234, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38503107

BACKGROUND: Studies have shown that short- and long-term exposure to particulate matter (PM) can increase the risk of asthma morbidity and mortality. However, the effect of medium-term exposure remains unknown. We aim to examine the effect of medium-term exposure to size-fractioned PM on asthma exacerbations among asthmatics with poor medication adherence. METHODS: We conducted a longitudinal study in China based on the National Mobile Asthma Management System Project that specifically and routinely followed asthma exacerbations in asthmatics with poor medication adherence from April 2017 to May 2019. High-resolution satellite remote-sensing data were used to estimate each participant's medium-term exposure (on average 90 days) to size-fractioned PM (PM1, PM2.5, and PM10) based on the residential address and the date of the follow-up when asthma exacerbations (e.g., hospitalizations and emergency room visits) occurred or the end of the follow-up. The Cox proportional hazards model was employed to examine the hazard ratio of asthma exacerbations associated with each PM after controlling for sex, age, BMI, education level, geographic region, and temperature. RESULTS: Modelling results revealed nonlinear exposure-response associations of asthma exacerbations with medium-term exposure to PM1, PM2.5, and PM10. Specifically, for emergency room visits, we found an increased hazard ratio for PM1 above 22.8 µg/m3 (1.060, 95 % CI: 1.025-1.096, per 1 µg/m3 increase), PM2.5 above 38.2 µg/m3 (1.032, 95 % CI: 1.010-1.054), and PM10 above 78.6 µg/m3 (1.019, 95 % CI: 1.006-1.032). For hospitalizations, we also found an increased hazard ratio for PM1 above 20.3 µg/m3 (1.055, 95 % CI: 1.001-1.111) and PM2.5 above 39.2 µg/m3 (1.038, 95 % CI: 1.003-1.074). Furthermore, the effects of PM were greater for a longer exposure window (90-180 days) and among participants with a high BMI. CONCLUSION: This study suggests that medium-term exposure to PM is associated with an increased risk of asthma exacerbations in asthmatics with poor medication adherence, with a higher risk from smaller PM.


Air Pollutants , Air Pollution , Asthma , Humans , Particulate Matter/toxicity , Longitudinal Studies , Environmental Exposure/analysis , Asthma/drug therapy , Asthma/epidemiology , Asthma/chemically induced , China/epidemiology , Air Pollutants/adverse effects , Air Pollutants/analysis , Air Pollution/analysis
20.
Int Immunopharmacol ; 131: 111791, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38460304

PURPOSE: Asthma can not be eradicated till now and its control primarily relies on the application of corticosteroids. Recently, glycolytic reprogramming has been reportedly contributed to asthma, this study aimed to reveal whether the effect of corticosteroids on asthma control is related to their regulation of glycolysis and glycolysis-dependent protein lactylation. METHODS: Ovalbumin (OVA) aeroallergen was used to challenge mice and stimulate human macrophage cell line THP-1 following dexamethasone (DEX) treatment. Airway hyperresponsiveness, airway inflammation, the expressions of key glycolytic enzymes and pyroptosis markers, the level of lactic acid, real-time glycolysis and oxidative phosphorylation (OXPHOS), and protein lactylation were analyzed. RESULTS: DEX significantly attenuated OVA-induced eosinophilic airway inflammation, including airway hyperresponsiveness, leukocyte infiltration, goblet cell hyperplasia, Th2 cytokines production and pyroptosis markers expression. Meanwhile, OVA-induced Hif-1α-glycolysis axis was substantially downregulated by DEX, which resulted in low level of lactic acid. Besides, key glycolytic enzymes in the lungs of asthmatic mice were notably co-localized with F4/80-positive macrophages, indicating metabolic shift to glycolysis in lung macrophages during asthma. This was confirmed in OVA-stimulated THP-1 cells that DEX treatment resulted in reductions in pyroptosis, glycolysis and lactic acid level. Finally, protein lactylation was found significantly increased in the lungs of asthmatic mice and OVA-stimulated THP-1 cells, which were both inhibited by DEX. CONCLUSION: Our present study revealed that the effect of DEX on asthma control was associated with its suppressing of Hif-1α-glycolysis-lactateaxis and subsequent protein lactylation, which may open new avenues for the therapy of eosinophilic asthma.


Asthma , Lactic Acid , Humans , Animals , Mice , Lactic Acid/metabolism , Ovalbumin/metabolism , Bronchoalveolar Lavage Fluid , Cytokines/metabolism , Asthma/drug therapy , Asthma/chemically induced , Lung , Inflammation , Dexamethasone/pharmacology , Dexamethasone/therapeutic use , Adrenal Cortex Hormones/adverse effects , Glycolysis , Mice, Inbred BALB C , Disease Models, Animal
...