Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 7.582
1.
Biomolecules ; 14(5)2024 May 02.
Article En | MEDLINE | ID: mdl-38785953

Bronchial asthma is characterized by airway inflammation, airway hyperresponsiveness, and reversible airway obstruction. Eosinophils contribute to the pathogenesis of airway disease mainly by releasing eosinophil-specific granules, lipid mediators, superoxide anions, and their DNA. Type-2 cytokines such as interleukin (IL)-4 and IL-13 also play roles in the development of bronchial asthma. Among these cytokines, IL-4 is involved in T-cell differentiation, B-cell activation, B-cell differentiation into plasma cells, and the production of immunoglobulin E. Although IL-13 has similar effects to IL-4, IL-13 mainly affects structural cells, such as epithelial cells, smooth muscle cells, and fibroblasts. IL-13 induces the differentiation of goblet cells that produce mucus and induces the airway remodeling, including smooth muscle hypertrophy. IL-4 and IL-13 do not directly activate the effector functions of eosinophils; however, they can induce eosinophilic airway inflammation by upregulating the expression of vascular cell adhesion molecule-1 (for adhesion) and CC chemokine receptor 3 ligands (for migration). Dupilumab, a human anti-IL-4 receptor α monoclonal antibody that inhibits IL-4 and IL-13 signaling, decreases asthma exacerbations and mucus plugs and increases lung function in moderate to severe asthma. In addition, dupilumab is effective for chronic rhinosinusitis with nasal polyps and for atopic dermatitis, and IL-4/IL-13 blocking is expected to suppress allergen sensitization, including transcutaneous sensitization and atopic march.


Asthma , Eosinophils , Interleukin-13 , Interleukin-4 , Humans , Asthma/metabolism , Asthma/pathology , Eosinophils/metabolism , Eosinophils/immunology , Interleukin-13/metabolism , Interleukin-4/metabolism , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal, Humanized/therapeutic use , Animals
2.
J Physiol Pharmacol ; 75(2): 195-203, 2024 Apr.
Article En | MEDLINE | ID: mdl-38736266

Asthma is a common airway disease associated with allergic inflammation. Environmental factors, such as pollens, pollution, insect-borne antigens, or commercial chemicals, cause this disease. The common symptoms of this airway allergic reaction are increasing mucus, narrowing of the airway wall, coughing, and chest tightness. Medications, such as steroids, alleviate the disease but with severe side effects. Several studies have reported the anti-inflammatory effects of tree-based essential oil components, particularly 3-carene. Therefore, this study used 3-carene to determine if it alleviates asthmatic symptoms in the murine model. First, BALB/c mice were sensitized to an ovalbumin and aluminium hydroxide mixture on day 7th and 14th. From days 21st to 23rd, the mice were challenged with 3-carene and budesonide. The lung trachea, plasma, and bronchiolar lavage fluid (BAL fluid) were collected on day 24. The 3-carene treatment suppressed the cytokine gene expression, such as interleukin-4 (IL-4), IL-5, and IL-13, reducing the lung epithelial cell thickness in the asthmatic model. These results suggest that essential oil 3-carene has an anti-asthmatic effect.


Asthma , Bicyclic Monoterpenes , Interleukin-13 , Interleukin-4 , Interleukin-5 , Animals , Female , Mice , Anti-Asthmatic Agents/pharmacology , Anti-Asthmatic Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Asthma/drug therapy , Asthma/pathology , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , Disease Models, Animal , Interleukin-13/metabolism , Interleukin-4/metabolism , Interleukin-5/metabolism , Lung/drug effects , Lung/pathology , Mice, Inbred BALB C , Ovalbumin , Bicyclic Monoterpenes/pharmacology
3.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38731941

Micro- and nanoplastic particles, including common forms like polyethylene and polystyrene, have been identified as relevant pollutants, potentially causing health problems in living organisms. The mechanisms at the cellular level largely remain to be elucidated. This study aims to visualize nanoplastics in bronchial smooth muscle (BSMC) and small airway epithelial cells (SAEC), and to assess the impact on mitochondrial metabolism. Healthy and asthmatic human BSMC and SAEC in vitro cultures were stimulated with polystyrene nanoplastics (PS-NPs) of 25 or 50 nm size, for 1 or 24 h. Live cell, label-free imaging by holotomography microscopy and mitochondrial respiration and glycolysis assessment were performed. Furthermore, 25 and 50 nm NPs were shown to penetrate SAEC, along with healthy and diseased BSMC, and they impaired bioenergetics and induce mitochondrial dysfunction compared to cells not treated with NPs, including changes in oxygen consumption rate and extracellular acidification rate. NPs pose a serious threat to human health by penetrating airway tissues and cells, and affecting both oxidative and glycolytic metabolism.


Bronchi , Epithelial Cells , Mitochondria , Humans , Mitochondria/metabolism , Mitochondria/drug effects , Bronchi/metabolism , Bronchi/cytology , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Glycolysis/drug effects , Nanoparticles , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Cells, Cultured , Polystyrenes , Asthma/metabolism , Asthma/pathology , Muscle, Smooth/metabolism , Microplastics/toxicity , Oxygen Consumption/drug effects
4.
Mol Immunol ; 170: 9-18, 2024 Jun.
Article En | MEDLINE | ID: mdl-38593669

Asthma is viewed as an airway disease and an inflammatory condition. This study aims to reveal the role of Kruppel-like factor 5 (KLF5)-mediated pyroptosis of airway epithelial cells in airway inflammation in asthma. The asthmatic mouse model was established. The mice were infected with the lentivirus containing sh-KLF5, antagomiR-182-5p, and pc-Toll-like receptor 4 (TLR4). Airway hyperresponsiveness was measured, and the cells in bronchoalveolar lavage fluid (BALF) were sorted and counted. The expression levels of interleukin (IL)-4/IL-13/IL-6/IL-18/IL-1ß/NOD-like receptor family pyrin domain containing 3 (NLRP3)/N-gasdermin D (GSDMD-N)/cleaved caspase-1 were detected. The pathological changes in lung tissue were observed. The enrichment of KLF5 in the miR-182-5p promoter region was measured. The binding relationship among KLF5, miR-182-5p, and TLR4 were analyzed. KLF5 was highly expressed in asthmatic mice. Silencing KLF5 improved airway resistance and lung dynamic compliance, reduced the cells in BALF and the expression of IL-4/IL-13/IL-6/NLRP3/GSDMD-N/cleaved caspase-1/IL-18/IL-1ß, and alleviated the pathological changes. Mechanistically, KLF5 bonded to the miR-182-5p promoter to inhibit miR-182-5p expression, and miR-182-5p inhibited TLR4. Silencing miR-182-5p or TLR4 overexpression reversed the improvement of silencing KLF5 on airway inflammation and pyroptosis in asthmatic mice. In conclusion, KLF5 inhibited miR-182-5p to promote TLR4 expression, thus aggravating pyroptosis and airway inflammation in asthmatic mice.


Asthma , Epithelial Cells , Kruppel-Like Transcription Factors , MicroRNAs , Pyroptosis , Toll-Like Receptor 4 , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Asthma/metabolism , Asthma/genetics , Asthma/pathology , Toll-Like Receptor 4/metabolism , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Mice , Epithelial Cells/metabolism , Inflammation/pathology , Inflammation/genetics , Inflammation/metabolism , Signal Transduction , Disease Models, Animal , Mice, Inbred BALB C , Female
5.
Front Immunol ; 15: 1285598, 2024.
Article En | MEDLINE | ID: mdl-38680486

Significant advancements have been achieved in understanding the roles of different immune cells, as well as cytokines and chemokines, in the pathogenesis of eosinophilic airway conditions. This review examines the pathogenesis of Chronic Rhinosinusitis with Nasal Polyps (CRSwNP), marked by complex immune dysregulation, with major contributions from type 2 inflammation and dysfunctional airway epithelium. The presence of eosinophils and the role of T-cell subsets, particularly an imbalance between Treg and Th17 cells, are crucial to the disease's pathogenesis. The review also investigates the pathogenesis of eosinophilic asthma, a unique asthma subtype. It is characterized by inflammation and high eosinophil levels, with eosinophils playing a pivotal role in triggering type 2 inflammation. The immune response involves Th2 cells, eosinophils, and IgE, among others, all activated by genetic and environmental factors. The intricate interplay among these elements, chemokines, and innate lymphoid cells results in airway inflammation and hyper-responsiveness, contributing to the pathogenesis of eosinophilic asthma. Another scope of this review is the pathogenesis of Eosinophilic Granulomatosis with Polyangiitis (EGPA); a complex inflammatory disease that commonly affects the respiratory tract and small to medium-sized blood vessels. It is characterized by elevated eosinophil levels in blood and tissues. The pathogenesis involves the activation of adaptive immune responses by antigens leading to T and B cell activation and eosinophil stimulation, which causes tissue and vessel damage. On the other hand, Allergic Bronchopulmonary Aspergillosis (ABPA) is a hypersensitive response that occurs when the airways become colonized by aspergillus fungus, with the pathogenesis involving activation of Th2 immune responses, production of IgE antibodies, and eosinophilic action leading to bronchial inflammation and subsequent lung damage. This analysis scrutinizes how an imbalanced immune system contributes to these eosinophilic diseases. The understanding derived from this assessment can steer researchers toward designing new potential therapeutic targets for efficient control of these disorders.


Asthma , Eosinophils , Humans , Eosinophils/immunology , Asthma/immunology , Asthma/pathology , Nasal Polyps/immunology , Nasal Polyps/pathology , Sinusitis/immunology , Sinusitis/pathology , Animals , Inflammation/immunology , Inflammation/pathology , Th2 Cells/immunology , Rhinitis/immunology , Rhinitis/pathology , Cytokines/metabolism , Cytokines/immunology , Chronic Disease
6.
Clin Immunol ; 263: 110228, 2024 Jun.
Article En | MEDLINE | ID: mdl-38663494

Asthma is a heterogeneous disease characterized by chronic airway inflammation, reversible airflow limitation, and airway remodeling. Eosinophil peroxidase (EPX) is the most abundant secondary granule protein unique to activated eosinophils. In this study, we aimed to illustrate the effect of EPX on the epithelial-mesenchymal transition (EMT) in BEAS-2B cells. Our research found that both EPX and ADAM33 were negatively correlated with FEV1/FVC and FEV1%pred, and positively correlated with IL-5 levels. Asthma patients had relatively higher levels of ADAM33 and EPX compared to the healthy control group. The expression of TSLP, TGF-ß1 and ADAM33 in the EPX intervention group was significantly higher. Moreover, EPX could promote the proliferation, migration and EMT of BEAS-2B cells, and the effect of EPX on various factors was significantly improved by the PI3K inhibitor LY294002. The findings from this study could potentially offer a novel therapeutic target for addressing airway remodeling in bronchial asthma, particularly focusing on EMT.


Airway Remodeling , Asthma , Bronchi , Eosinophil Peroxidase , Epithelial Cells , Epithelial-Mesenchymal Transition , Transforming Growth Factor beta1 , Humans , Asthma/metabolism , Asthma/pathology , Asthma/physiopathology , Asthma/immunology , Male , Female , Epithelial Cells/metabolism , Eosinophil Peroxidase/metabolism , Transforming Growth Factor beta1/metabolism , Middle Aged , Adult , Bronchi/pathology , Interleukin-5/metabolism , Chromones/pharmacology , Cytokines/metabolism , Cell Line , Thymic Stromal Lymphopoietin , Cell Proliferation , Cell Movement , Morpholines/pharmacology , ADAM Proteins
7.
Clin Respir J ; 18(4): e13742, 2024 Apr.
Article En | MEDLINE | ID: mdl-38664220

BACKGROUND: Allergic asthma is an important respiratory system problem characterized by airway inflammation, breathlessness, and bronchoconstriction. Allergic asthma and its outcomes are triggered by type 2 allergic immune responses. Tectorigenin is a methoxy-isoflavone with anti-inflammatory effects. In this study, we investigated the effects of tectorigenin on the pathophysiology of allergic asthma in an animal model. METHODS: Asthmatic mice were treated with tectorigenin. Then airway hyperresponsiveness (AHR), eosinophil percentage, levels of interleukin (IL)-33, IL-25, IL-13, IL-5, IL-4, total and ovalbumin (OVA)-specific immunoglobulin (Ig)E, and lung histopathology were evaluated. RESULT: Tectorigenin significantly (P 〈 0.05) reduced eosinophil infiltration (41 ± 7%) in the broncho-alveolar lavage fluid (BALF), serum IL-5 level (41 ± 5, pg/mL), and bronchial and vascular inflammation (scores of 1.3 ± 0.2 and 1.1 ± 0.3, respectively) but had no significant effects on AHR, serum levels of IL-33, -25, -13, and -4 (403 ± 24, 56 ± 7, 154 ± 11, and 89 ± 6 pg/mL, respectively), total and OVA-specific IgE (2684 ± 265 and 264 ± 19 ng/mL, respectively), goblet cell hyperplasia, and mucus production. CONCLUSION: Tectorigenin could control inflammation and the secretion of inflammatory mediators of asthma, so it can be regarded as a potential antiasthma treatment with the ability to control eosinophilia-related problems.


Anti-Inflammatory Agents , Antioxidants , Asthma , Disease Models, Animal , Isoflavones , Mice, Inbred BALB C , Ovalbumin , Animals , Asthma/drug therapy , Asthma/chemically induced , Asthma/metabolism , Asthma/immunology , Asthma/pathology , Mice , Ovalbumin/toxicity , Ovalbumin/adverse effects , Isoflavones/pharmacology , Isoflavones/therapeutic use , Antioxidants/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Immunoglobulin E/blood , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , Female , Lung/pathology , Lung/drug effects , Lung/metabolism , Lung/immunology , Cytokines/metabolism
8.
PeerJ ; 12: e17106, 2024.
Article En | MEDLINE | ID: mdl-38646478

Background: Allergic asthma is the most prevalent asthma phenotype and is associated with the disorders of immune cells and glycolysis. Macrophages are the most common type of immune cells in the lungs. Calprotectin (S100A8 and S100A9) are two pro-inflammatory molecules that target the Toll-like receptor 4 (TLR4) and are substantially increased in the serum of patients with severe asthma. This study aimed to determine the effects of S100A8/A9 on macrophage polarization and glycolysis associated with allergic asthma. Methods: To better understand the roles of S100A8 and S100A9 in the pathogenesis of allergic asthma, we used ovalbumin (OVA)-induced MH-S cells, and OVA-sensitized and challenged mouse models (wild-type male BALB/c mice). Enzyme-linked immunosorbent assay, quantitative real-time polymerase chain reaction, flow cytometry, hematoxylin-eosin staining, and western blotting were performed. The glycolysis inhibitor 3-bromopyruvate (3-BP) was used to observe changes in glycolysis in mice. Results: We found knockdown of S100A8 or S100A9 in OVA-induced MH-S cells inhibited inflammatory cytokines, macrophage polarization biomarker expression, and pyroptosis cell proportion, but increased anti-inflammatory cytokine interleukin (IL)-10 mRNA; also, glycolysis was inhibited, as evidenced by decreased lactate and key enzyme expression; especially, knockdown of S100A8 or S100A9 inhibited the activity of TLR4/myeloid differentiation primary response gene 88 (MyD88)/Nuclear factor kappa-B (NF-κB) signaling pathway. Intervention with lipopolysaccharides (LPS) abolished the beneficial effects of S100A8 and S100A9 knockdown. The observation of OVA-sensitized and challenged mice showed that S100A8 or S100A9 knockdown promoted respiratory function, improved lung injury, and inhibited inflammation; knockdown of S100A8 or S100A9 also suppressed macrophage polarization, glycolysis levels, and activation of the TLR4/MyD88/NF-κB signaling pathway in the lung. Conversely, S100A9 overexpression exacerbated lung injury and inflammation, promoting macrophage polarization and glycolysis, which were antagonized by the glycolysis inhibitor 3-BP. Conclusion: S100A8 and S100A9 play critical roles in allergic asthma pathogenesis by promoting macrophage perturbation and glycolysis through the TLR4/MyD88/NF-κB signaling pathway. Inhibition of S100A8 and S100A9 may be a potential therapeutic strategy for allergic asthma.


Asthma , Calgranulin A , Calgranulin B , Disease Models, Animal , Glycolysis , Macrophages , Mice, Inbred BALB C , Animals , Male , Mice , Asthma/genetics , Asthma/immunology , Asthma/pathology , Calgranulin A/metabolism , Calgranulin A/genetics , Calgranulin B/genetics , Calgranulin B/metabolism , Cytokines/metabolism , Glycolysis/drug effects , Glycolysis/genetics , Macrophages/metabolism , Macrophages/immunology , Macrophages/drug effects , Myeloid Differentiation Factor 88/metabolism , Myeloid Differentiation Factor 88/genetics , NF-kappa B/metabolism , Ovalbumin , Signal Transduction/genetics , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics
9.
Exp Cell Res ; 438(1): 114029, 2024 May 01.
Article En | MEDLINE | ID: mdl-38608805

Aberrant expression of airway epithelial E-cadherin is a key feature of asthma, yet the underlying mechanisms are largely unknown. Ferroptosis is a novel form of regulated cell death involved in asthma pathogenesis. This study was aimed to evaluate the role of ferroptosis and to investigate whether ferroptosis mediates E-cadherin disruption in mixed granulocyte asthma (MGA). Two murine models of MGA were established using toluene diisocyanate (TDI) or ovalbumin with Complete Freund's Adjuvant (OVA/CFA). Specific antagonists of ferroptosis, including Liproxstatin-1 (Lip-1) and Ferrostatin-1 (Fer-1) were given to the mice. The allergen-exposed mice displayed markedly shrunk mitochondria in the airway epithelia, with decreased volume and denser staining accompanied by down-regulated GPX4 as well as up-regulated FTH1 and malondialdehyde, which are markers of ferroptosis. Decreased pulmonary expression of E-cadherin was also observed, with profound loss of membrane E-cadherin in the airway epithelia, as well as increased secretion of sE-cadherin. Treatment with Lip-1 not only showed potent protective effects against the allergen-induced airway hyperresponsiveness and inflammatory responses, but also rescued airway epithelial E-cadherin expression and inhibited the release of sE-cadherin. Taken together, our data demonstrated that ferroptosis mediates airway epithelial E-cadherin dysfunction in MGA.


Asthma , Cadherins , Disease Models, Animal , Ferroptosis , Quinoxalines , Spiro Compounds , Animals , Ferroptosis/drug effects , Cadherins/metabolism , Asthma/metabolism , Asthma/pathology , Asthma/chemically induced , Mice , Granulocytes/metabolism , Granulocytes/pathology , Female , Mice, Inbred BALB C , Ovalbumin , Phenylenediamines/pharmacology , Epithelial Cells/metabolism , Epithelial Cells/pathology , Epithelial Cells/drug effects , Cyclohexylamines/pharmacology
10.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167176, 2024 Jun.
Article En | MEDLINE | ID: mdl-38641013

Ferroptosis is a programmed form of cell death regulated by iron and has been linked to the development of asthma. However, the precise mechanisms driving ferroptosis in asthma remain elusive. To gain deeper insights, we conducted an analysis of nasal epithelial and sputum samples from the GEO database using three machine learning methods. Our investigation identified a pivotal gene, Arachidonate 15-lipoxygenase (ALOX15), associated with ferroptosis in asthma. Through both in vitro and in vivo experiments, we further confirmed the significant role of ALOX15 in ferroptosis in asthma. Our results demonstrate that ferroptosis manifests in an HDM/LPS-induced allergic airway inflammation (AAI) mouse model, mimicking human asthma, and in HDM/LPS-stimulated 16HBE cells. Moreover, we observed an up-regulation of ALOX15 expression in HDM/LPS-induced mice and cells. Notably, silencing ALOX15 markedly decreased HDM/LPS-induced ferroptosis in 16HBE cells. These findings indicate that ferroptosis may be implicated in the onset and progression of asthma, with ALOX15-induced lipid peroxidation raising the susceptibility to ferroptosis in asthmatic epithelial cells.


Arachidonate 15-Lipoxygenase , Asthma , Epithelial Cells , Ferroptosis , Lipid Peroxidation , Arachidonate 15-Lipoxygenase/metabolism , Arachidonate 15-Lipoxygenase/genetics , Animals , Asthma/pathology , Asthma/metabolism , Asthma/genetics , Humans , Mice , Epithelial Cells/metabolism , Epithelial Cells/pathology , Disease Models, Animal , Cell Line , Female , Arachidonate 12-Lipoxygenase
11.
J Cell Mol Med ; 28(8): e18356, 2024 Apr.
Article En | MEDLINE | ID: mdl-38668995

Trichospira verticillata is an annual herb that belongs to the family Asteraceae. Trichospira verticillata extract (TVE) elicits anti-plasmodial activity; however, there has been no detailed report about its anti-inflammatory effects and molecular mechanisms. In addition, herbal plants exhibit anti-inflammatory effects by suppressing the NLRP3 inflammasome. Therefore, the primary goal of this study was to examine the effects of TVE on NLRP3 inflammasome activation by measuring interleukin-1ß (IL-1ß) secretion. We treated lipopolysaccharides (LPS)-primed J774A.1 and THP-1 cells with TVE, which attenuated NLRP3 inflammasome activation. Notably, TVE did not affect nuclear factor-kappa B (NF-κB) signalling or intracellular reactive oxygen species (ROS) production and potassium efflux, suggesting that it inactivates the NLRP3 inflammasome via other mechanisms. Moreover, TVE suppressed the formation of apoptosis-associated speck-like protein (ASC) speck and oligomerization. Immunoprecipitation data revealed that TVE reduced the binding of NLRP3 to NIMA-related kinase 7 (NEK7), resulting in reduced ASC oligomerization and speck formation. Moreover, TVE alleviated neutrophilic asthma (NA) symptoms in mice. This study demonstrates that TVE modulates the binding of NLPR3 to NEK7, thereby reporting novel insights into the mechanism by which TVE inhibits NLRP3 inflammasome. These findings suggest TVE as a potential therapeutic of NLRP3 inflammasome-mediated diseases, particularly NA.


Anti-Inflammatory Agents , Asthma , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Neutrophils , Reactive Oxygen Species , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Animals , Inflammasomes/metabolism , Asthma/metabolism , Asthma/drug therapy , Asthma/immunology , Asthma/pathology , Mice , Anti-Inflammatory Agents/pharmacology , Humans , Neutrophils/metabolism , Neutrophils/drug effects , Neutrophils/immunology , Reactive Oxygen Species/metabolism , Lipopolysaccharides , NIMA-Related Kinases/metabolism , Interleukin-1beta/metabolism , NF-kappa B/metabolism , Signal Transduction/drug effects , Disease Models, Animal , Plant Extracts/pharmacology , THP-1 Cells
12.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 29-39, 2024 Mar 31.
Article En | MEDLINE | ID: mdl-38650159

Asthma is a chronic inflammatory disease of the airways strongly associated with interleukin-4 (IL-4), a cytokine that mediates and regulates various immune responses, including allergic reactions. This study aimed to evaluate the anti-inflammatory and antioxidant effects of an Aqueous Extract of Clove (AEC) Syzygium aromaticum on the lungs and erythrocytes of an experimental asthma model in Wistar rats. For this purpose, four groups of male rats were examined: control, sensitized with ovalbumin (OVA), treated with AEC, and treated with a combination of OVA/AEC. After treatment, the antioxidant effect was determined by measuring the malondialdehyde (MDA), glutathione peroxidase (GPx), glutathione (GSH), and catalase (CAT) levels. The anti-inflammatory effect was determined by measuring IL-4 levels by performing enzyme-linked immunosorbent assay (ELISA) using serum, lung, and bronchoalveolar lavage fluid (BALF) samples. A significant reduction (p ≤ 0.05) in the MDA levels and a significant increase (p ≤ 0.05) in the levels of GPx and CAT were observed in the lungs of rats treated with cloves. However, no statistically significant variation was observed in GSH levels. In erythrocytes, no statistically significant differences were observed between the experimental batches. Regarding the anti-inflammatory effect, the administration of S. aromaticum extract to sensitized rats resulted in a recovery in the levels of total proteins and IL-4 and a decrease in the three compartments studied (lungs, serum, and bronchoalveolar liquid). These results were confirmed by microscopic examination of lung histological sections. Overall, these findings confirmed that the AEC has anti-inflammatory and antioxidant effects.


Anti-Inflammatory Agents , Antioxidants , Asthma , Bronchoalveolar Lavage Fluid , Disease Models, Animal , Glutathione Peroxidase , Glutathione , Interleukin-4 , Lung , Malondialdehyde , Plant Extracts , Rats, Wistar , Syzygium , Animals , Antioxidants/pharmacology , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Syzygium/chemistry , Male , Asthma/drug therapy , Asthma/chemically induced , Asthma/metabolism , Asthma/pathology , Bronchoalveolar Lavage Fluid/chemistry , Lung/drug effects , Lung/pathology , Lung/metabolism , Glutathione Peroxidase/metabolism , Glutathione/metabolism , Interleukin-4/metabolism , Interleukin-4/blood , Malondialdehyde/metabolism , Ovalbumin , Catalase/metabolism , Rats , Erythrocytes/drug effects , Erythrocytes/metabolism , Water/chemistry
13.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 225-232, 2024 Mar 31.
Article En | MEDLINE | ID: mdl-38650129

Abnormal expression of non-coding microRNA is associated with the development of combined allergic rhinitis and asthma syndrome (CARAS). However, the function of miR-4454 in CARAS is unknown. Our study aimed to reveal the clinical significance and related mechanism of miR-4454 in CARAS. Blood samples from 38 cases of CARAS and 43 cases of healthy subjects were collected to detect the expression of miR-4454. House dust mite (HDM) sensitization and challenge-induced bronchial epithelial cells to simulate the asthma state model in vitro, miR-4454 mimics and inhibitor transfection to detect the expression level of pro-inflammatory cytokines, cell survival rate and migration ability, flow cytometry and western blot (WB) Detection of cell cycle, apoptosis and inflammation-related protein levels. Compared with healthy controls, the expression of miR-4454 in the blood of CARAS patients was significantly up-regulated, and IL-6 and IL-8 were significantly up-regulated in the HDM treatment group, indicating that the model induction was successful. After overexpression of miR-4454, cell proliferation and migration in the HDM-treated group were significantly inhibited, and the levels of early apoptosis and inflammation-related proteins (IL-17, IL-17RD, TNF-α, GCSF and NF-κB) were increased High; after inhibiting miR-4454, cell proliferation and migration were significantly enhanced, and the levels of apoptosis and inflammation-related proteins were decreased. This study found that inhibiting the expression of miR-4454 can improve HDM-induced cell injury, which may be related to miR-4454 regulating the activation of IL-17/NF-кB inflammatory axis.


Apoptosis , Asthma , Cell Proliferation , MicroRNAs , Rhinitis, Allergic , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , Rhinitis, Allergic/genetics , Rhinitis, Allergic/metabolism , Asthma/genetics , Asthma/pathology , Male , Female , Apoptosis/genetics , Adult , Cell Proliferation/genetics , Animals , Inflammation/genetics , Inflammation/pathology , Cell Movement/genetics , Pyroglyphidae/immunology , Cytokines/metabolism , Cytokines/blood , NF-kappa B/metabolism , Case-Control Studies , Epithelial Cells/metabolism , Syndrome , Clinical Relevance
14.
Science ; 384(6691): 66-73, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38574138

Asthma is deemed an inflammatory disease, yet the defining diagnostic feature is mechanical bronchoconstriction. We previously discovered a conserved process called cell extrusion that drives homeostatic epithelial cell death when cells become too crowded. In this work, we show that the pathological crowding of a bronchoconstrictive attack causes so much epithelial cell extrusion that it damages the airways, resulting in inflammation and mucus secretion in both mice and humans. Although relaxing the airways with the rescue treatment albuterol did not affect these responses, inhibiting live cell extrusion signaling during bronchoconstriction prevented all these features. Our findings show that bronchoconstriction causes epithelial damage and inflammation by excess crowding-induced cell extrusion and suggest that blocking epithelial extrusion, instead of the ensuing downstream inflammation, could prevent the feed-forward asthma inflammatory cycle.


Asthma , Bronchi , Bronchoconstriction , Animals , Humans , Mice , Asthma/pathology , Asthma/physiopathology , Bronchoconstriction/drug effects , Inflammation/pathology , Signal Transduction , Ion Channels/antagonists & inhibitors , Lysophospholipids/antagonists & inhibitors , Sphingosine/analogs & derivatives , Sphingosine/antagonists & inhibitors , Bronchi/pathology , Bronchi/physiopathology
15.
BMJ Open Respir Res ; 11(1)2024 Apr 02.
Article En | MEDLINE | ID: mdl-38569671

BACKGROUND: Asthma is a chronic disease affecting the lower respiratory tract, which can lead to death in severe cases. The cause of asthma is not fully known, so exploring its potential mechanism is necessary for the targeted therapy of asthma. METHOD: Asthma mouse model was established with ovalbumin (OVA). H&E staining, immunohistochemistry and ELISA were used to detect the inflammatory response in asthma. Transcriptome sequencing was performed to screen differentially expressed genes (DEGs). The role of KIF23 silencing in cell viability, proliferation and apoptosis was explored by cell counting kit-8, EdU assay and flow cytometry. Effects of KIF23 knockdown on inflammation, oxidative stress and pyroptosis were detected by ELISA and western blot. After screening KIF23-related signalling pathways, the effect of KIF23 on p53 signalling pathway was explored by western blot. RESULTS: In the asthma model, the levels of caspase-3, IgG in serum and inflammatory factors (interleukin (IL)-1ß, KC and tumour necrosis factor (TNF)-α) in serum and bronchoalveolar lavage fluid were increased. Transcriptome sequencing showed that there were 352 DEGs in the asthma model, and 7 hub genes including KIF23 were identified. Knockdown of KIF23 increased cell proliferation and inhibited apoptosis, inflammation and pyroptosis of BEAS-2B cells induced by IL-13 in vitro. In vivo experiments verified that knockdown of KIF23 inhibited oxidative stress, inflammation and pyroptosis to alleviate OVA-induced asthma mice. In addition, p53 signalling pathway was suppressed by KIF23 knockdown. CONCLUSION: Knockdown of KIF23 alleviated the progression of asthma by suppressing pyroptosis and inhibited p53 signalling pathway.


Asthma , Lung , Animals , Humans , Mice , Asthma/genetics , Asthma/pathology , Inflammation/genetics , Lung/pathology , Microtubule-Associated Proteins/adverse effects , Microtubule-Associated Proteins/metabolism , Pyroptosis , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/adverse effects , Tumor Suppressor Protein p53/metabolism
16.
Cells ; 13(5)2024 Feb 23.
Article En | MEDLINE | ID: mdl-38474348

Asthma is a prevalent chronic non-communicable disease, affecting approximately 300 million people worldwide. It is characterized by significant airway inflammation, hyperresponsiveness, obstruction, and remodeling. Eosinophilic asthma, a subtype of asthma, involves the accumulation of eosinophils in the airways. These eosinophils release mediators and cytokines, contributing to severe airway inflammation and tissue damage. Emerging evidence suggests that targeting eosinophils could reduce airway remodeling and slow the progression of asthma. To achieve this, it is essential to understand the immunopathology of asthma, identify specific eosinophil-associated biomarkers, and categorize patients more accurately based on the clinical characteristics (phenotypes) and underlying pathobiological mechanisms (endotypes). This review delves into the role of eosinophils in exacerbating severe asthma, exploring various phenotypes and endotypes, as well as biomarkers. It also examines the current and emerging biological agents that target eosinophils in eosinophilic asthma. By focusing on these aspects, both researchers and clinicians can advance the development of targeted therapies to combat eosinophilic pathology in severe asthma.


Asthma , Humans , Asthma/pathology , Eosinophils/pathology , Inflammation/pathology , Cytokines , Biomarkers
17.
J Clin Invest ; 134(6)2024 Mar 15.
Article En | MEDLINE | ID: mdl-38487999

Allergic asthma generally starts during early life and is linked to substantial tissue remodeling and lung dysfunction. Although angiogenesis is a feature of the disrupted airway, the impact of allergic asthma on the pulmonary microcirculation during early life is unknown. Here, using quantitative imaging in precision-cut lung slices (PCLSs), we report that exposure of neonatal mice to house dust mite (HDM) extract disrupts endothelial cell/pericyte interactions in adventitial areas. Central to the blood vessel structure, the loss of pericyte coverage was driven by mast cell (MC) proteases, such as tryptase, that can induce pericyte retraction and loss of the critical adhesion molecule N-cadherin. Furthermore, spatial transcriptomics of pediatric asthmatic endobronchial biopsies suggests intense vascular stress and remodeling linked with increased expression of MC activation pathways in regions enriched in blood vessels. These data provide previously unappreciated insights into the pathophysiology of allergic asthma with potential long-term vascular defects.


Asthma , Mast Cells , Humans , Child , Animals , Mice , Mast Cells/pathology , Pericytes/metabolism , Endothelial Cells/metabolism , Asthma/pathology , Lung/pathology , Allergens , Pyroglyphidae , Disease Models, Animal
18.
PLoS One ; 19(3): e0300000, 2024.
Article En | MEDLINE | ID: mdl-38457400

BACKGROUND: Disturbance of mucociliary clearance is an important factor in the pathogenesis of asthma. We hypothesized that common variants in genes responsible for ciliary function may contribute to the development of asthma with certain phenotypes. METHODS: Three independent adult Japanese populations (including a total of 1,158 patients with asthma and 2,203 non-asthmatic healthy participants) were studied. First, based on the ClinVar database (https://www.ncbi.nlm.nih.gov/clinvar/), we selected 12 common single-nucleotide polymorphisms (SNPs) with molecular consequences (missense, nonsense, and 3'-untranslated region mutation) in 5 primary ciliary dyskinesia (PCD)-related genes and calculated a PCD-genetic risk score (GRS) as a cumulative effect of these PCD-related genes. Second, we performed a two-step cluster analysis using 3 variables, including PCD-GRS, forced expiratory volume in 1 second (%predicted FEV1), and age of asthma onset. RESULTS: Compared to adult asthma clusters with an average PCD-GRS, clusters with high and low PCD-GRS had similar overall characteristics: adult-onset, female predominance, preserved lung function, and fewer features of type 2 immunity as determined by IgE reactivity and blood eosinophil counts. The allele frequency of rs1530496, a SNP representing an expression quantitative trait locus (eQTL) of DNAH5 in the lung, showed the largest statistically significant difference between the PCD-GRS-High and PCD-GRS-Low asthma clusters (p = 1.4 x 10-15). CONCLUSION: Genes associated with PCD, particularly the common SNPs associated with abnormal expression of DNAH5, may have a certain influence on the development of adult-onset asthma, perhaps through impaired mucociliary clearance.


Asthma , Ciliary Motility Disorders , Adult , Humans , Female , Male , Genetic Risk Score , Lung/pathology , Asthma/pathology , Mucociliary Clearance
19.
Life Sci ; 342: 122538, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38428571

Pulmonary disorders, including asthma, chronic obstructive pulmonary disease (COPD), pulmonary fibrosis (PF), pulmonary hypertension (PH), and lung cancer, seriously impair the quality of lives of patients. A deeper understanding of the occurrence and development of the above diseases may inspire new strategies to remedy the scarcity of treatments. Type I protein arginine methyltransferases (PRMTs) can affect processes of inflammation, airway remodeling, fibroblast proliferation, mitochondrial mass, and epithelial dysfunction through substrate methylation and non-enzymatic activity, thus affecting the occurrence and development of asthma, COPD, lung cancer, PF, and PH. As potential therapeutic targets, inhibitors of type I PRMTs are developed, moreover, representative compounds such as GSK3368715 and MS023 have also been used for early research. Here, we collated structures of type I PRMTs inhibitors and compared their activity. Finally, we highlighted the physiological and pathological associations of type I PRMTs with asthma, COPD, lung cancer, PF, and PH. The developing of type I PRMTs modulators will be beneficial for the treatment of these diseases.


Asthma , Hypertension, Pulmonary , Lung Neoplasms , Pulmonary Disease, Chronic Obstructive , Pulmonary Fibrosis , Humans , Hypertension, Pulmonary/drug therapy , Lung Neoplasms/drug therapy , Asthma/pathology
20.
Immun Inflamm Dis ; 12(3): e1225, 2024 Mar.
Article En | MEDLINE | ID: mdl-38533918

BACKGROUND: The dosage of ovalbumin (OVA) during the sensitization stage is considered a crucial factor in the development of airway hyperresponsiveness (AHR). However, the inconsistent dosages of sensitizing OVA used in current studies and the lack of research on their impact on AHR are notable limitations. METHODS: We examined the impact of increasing sensitizing doses of OVA in a murine asthma model, which entailed initial sensitization with OVA followed by repeated exposure to OVA aerosols. BALB/c mice were primed with doses of OVA (0, 10, 20, 50, and 100 µg) plus 1 mg Alum on Days 0 and 7, and were challenged with OVA aerosols (10 mg/mL for 30 min) between Days 14 and 17. Antigen-induced AHR to methacholine (MCh), as well as histological changes, eosinophilic infiltration, and epithelial injury were assessed. RESULTS: The result indicated that there are striking OVA dose-related differences in antigen-induced AHR to MCh. The most intense antigen-induced AHR to MCh was observed with sensitization at 50 µg, while weaker responses were seen at 10, 20, and 100 µg. Meanwhile, there was a significant increase in eosinophil count with sensitization at 50 µg. The changes of AHR were correlated with total cells count, lymphocytes count, eosinophils count, and basophils count in bronchoalveolar lavage fluid; however, it did not correlate with histological changes such as cellular infiltration into bronchovascular bundles and goblet cell hyperplasia of the bronchial epithelium. CONCLUSION: Overall, this study demonstrated that sensitization with 50 µg of OVA resulted in the most significant AHR compared to other dosages. These findings may offer valuable insights for future research on mouse asthma modeling protocols.


Asthma , Bronchial Hyperreactivity , Respiratory Hypersensitivity , Animals , Mice , Ovalbumin , Respiratory Aerosols and Droplets , Asthma/pathology , Methacholine Chloride
...