Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 750
Filter
1.
Cell Mol Biol (Noisy-le-grand) ; 70(7): 79-84, 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39097892

ABSTRACT

The main objective of this work was to investigate the mechanism of Astragalus aqueous extract ulcer healing in diabetic foot model rats through the hypoxia-inducible factor 1-alpha (HIF-1ɑ)/vascular endothelial growth factor (VEGF) signalling pathway. Fifty specific-pathogen-free male Sprague Dawley rats were divided into blank (A), model control (B), Astragalus extract (C) and mupirocin (D) treatment groups. Group A received a regular diet, whereas the other groups received a high-fat/high-sugar diet and intraperitoneal streptozotocin injections to induce diabetes. Diabetic foot ulcers were created via skin excision. Subsequently, ulcers were debrided daily. Groups B, C and D received wet saline gauze, wet gauze with Astragalus extract and gauze with mupirocin, respectively, on the affected area. Group A received no treatment. After 14 days, the rats were assessed for ulcer healing and general condition. Immunohistochemistry was used to detect HIF-1ɑ and VEGF levels in the dorsalis pedis artery, and ELISA was used to determine serum IL-6 and CRP levels. The results revealed that Groups C and D had significantly faster ulcer healing compared with Group B (p < 0.01), and ulcer healing was faster in Group C than in Group D (p < 0.01). Group C exhibited notably higher HIF-1ɑ and VEGF protein expression levels compared with Groups B and D (p < 0.01). IL-6 and CRP expression levels in Groups C and D were significantly lower than those in Group B (p < 0.01). In summary, Astragalus aqueous extract effectively treats diabetic foot ulcers by up-regulating HIF-1ɑ and VEGF expression, activating the HIF-1ɑ/VEGF pathway, improving local tissue ischaemia and hypoxia, promoting collateral circulation and enhancing dorsalis pedis artery formation, thereby accelerating ulcer repair in diabetic rats.


Subject(s)
Astragalus Plant , Diabetic Foot , Hypoxia-Inducible Factor 1, alpha Subunit , Plant Extracts , Rats, Sprague-Dawley , Signal Transduction , Vascular Endothelial Growth Factor A , Wound Healing , Animals , Diabetic Foot/drug therapy , Diabetic Foot/metabolism , Male , Vascular Endothelial Growth Factor A/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Signal Transduction/drug effects , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Astragalus Plant/chemistry , Wound Healing/drug effects , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/complications , Rats , Interleukin-6/metabolism , Interleukin-6/blood , C-Reactive Protein/metabolism
2.
BMC Complement Med Ther ; 24(1): 294, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090617

ABSTRACT

BACKGROUND: cultivated and wild plants are used to treat different ailments. The Astragalus genus is found in temperate and dry climates; thus, it is found in Egypt and the arab world. Astragalus caprinus has a good amount of bioactive chemicals, which may help explain its therapeutic effects in reducing the risk of consequences from disease. METHOD: The phytochemical investigation of the herb and roots of Astragalus caprinus L. included the analytical characterization for the petroleum ether components by GC/MS, unsaponifiable matter (unsap. fraction), and fatty acids (FAME) investigation by GLC analysis. Main flavonoids were chromatographically isolated from ethyl acetate and n-butanol extracts. In vitro antimicrobial activity has been tested against the Gram-positive bacteria Staphylococcus aureus and Streptococcus mutans for different plant extracts, the Gram-negative bacteria Pseudomonas aeruginosa and Klebsiella pneumonia, the fungus Candida albicans and Aspergillus niger, and the Escherichia coli bacterium. Metabolite cytotoxicity was examined using the MTT assay against HepG-2 (human liver carcinoma) and MCF-7 (breast carcinoma). RESULTS: Identifying the important components of the herb and root petroleum ether extracts was achieved. Using column chromatography, luteolin, cosmosiin (apigenin-7-O-glucoside), and cynaroside (luteolin-7-O-glucoside) were separated and identified using UV, NMR, and Mass Spectroscopy. Root extracts displayed potential antimicrobial activity against most of the tested pathogens. Both extracts (herb and roots) were active against the MCF-7 cell line and HepG-2 cell line with IC50 62.5 ± 0.64 and 72.4 ± 2.3 µg/ml, and 75.9 ± 2.5 and 96.8 ± 4.2 µg/ml, respectively. CONCLUSION: Astragalus caprinus seems to be a promising source of bioactive compounds that could potentially aid in preventing disease complications and address common health issues in developing countries. Moreover, the various parts of this plant could be utilized as natural raw materials for producing health-boosting products that could address common health issues in developing countries.


Subject(s)
Astragalus Plant , Phytochemicals , Plant Extracts , Plant Extracts/pharmacology , Plant Extracts/chemistry , Humans , Astragalus Plant/chemistry , Phytochemicals/pharmacology , Phytochemicals/chemistry , Microbial Sensitivity Tests , MCF-7 Cells , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Plant Roots/chemistry , Egypt , Hep G2 Cells , Flavonoids/pharmacology
3.
Ren Fail ; 46(2): 2375033, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38967135

ABSTRACT

The Astragalus mongholicus Bunge and Panax notoginseng formula (A&P) has been clinically shown to effectively slow down the progression of chronic kidney disease (CKD) and has demonstrated significant anti-fibrosis effects in experimental CKD model. However, the specific active ingredients and underlying mechanism are still unclear. The active ingredients of A&P were analyzed by Ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-HR-MS). A mouse model of CKD was constructed by 5/6 nephrectomy. Renal function was assessed by creatinine and urea nitrogen. Real-time PCR and Western Blot were performed to detect the mRNA and protein changes in kidney and cells. An in vitro fibrotic cell model was constructed by TGF-ß induction in TCMK-1 cells. The results showed that thirteen active ingredients of A&P were identified by UPLC-HR-MS, nine of which were identified by analysis with standards, among which the relative percentage of NOB was high. We found that NOB treatment significantly improved renal function, pathological damage and reduced the expression level of fibrotic factors in CKD mice. The results also demonstrated that Lgals1 was overexpressed in the interstitial kidney of CKD mice, and NOB treatment significantly reduced its expression level, while inhibiting PI3K and AKT phosphorylation. Interestingly, overexpression of Lgals1 significantly increased fibrosis in TCMK1 cells and upregulated the activity of PI3K and AKT, which were strongly inhibited by NOB treatment. NOB is one of the main active components of A&P. The molecular mechanism by which NOB ameliorates renal fibrosis in CKD may be through the inhibition of Lgals1/PI3K/AKT signaling pathway.


Subject(s)
Disease Models, Animal , Drugs, Chinese Herbal , Fibrosis , Flavones , Kidney , Panax notoginseng , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Renal Insufficiency, Chronic , Signal Transduction , Animals , Mice , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/metabolism , Signal Transduction/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Male , Panax notoginseng/chemistry , Flavones/pharmacology , Flavones/therapeutic use , Kidney/pathology , Kidney/drug effects , Astragalus Plant/chemistry , Mice, Inbred C57BL , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid
4.
Medicine (Baltimore) ; 103(27): e38699, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38968529

ABSTRACT

Investigations into the therapeutic potential of Astragalus Mongholicus (AM, huáng qí) and Largehead Atractylodes (LA, bái zhú) reveal significant efficacy in mitigating the onset and progression of knee osteoarthritis (KOA), albeit with an elusive mechanistic understanding. This study delineates the primary bioactive constituents and their molecular targets within the AM-LA synergy by harnessing the comprehensive Traditional Chinese Medicine (TCM) network databases, including TCMSP, TCMID, and ETCM. Furthermore, an analysis of 3 gene expression datasets, sourced from the gene expression omnibus database, facilitated the identification of differential genes associated with KOA. Integrating these findings with data from 5 predominant databases yielded a refined list of KOA-associated targets, which were subsequently aligned with the gene signatures corresponding to AM and LA treatment. Through this alignment, specific molecular targets pertinent to the AM-LA therapeutic axis were elucidated. The construction of a protein-protein interaction network, leveraging the shared genetic markers between KOA pathology and AM-LA intervention, enabled the identification of pivotal molecular targets via the topological analysis facilitated by CytoNCA plugins. Subsequent GO and KEGG enrichment analyses fostered the development of a holistic herbal-ingredient-target network and a core target-signal pathway network. Molecular docking techniques were employed to validate the interaction between 5 central molecular targets and their corresponding active compounds within the AM-LA complex. Our findings suggest that the AM-LA combination modulates key biological processes, including cellular activity, reactive oxygen species modification, metabolic regulation, and the activation of systemic immunity. By either augmenting or attenuating crucial signaling pathways, such as MAPK, calcium, and PI3K/AKT pathways, the AM-LA dyad orchestrates a comprehensive regulatory effect on immune-inflammatory responses, cellular proliferation, differentiation, apoptosis, and antioxidant defenses, offering a novel therapeutic avenue for KOA management. This study, underpinned by gene expression omnibus gene chip analyses and network pharmacology, advances our understanding of the molecular underpinnings governing the inhibitory effects of AM and LA on KOA progression, laying the groundwork for future explorations into the active components and mechanistic pathways of TCM in KOA treatment.


Subject(s)
Atractylodes , Drugs, Chinese Herbal , Molecular Docking Simulation , Network Pharmacology , Osteoarthritis, Knee , Atractylodes/chemistry , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/pharmacology , Osteoarthritis, Knee/drug therapy , Osteoarthritis, Knee/genetics , Network Pharmacology/methods , Humans , Protein Interaction Maps , Astragalus Plant/chemistry , Medicine, Chinese Traditional/methods , Oligonucleotide Array Sequence Analysis , Astragalus propinquus
5.
Pharm Biol ; 62(1): 634-647, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39066667

ABSTRACT

CONTEXT: In China, HUANGQI is widely used for the treatment of Alzheimer's disease (AD). However, a comprehensive understanding of its mechanism of anti-AD effects is lacking. OBJECTIVE: To explore the active ingredients of HUANGQI and its potential targets and mechanisms of action in AD. MATERIALS AND METHODS: The active ingredients and targets of HUANGQI were screened from databases (TCSMP, ETCM, and BATMan), and AD-related genes were obtained from DrugBank and GeneCards. The same target genes were screened, and a drug-target disease network was constructed. The PPI network was constructed and GO and KEGG pathway enrichment analyses of the targets. The Cell Counting Kit-8 (CCK-8) assay was used to determine suitable HUANGQI treatment concentrations for HT-22 cells between 0-480 µg/mL. CCK-8, FITC-phalloidin and propidium iodide (PI) assays were used to examine the protective effect of (0, 60, 120, 240 µg/mL) of HUANGQI on 20 µM Aß1-42-induced HT-22 cell cytotoxicity. RESULTS: Twelve active ingredients of HUANGQI were selected, with 679 common targets associated with AD. GO and KEGG analysis revealed that the therapeutic mechanisms of HUANGQI involve TNF, AGE, the NF-κB pathway, and nuclear receptor activity-related processes. The CCK-8 assay indicated that HUANGQI was not cytotoxic to HT-22 cells at concentrations less than 240 µg/mL and was able to attenuate Aß1-42-induced cellular damage (EC50 = 83.46 µg/mL). FITC-phalloidin and PI assays suggested that HUANGQI could alleviate 20 µM Aß1-42-induced neuronal cell cytotoxicity in a dose-dependent manner. CONCLUSION: HUANGQI has a protective effect on Aß1-42-induced nerve cell injury; further mechanism research was needed.


Subject(s)
Alzheimer Disease , Drugs, Chinese Herbal , Molecular Docking Simulation , Network Pharmacology , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Animals , Mice , Amyloid beta-Peptides/metabolism , Astragalus propinquus , Dose-Response Relationship, Drug , Humans , Cell Line , Astragalus Plant/chemistry , Peptide Fragments , Cell Survival/drug effects , Signal Transduction/drug effects
6.
Drug Des Devel Ther ; 18: 2169-2187, 2024.
Article in English | MEDLINE | ID: mdl-38882048

ABSTRACT

Purpose: Traditional Chinese medicine (TCM) therapy is an important means to treat hepatocellular carcinoma (HCC), Astragalus (Latin name: Hedysarum Multijugum Maxim; Chinese name: Huangqi, HQ) and Atractylodes (Latin name: Atractylodes Macrocephala Koidz; Chinese name: Baizhu, BZ) (HQBZ), a classic herb pair, is often used in combination to HCC. However, the main components and potential mechanisms of HQBZ therapy in HCC remain unclear. This study aimed to identify the potential active ingredients and molecular mechanisms of action of HQBZ in HCC treatment. Methods: The HQBZ-Compound-Target-HCC network and HQBZ-HCC transcriptional regulatory network were constructed to screen the core active compound components and targets of HQBZ therapy for HCC. Molecular docking techniques are used to verify the stability of binding core active compound components to targets. GO and KEGG enrichment analysis were used to explore the signaling pathway of HQBZ in HCC treatment, the mechanism of HQBZ treatment of HCC was verified based on in vivo H22 tumor bearing mice and in vitro cell experiments. Results: Network pharmacology and molecular docking studies showed that HQBZ treatment of HCC was related to the targeted regulation of IL-6 and STAT3 by the active compound biatractylolide, KEGG pathway enrichment analysis suggest that HQBZ may play a role in the treatment of HCC through IL-6/STAT3 signaling pathway. In vitro experiment results proved that HQBZ could regulate IL-6/STAT3 signaling pathway transduction on CD8+T cells, inhibit CD8+T cell exhaustion and restore the function of exhausted CD8+T cells. In vivo experiment results proved that HQBZ can regulate IL-6/STAT3 signaling pathway transduction in H22 liver cancer model mouse tumor tissue, increased the proportion of tumor infiltrating CD8+T cells. Conclusion: This study found that HQBZ may play a therapeutic role in HCC by targeting IL-6 and STAT3 through biatractylolide, its mechanism of action is related to regulating IL-6/STAT3 signaling pathway, reversing T cell failure and increasing tumor infiltration CD8+T cells.


Subject(s)
Antineoplastic Agents, Phytogenic , Atractylodes , Carcinoma, Hepatocellular , Drugs, Chinese Herbal , Liver Neoplasms , Network Pharmacology , STAT3 Transcription Factor , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Animals , Humans , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Mice , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/antagonists & inhibitors , Atractylodes/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Molecular Docking Simulation , Astragalus Plant/chemistry , Cell Proliferation/drug effects , Liver Neoplasms, Experimental/drug therapy , Liver Neoplasms, Experimental/pathology , Liver Neoplasms, Experimental/metabolism , Interleukin-6/metabolism , Interleukin-6/antagonists & inhibitors , Medicine, Chinese Traditional , Drug Screening Assays, Antitumor
7.
Int J Biol Macromol ; 272(Pt 1): 132860, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38834117

ABSTRACT

To explore the adjuvant therapy drugs of low-dose metformin, one homogeneous polysaccharide named APS-D1 was purified from Astragalus membranaceus by DEAE-52 cellulose and Sephadex G-100 column chromatography. Its chemical structure was characterized by molecular weight distribution, monosaccharide composition, infrared spectrum, methylation analysis, and NMR. The results revealed that APS-D1 (7.36 kDa) consisted of glucose, galactose, and arabinose (97.51 %:1.56 %:0.93 %). It consisted of →4)-α-D-Glcp-(1→ residue backbone with →3)-ß-D-Galp-(1→ residue and terminal-α/ß-D-Glcp-(1→ side chains. APS-D1 could significantly improve inflammation (TNF-α, LPS, and IL-10) in vivo. Moreover, APS-D1 improved the curative effect of low-dose metformin without adverse events. APS-D1 combined with low-dose metformin regulated several gut bacteria, in which APS-D1 enriched Staphylococcus lentus to produce l-carnitine (one of 136 metabolites of S. lentus). S. lentus and l-carnitine could improve diabetes, and reduction of S. lentusl-carnitine production impaired diabetes improvement. The combination, S. lentus, and l-carnitine could promote fatty acid oxidation (CPT1) and inhibit gluconeogenesis (PCK and G6Pase). The results indicated that APS-D1 enhanced the curative effect of low-dose metformin to improve diabetes by enriching S. lentus, in which the effect of S. lentus was mediated by l-carnitine. Collectively, these findings support that low-dose metformin supplemented with APS-D1 may be a favorable therapeutic strategy for type 2 diabetes.


Subject(s)
Metformin , Polysaccharides , Staphylococcus , Metformin/pharmacology , Metformin/chemistry , Animals , Polysaccharides/pharmacology , Polysaccharides/chemistry , Staphylococcus/drug effects , Mice , Astragalus Plant/chemistry , Male , Diabetes Mellitus, Experimental/drug therapy , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Molecular Weight
8.
J Ethnopharmacol ; 333: 118447, 2024 Oct 28.
Article in English | MEDLINE | ID: mdl-38885914

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Ginseng Radix and Astragali Radix are commonly combined to tonify Qi and alleviate fatigue. Previous studies have employed biological networks to investigate the mechanisms of herb pairs in treating different diseases. However, these studies have only elucidated a single network for each herb pair, without emphasizing the superiority of the herb combination over individual herbs. AIM OF THE STUDY: This study proposes an approach of comparing biological networks to highlight the synergistic effect of the pair in treating cancer-related fatigue (CRF). METHODS: The compounds and targets of Ginseng Radix, Astragali Radix, and CRF diseases were collected and predicted using different databases. Subsequently, the overlapping targets between herbs and disease were imported into the STRING and DAVID tools to build protein-protein interaction (PPI) networks and analyze enriched KEGG pathways. The biological networks of Ginseng Radix and Astragali Radix were compared separately or together using the DyNet application. Molecular docking was used to verify the predicted results. Further, in vitro experiments were conducted to validate the synergistic pathways identified in in silico studies. RESULTS: In the PPI network comparison, the combination created 89 new interactions and an increased average degree (11.260) when compared to single herbs (10.296 and 9.394). The new interactions concentrated on HRAS, STAT3, JUN, and IL6. The topological analysis identified 20 core targets of the combination, including three Ginseng Radix-specific targets, three Astragali Radix-specific targets, and 14 shared targets. In KEGG enrichment analysis, the combination regulated additional signaling pathways (152) more than Ginseng Radix (146) and Astragali Radix (134) alone. The targets of the herb pair synergistically regulated cancer pathways, specifically hypoxia-inducible factor 1 (HIF-1) signaling pathway. In vitro experiments including enzyme-linked immunosorbent assay and Western blot demonstrated that two herbs combination could up-regulate HIF-1α signaling pathway at different combined concentrations compared to either single herb alone. CONCLUSION: The herb pair increased protein interactions and adjusted metabolic pathways more than single herbs. This study provides insights into the combination of Ginseng Radix and Astragali Radix in clinical practice.


Subject(s)
Astragalus propinquus , Drug Synergism , Drugs, Chinese Herbal , Fatigue , Molecular Docking Simulation , Neoplasms , Panax , Protein Interaction Maps , Panax/chemistry , Humans , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Neoplasms/drug therapy , Fatigue/drug therapy , Astragalus propinquus/chemistry , Astragalus Plant/chemistry , Signal Transduction/drug effects
9.
Nutrients ; 16(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38892631

ABSTRACT

This study investigated the effect of astragalus polysaccharide (APS, an ingredient with hypoglycemic function in a traditional Chinese herbal medicine) on gut microbiota and metabolites of type 2 diabetes mellitus (T2DM) patients using a simulated fermentation model in vitro. The main components of APS were isolated, purified, and structure characterized. APS fermentation was found to increase the abundance of Lactobacillus and Bifidobacterium and decrease the Escherichia-Shigella level in the fecal microbiota of T2DM patients. Apart from increasing propionic acid, APS also caused an increase in all-trans-retinoic acid and thiamine (both have antioxidant properties), with their enrichment in the KEGG pathway associated with thiamine metabolism, etc. Notably, APS could also enhance fecal antioxidant properties. Correlation analysis confirmed a significant positive correlation of Lactobacillus with thiamine and DPPH-clearance rate, suggesting the antioxidant activity of APS was related to its ability to enrich some specific bacteria and upregulate their metabolites.


Subject(s)
Antioxidants , Astragalus Plant , Diabetes Mellitus, Type 2 , Feces , Fermentation , Gastrointestinal Microbiome , Polysaccharides , Gastrointestinal Microbiome/drug effects , Humans , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/drug therapy , Polysaccharides/pharmacology , Astragalus Plant/chemistry , Feces/microbiology , Antioxidants/pharmacology , Male , Female , Middle Aged , Thiamine/pharmacology , Thiamine/metabolism , Bifidobacterium/metabolism , Bifidobacterium/drug effects , Lactobacillus/metabolism , Lactobacillus/drug effects , Hypoglycemic Agents/pharmacology
10.
Acta Trop ; 257: 107296, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38909723

ABSTRACT

The present investigation aims to develop and evaluate silver nanoparticles (AgNP) synthesized through environmentally friendly methods and to assess their effectiveness against hydatid cysts through in vitro, ex vivo, and in vivo experiments. The green synthesis of ANP was accomplished using the precipitation technique with Astragalus spinosus extract. The in vitro protoscolicidal effects of ANP were evaluated on hydatid cyst protoscoleces (PTS) through eosin exclusion test. The study also investigated the effect of ANP on the gene expression levels of caspase-3 and 9, as well as the external morphology of PTS. The in vivo efficacy was assessed by analyzing the quantity, dimensions, and weight of hydatid cysts in infected mice. Real-time PCR was used to analyze the gene expression levels of antioxidant and inflammatory cytokines. ANP exhibited significant (p < 0.001) in vitro protoscolicidal activity in a dose- and time-dependent manner. Treatment with ANP resulted in creases and protrusions on the plasma membrane, indicating bleb formation and an increase in the expression of caspase-3 and caspase-9 genes. Notably, there was a significant (p < 0.001) reduction in the number, size, and weight of hydatid cysts following ANP treatment. Administration of ANP resulted in a significant increase in the expression of antioxidant genes (glutathione peroxidase and superoxide dismutase) and a notable decrease in oxidative stress markers, as well as in the expression levels of Interleukin-4 (IL-4) and IL-10. Due to its antioxidant and anti-inflammatory properties, ANP shows potential as a scolicidal agent and holds promise in managing hydatid cysts in a mouse model. Nevertheless, further clinical trials are imperative to validate the efficacy of ANP in treating hydatidosis.


Subject(s)
Echinococcosis , Metal Nanoparticles , Plant Extracts , Silver , Animals , Echinococcosis/drug therapy , Echinococcosis/parasitology , Silver/pharmacology , Silver/chemistry , Mice , Metal Nanoparticles/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Astragalus Plant/chemistry , Caspase 3/metabolism , Caspase 3/genetics , Disease Models, Animal , Cytokines/metabolism , Female , Mice, Inbred BALB C , Caspase 9/metabolism , Caspase 9/genetics
11.
Mol Immunol ; 171: 93-104, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38805892

ABSTRACT

BACKGROUND: This study determines the role and mechanism of APS in cyclophosphamide-induced myelosuppression in mice and bone mesenchymal stem cells (BMSCs) cell model. METHODS: Cy-induced myelosuppression mice and BMSCs cell model were established. Fifty C57BL/6 mice (weighing 20 ± 2 g) were randomly divided into five groups. Femur and tibia samples, bone marrow samples, and blood samples were collected 3 days after the last injection of Cy. Histopathology changes and cell apoptosis were detected. Cell viability, apoptosis, cycle distribution, reactive oxygen species activity, osteogenesis ability, and protein levels were detected. γ-H2AX and senescence-associated ß-galactosidase activity expression was detected by immunofluorescence. Cy-induced senescence and Wnt/ß-catenin related protein levels were detected using western blotting. RESULTS: The results showed that APS effectively induced Cy-induced histological injury and cell apoptosis rate. After treated with APS, ROS and ALP levels were significantly increased. In BMSCs, cell viability, apoptosis, and cell cycle distribution were also influenced by APS treatment. Compared with the control group, cell viability was significantly increased, the cell apoptosis rate was decreased while the number of cells remained in the G0-G1 phase was increased. Meanwhile, ROS levels were significantly increased in APS group. Cell senescence and Wnt/ß-catenin related protein (γ-H2AX, SA-ß-gal, p21, p16, p-ß-catenin/ ß-catenin, c-Myc, and AXIN2) levels were also altered both in vivo and in vitro. Interestingly, the effects of APS were reversed by BML-284. CONCLUSION: Our results indicate that APS protected Cy-induced myelosuppression through the Wnt/ß-catenin pathway and APS is a potential therapeutic drug for Cy-induced myelosuppression.


Subject(s)
Apoptosis , Astragalus Plant , Cyclophosphamide , Mesenchymal Stem Cells , Mice, Inbred C57BL , Polysaccharides , Animals , Cyclophosphamide/toxicity , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Apoptosis/drug effects , Mice , Polysaccharides/pharmacology , Astragalus Plant/chemistry , Reactive Oxygen Species/metabolism , Cell Survival/drug effects , Bone Marrow Cells/drug effects , Bone Marrow Cells/metabolism , Wnt Signaling Pathway/drug effects , Male , beta Catenin/metabolism , Cellular Senescence/drug effects , Bone Marrow/drug effects , Bone Marrow/metabolism , Osteogenesis/drug effects , Cell Cycle/drug effects
12.
Int J Biol Macromol ; 271(Pt 1): 132580, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38788871

ABSTRACT

Ulcerative colitis (UC) is a chronic inflammatory disease of the intestine that is significantly influenced by an imbalance in the gut microbiota. Astragalus membranaceus, particularly its polysaccharide components, has shown therapeutic potential for the treatment of UC, although the specific active constituents and their mechanistic pathways remain to be fully elucidated. In this study, we investigated two molecular weight fractions of Astragalus polysaccharides (APS), APS1 (Mw < 10 kDa) and APS2 (10 kDa < Mw < 50 kDa), isolated by ultrafiltration, focusing on their prebiotic effects, effects on UC, and the underlying mechanism. Our results showed that both APS1 and APS2 exhibit prebiotic properties, with APS1 significantly outperforming APS2 in ameliorating UC symptoms. APS1 significantly attenuated weight loss and UC manifestations, reduced colonic pathology, and improved intestinal mucosal barrier integrity. In addition, APS1 significantly reduced the levels of inflammatory cytokines in the serum and colonic tissue, and downregulated colonic chemokines. Furthermore, APS1 ameliorated dextran sulfate sodium salt (DSS)-induced intestinal dysbiosis by promoting the growth of beneficial microbes and inhibiting the proliferation of potential pathogens, leading to a significant increase in short-chain fatty acids. In conclusion, this study highlights the potential of APS1 as a novel prebiotic for the prevention and treatment of UC.


Subject(s)
Astragalus Plant , Colitis, Ulcerative , Polysaccharides , Prebiotics , Colitis, Ulcerative/drug therapy , Polysaccharides/pharmacology , Polysaccharides/chemistry , Animals , Astragalus Plant/chemistry , Male , Gastrointestinal Microbiome/drug effects , Mice , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Cytokines/metabolism , Dextran Sulfate , Fatty Acids, Volatile/metabolism , Colon/drug effects , Colon/pathology , Colon/metabolism , Dysbiosis/drug therapy
13.
Molecules ; 29(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38792148

ABSTRACT

With the escalating demand for Astragalus polysaccharides products developed from Radix Astragali (RA), the necessity for quality control of polysaccharides in RA has become increasingly urgent. In this study, a specific method for the simultaneous determination of seven monosaccharides in polysaccharides extracted from Radix Astragali (RA) has been developed and validated using ultra-performance liquid chromatography equipped with an ultraviolet detector (UHPLC-UV) for the first time. The 1-phenyl-3-methyl-5-pyrazolone (PMP) derivatizations were separated on a C18 column (Waters ACQUITYTM, Milfor, MA, USA, 1.8 µm, 2.1 × 100 mm) using gradient elution with a binary system of 5 mm ammonium formate (0.1% formic acid)-acetonitrile for 24 min. Additionally, seven monosaccharides showed good linear relationships (R2, 0.9971-0.9995), adequate precision (RSD < 4.21%), and high recoveries (RSD < 4.70%). The established method was used to analyze 109 batches of RA. Results showed that the Astragalus polysaccharides (APSs) mainly consist of mannose (Man), rhamnose (Rha), glucose (Glu), galactose (Gal), arabinose (Ara), xylose (Xyl); and fucose (Fuc); however, their composition was different among RA samples from different growth patterns, species, growth years, and origins, and the growth mode of RA and the age of wild-simulated RA can be accurately distinguished by principal component analysis (PCA). In addition, the immunological activity of APSs were also evaluated jointly by measurement of the NO release with RAW264.7, with the results showing that APSs have a promoting effect on the release of NO and exhibit a significant correlation with Man, Glu, Xyl, and Fuc contents. Accordingly, the new established monosaccharides analytical method and APS-immune activity determination in this study can provide a reference for quality evaluation and the establishment of quality standards for RA.


Subject(s)
Astragalus propinquus , Drugs, Chinese Herbal , Monosaccharides , Polysaccharides , Chromatography, High Pressure Liquid/methods , Monosaccharides/analysis , Polysaccharides/chemistry , Polysaccharides/analysis , Astragalus propinquus/chemistry , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/analysis , Mice , Animals , RAW 264.7 Cells , Astragalus Plant/chemistry , Immunologic Factors/analysis , Immunologic Factors/chemistry
14.
Eur J Pharm Sci ; 199: 106794, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38788908

ABSTRACT

Myocardial fibrosis can induce cardiac dysfunction and remodeling. Great attention has been paid to traditional chinese medicine (TCM) 's effectiveness in treating MF. Radix Angelica sinensis (Oliv.) Diels and Radix Astragalus mongholicus Bunge ultrafiltration extract (RAS-RA), which is a key TCM compound preparation, have high efficacy in regulating inflammation. However, studies on its therapeutic effect on radiation-induced myocardial fibrosis (RIMF) are rare. In this study, RAS-RA had therapeutic efficacy in RIMF and elucidated its mechanism of action. First, we formulated the prediction network that described the relation of RAS-RA with RIMF according to data obtained in different databases. Then, we conducted functional enrichment to investigate the functions and pathways associated with potential RIMF targets for RAS-RA. In vivo experiments were also performed to verify these functions and pathways. Second, small animal ultrasound examinations, H&E staining, Masson staining, transmission electron microscopy, Enzyme-linked immunosorbent assay (ELISA), Western-blotting, Immunohistochemical method and biochemical assays were conducted to investigate the possible key anti-RIMF pathway in RAS-RA. In total, 440 targets were detected in those 21 effective components of RAS-RA; meanwhile, 1,646 RIMF-related disease targets were also discovered. After that, PPI network analysis was conducted to identify 20 key targets based on 215 overlap gene targets. As indicated by the gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) analysis results, inflammation and PI3K/AKT/mTOR pathways might have important effects on the therapeutic effects on RIMF. Molecular docking analysis revealed high binding of effective components to targets (affinity < -6 kcal/mol). Based on experimental verification results, RAS-RA greatly mitigated myocardial fibrosis while recovering the cardiac activity of rats caused by X-rays. According to relevant protein expression profiles, the PI3K/AKT/mTOR pathway was important for anti-fibrosis effect of RAS-RA. Experimental studies showed that RAS-RA improved cardiac function, decreased pathological damage and collagen fiber deposition in cardiac tissues, and improved the mitochondrial structure of the heart of rats. RAS-RA also downregulated TNF-α, IL-6, and IL-1ß levels. Additionally, RAS-RA improved the liver and kidney functions and pathological injury of rat kidney and liver tissues, enhanced liver and kidney functions, and protected the liver and kidneys. RAS-RA also increased PI3K, AKT and mTOR protein levels within cardiac tissues and downregulated α-SMA, Collagen I, and Collagen III. The findings of this study suggested that RAS-RA decreased RIMF by suppressing collagen deposition and inflammatory response by inhibiting the PI3K/AKT/mTOR pathway. Thus, RAS-RA was the potential therapeutic agent used to alleviate RIMF.


Subject(s)
Angelica sinensis , Drugs, Chinese Herbal , Fibrosis , Network Pharmacology , Rats, Sprague-Dawley , Animals , Angelica sinensis/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Male , Rats , Astragalus Plant/chemistry , Myocardium/pathology , Myocardium/metabolism , Ultrafiltration/methods , Signal Transduction/drug effects , Cardiomyopathies/drug therapy , Cardiomyopathies/etiology , Cardiomyopathies/metabolism , TOR Serine-Threonine Kinases/metabolism
15.
Phytomedicine ; 130: 155457, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38810556

ABSTRACT

BACKGROUND: Diabetes leads to chronic kidney disease (CKD) and kidney failure, requiring dialysis or transplantation. Astragalus, a common herbal medicine and US pharmacopeia-registered food ingredient, is shown kidney protective by retrospective and preclinical data but with limited long-term prospective clinical evidence. This trial aimed to assess the effectiveness of astragalus on kidney function decline in macroalbuminuric diabetic CKD patients. METHODS: This randomized, assessor-blind, standard care-controlled, multi-center clinical trial randomly assigned 118 patients with estimated glomerular filtration rate (eGFR) of 30-90 ml/min/1.73m2 and urinary albumin-to-creatinine ratio (UACR) of 300-5000 mg/g from 7 public outpatient clinics and the community in Hong Kong between July 2018 and April 2022 to add-on oral astragalus granules (15 gs of raw herbs daily equivalent) or to continue standard care alone as control for 48 weeks. Primary outcomes were the slope of change of eGFR (used for sample size calculation) and UACR of the intention-to-treat population. Secondary outcomes included endpoint blood pressures, biochemistry, biomarkers, concomitant drug change and adverse events. (ClinicalTrials.gov: NCT03535935) RESULTS: During the 48-week period, the estimated difference in the slope of eGFR decline was 4.6 ml/min/1.73m2 per year (95 %CI: 1.5 to 7.6, p = 0.003) slower with astragalus. For UACR, the estimated inter-group proportional difference in the slope of change was insignificant (1.14, 95 %CI: 0.85 to 1.52, p = 0.392). 117 adverse events from 31 astragalus-treated patients and 41 standard care-controlled patients were documented. The 48-week endpoint systolic blood pressure was 7.9 mmHg lower (95 %CI: -12.9 to -2.8, p = 0.003) in the astragalus-treated patients. 113 (96 %) and 107 (91 %) patients had post-randomization and endpoint primary outcome measures, respectively. CONCLUSION: In patients with type 2 diabetes, stage 2 to 3 CKD and macroalbuminuria, add-on astragalus for 48 weeks further stabilized kidney function on top of standard care.


Subject(s)
Astragalus Plant , Diabetes Mellitus, Type 2 , Glomerular Filtration Rate , Renal Insufficiency, Chronic , Humans , Male , Female , Middle Aged , Glomerular Filtration Rate/drug effects , Renal Insufficiency, Chronic/drug therapy , Aged , Diabetes Mellitus, Type 2/drug therapy , Astragalus Plant/chemistry , Diabetic Nephropathies/drug therapy , Phytotherapy , Albuminuria/drug therapy , Creatinine/urine , Creatinine/blood , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Hong Kong
16.
Environ Res ; 252(Pt 3): 118923, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38636641

ABSTRACT

Symbiotic nitrogen fixation of Chinese milk vetch (Astragalus sinicus L.) can fix nitrogen from the atmosphere and serve as an organic nitrogen source in agricultural ecosystems. Exogenous organic material application is a common practice of affecting symbiotic nitrogen fixation; however, the results of the regulation activities remain under discussion. Studies on the impact of organic amendments on symbiotic nitrogen fixation have focused on dissolved organic carbon content changes, whereas the impact on dissolved organic carbon composition and the underlying mechanism remain unclear. In situ pot experiments were carried out using soils from a 40-year-old field experiment platform to investigate symbiotic nitrogen fixation rate trends, dissolved organic carbon concentration and component, and diazotroph community structure in roots and in rhizosphere soils following long-term application of different exogenous organic substrates, i.e., green manure, green manure and pig manure, and green manure and rice straw. Remarkable increases in rate were observed in and when compared with that in green manure treatment, with the greatest enhancement observed in the treatment. Moreover, organic amendments, particularly pig manure application, altered diazotroph community composition in rhizosphere soils, therefore increasing the abundance of the host-specific genus Mesorhizobium. Furthermore, organic amendments influence the diazotroph communities through two primary mechanisms. Firstly, the components of dissolved organic carbon promote an increase in available iron, facilitated by the presence of humus substrates. Secondly, the elevated content of dissolved organic carbon and available iron expands the niche breadth of Mesorhizobium within the rhizosphere. Consequently, these alterations result in a modified diazotroph community within the rhizosphere, which in turn influences Mesorhizobium nodulation in the root and symbiotic nitrogen fixation rate. The results of the present study enhance our understanding of the impact of organic amendments on symbiotic nitrogen fixation and the underlying mechanism, highlighting the key role of dissolved organic carbon composition on diazotroph community composition in the rhizosphere.


Subject(s)
Astragalus Plant , Mesorhizobium , Nitrogen Fixation , Rhizosphere , Soil Microbiology , Symbiosis , Mesorhizobium/physiology , Astragalus Plant/microbiology , Astragalus Plant/chemistry , Manure/microbiology , Manure/analysis , Animals , Plant Roots/microbiology , Soil/chemistry
17.
J Ethnopharmacol ; 329: 118157, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38588987

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Astragalus mongholicus Bunge (AMB) is a herb with wide application in traditional Chinese medicine, exerting a wealth of pharmacological effects. AMB has been proven to have an evident therapeutic effect on ischemic cerebrovascular diseases, including cerebral ischemia-reperfusion injury (CIRI). However, the specific mechanism underlying AMB in CIRI remains unclear. AIM OF THE STUDY: This study aimed to investigate the potential role of AMB in CIRI through a comprehensive approach of network pharmacology and in vivo experimental research. METHODS: The intersection genes of drugs and diseases were obtained through analysis of the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database and Gene Expression Omnibus (GEO) database. The protein-protein interaction (PPI) network was created through the string website. Meanwhile, the gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was carried out using R studio, and thereafter the key genes were screened. Then, the molecular docking prediction was made between the main active ingredients and target genes, and hub genes with high binding energy were obtained. In addition, molecular dynamic (MD) simulation was used to validate the result of molecular docking. Based on the results of network pharmacology, we used animal experiments to verify the predicted hub genes. First, the rat middle cerebral artery occlusion and reperfusion (MACO/R) model was established and the effective dose of AMB in CIRI was determined by behavioral detection and 2,3,5-Triphenyltetrazolium chloride (TTC) staining. Then the target proteins corresponding to the hub genes were measured by Western blot. Moreover, the level of neuronal death was measured using hematoxylin and eosin (HE) and Nissl staining. RESULTS: Based on the analysis of the TCMSP database and GEO database, a total of 62 intersection target genes of diseases and drugs were obtained. The KEGG enrichment analysis showed that the therapeutic effect of AMB on CIRI might be realized through the advanced glycation endproduct-the receptor of advanced glycation endproduct (AGE-RAGE) signaling pathway in diabetic complications, nuclear factor kappa-B (NF-κB) signaling pathway and other pathways. Molecular docking results showed that the active ingredients of AMB had good binding potential with hub genes that included Prkcb, Ikbkb, Gsk3b, Fos and Rela. Animal experiments showed that AWE (60 g/kg) could alleviate CIRI by regulating the phosphorylation of PKCß, IKKß, GSK3ß, c-Fos and NF-κB p65 proteins. CONCLUSION: AMB exerts multi-target and multi-pathway effects against CIRI, and the underlying mechanism may be related to anti-apoptosis, anti-inflammation, anti-oxidative stress and inhibiting calcium overload.


Subject(s)
Astragalus Plant , Drugs, Chinese Herbal , Molecular Docking Simulation , Network Pharmacology , Protein Interaction Maps , Rats, Sprague-Dawley , Reperfusion Injury , Animals , Reperfusion Injury/drug therapy , Astragalus Plant/chemistry , Male , Rats , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Infarction, Middle Cerebral Artery/drug therapy , Signal Transduction/drug effects , Molecular Dynamics Simulation
18.
Molecules ; 29(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38675511

ABSTRACT

Astragali radix is a traditional medicinal herb with a long history and wide application. It is frequently used in prescriptions with other medicinal materials to replenish Qi. According to the classics of traditional Chinese medicine, Astragali radix is attributed with properties such as Qi replenishing and surface solidifying, sore healing and muscle generating, and inducing diuresis to reduce edema. Modern pharmacological studies have demonstrated that some extracts and active ingredients in Astragali radix function as antioxidants. The polysaccharides, saponins, and flavonoids in Astragali radix offer beneficial effects in preventing and controlling diseases caused by oxidative stress. However, there is still a lack of comprehensive research on the effective components and molecular mechanisms through which Astragali radix exerts antioxidant activity. In this paper, we review the active components with antioxidant effects in Astragali radix; summarize the content, bioavailability, and antioxidant mechanisms; and offer a reference for the clinical application of Astragalus and the future development of novel antioxidants.


Subject(s)
Antioxidants , Astragalus propinquus , Drugs, Chinese Herbal , Antioxidants/pharmacology , Antioxidants/chemistry , Astragalus propinquus/chemistry , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Humans , Astragalus Plant/chemistry , Oxidative Stress/drug effects , Animals , Flavonoids/chemistry , Flavonoids/pharmacology , Medicine, Chinese Traditional , Saponins/pharmacology , Saponins/chemistry
19.
Poult Sci ; 103(5): 103638, 2024 May.
Article in English | MEDLINE | ID: mdl-38579575

ABSTRACT

Transport stress (TS) not only weakens poultry performance but also affects animal welfare. Additionally, TS can evoke cardiac damage by triggering sterile inflammation in chicks, but the underlying mechanism is not fully understood. Here, we aimed to elucidate how TS induces sterile inflammation and heart injury and to clarify the antagonism effect of astragalus polysaccharides (APS). We randomly divided 60 chicks (one-day-old female) into 5 groups (n = 12): Control_0h (Con_0h) group (chicks were slaughtered at initiation), Control group (stress-free control), TS group (simulated TS exposure for 8 h), TS plus water (TS+W) group, and TS plus APS (TS+APS) group. Before simulation transport, the chicks of TS+W and TS+APS groups were, respectively, dietary with 100 µL of water or APS (250 µg/mL). H&E staining was employed for cardiac histopathological observation. ELISA assay was used to measure oxidative stress marker levels (GSH, GPX, GST, and MDA). A commercial kit was used to isolate the mitochondrial portion, and qRT-PCR was employed to measure the mitochondrial DNA (mtDNA) levels. Furthermore, we evaluated the activity of mtDNA-mediated NF-κB, NLRP3 inflammasome, and cGAS-STING inflammatory pathways and the expression of downstream inflammatory factors by Western Blotting or qRT-PCR. Our findings revealed that APS notably relieved TS-induced myocardial histopathological lesions and infiltrations. Likewise, the decrease in proinflammatory factors (TNF-α, IL-1ß, and IL-6) and IFN-ß by APS further supported this result. Meanwhile, TS caused severe oxidative stress in the chick heart, as evidenced by decreased antioxidant enzymes and increased MDA. Importantly, APS prevented mtDNA stress and leakage by reducing oxidative stress. Interestingly, TS-induced mtDNA leakage caused a series of inflammation events via mtDNA-PRRs pathways, including TLR21-NF-κB, NLRP3 inflammasome, and cGAS-STING signaling. Encouragingly, all these adverse changes related to inflammation events induced by mtDNA-PRRs activation were all relieved by APS treatment. In summary, our findings provide the first evidence that inhibition of mtDNA-PRRs pathway-mediated sterile inflammation by APS could protect against TS-induced cardiac damage in chicks.


Subject(s)
Chickens , DNA, Mitochondrial , Inflammation , Polysaccharides , Poultry Diseases , Animals , Polysaccharides/pharmacology , Polysaccharides/administration & dosage , DNA, Mitochondrial/metabolism , Inflammation/veterinary , Inflammation/chemically induced , Poultry Diseases/prevention & control , Poultry Diseases/chemically induced , Female , Stress, Physiological/drug effects , Astragalus Plant/chemistry , Random Allocation , Heart Diseases/veterinary , Heart Diseases/prevention & control , Heart Diseases/chemically induced , Heart Diseases/etiology , Oxidative Stress/drug effects , Signal Transduction/drug effects
20.
J Ethnopharmacol ; 330: 118235, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38648891

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Astragalus mongholicus Bunge (AM, recorded in http://www.worldfloraonline.org, 2023-08-03) is a kind of medicine food homology plant with a long medicinal history in China. Astragaloside III (AS-III) has immunomodulatory effects and is one of the most active components in AM. However, its underlying mechanism of action is still not fully explained. AIM OF THE STUDY: The research was designed to discuss the protective effects of AS-III on immunosuppression and to elucidate its prospective mechanism. MATERIALS AND METHODS: Molecular docking methods and network pharmacology analysis were used to comprehensively investigate potential targets and relative pathways for AS-III and immunosuppression. In order to study and verify the pharmacological activity and mechanism of AS-III in alleviating immunosuppression, immunosuppression mouse model induced by cyclophosphamide (CTX) in vivo and macrophage RAW264.7 cell model induced by hypoxia/lipopolysaccharide (LPS) in vitro were used. RESULTS: A total of 105 common targets were obtained from the AS-III-related and immunosuppression-related target networks. The results of network pharmacology and molecular docking demonstrate that AS-III may treat immunosuppression through by regulating glucose metabolism-related pathways such as regulation of lipolysis in adipocytes, carbohydrate digestion and absorption, cGMP-PKG signaling pathway, central carbon metabolism in cancer together with HIF-1 pathway. The results of molecular docking showed that AS-III has good binding relationship with LDHA, AKT1 and HIF1A. In CTX-induced immunosuppressive mouse model, AS-III had a significant protective effect on the reduction of body weight, immune organ index and hematological indices. It can also protect immune organs from damage. In addition, AS-III could significantly improve the expression of key proteins involved in energy metabolism and serum inflammatory factors. To further validate the animal results, an initial inflammatory/immune response model of macrophage RAW264.7 cells was constructed through hypoxia and LPS. AS-III improved the immune function of macrophages, reduced the release of NO, TNF-α, IL-1ß, PDHK-1, LDH, lactate, HK, PK and GLUT-1, and restored the decrease of ATP caused by hypoxia. Besides, AS-III was also demonstrated that it could inhibit the increase of HIF-1α, PDHK-1 and LDH by adding inhibitors and agonists. CONCLUSIONS: In this study, the main targets of AS-III for immunosuppressive therapy were initially analyzed. AS-III was systematically confirmed to attenuates immunosuppressive state through the HIF-1α/PDHK-1 pathway. These findings offer an experimental foundation for the use of AS-III as a potential candidate for the treatment of immunosuppression.


Subject(s)
Molecular Docking Simulation , Network Pharmacology , Saponins , Animals , Mice , RAW 264.7 Cells , Saponins/pharmacology , Lipopolysaccharides , Male , Cyclophosphamide/pharmacology , Immunosuppressive Agents/pharmacology , Triterpenes/pharmacology , Signal Transduction/drug effects , Astragalus Plant/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL