Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.827
Filter
1.
Commun Biol ; 7(1): 929, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095605

ABSTRACT

Mesoscale eddies influence the distribution of diazotrophic (nitrogen-fixing) cyanobacteria, impacting marine productivity and carbon export. Non-cyanobacterial diazotrophs (NCDs) are emerging as potential contributors to marine nitrogen fixation, relying on organic matter particles for resources, impacting nitrogen and carbon cycling. However, their diversity and biogeochemical importance remain poorly understood. In the subtropical North Atlantic along a single transect, this study explored the horizontal and vertical spatial variability of NCDs associated with suspended, slow-sinking, and fast-sinking particles collected with a marine snow catcher. The investigation combined amplicon sequencing with hydrographic and biogeochemical data. Cyanobacterial diazotrophs and NCDs were equally abundant, and their diversity was explained by the structure of the eddy. The unicellular symbiotic cyanobacterium UCYN-A was widespread across the eddy, whereas Trichodesmium and Crocosphaera accumulated at outer fronts. The diversity of particle-associated NCDs varied more horizontally than vertically. NCDs constituted most reads in the fast-sinking fractions, mainly comprising Alphaproteobacteria, whose abundance significantly differed from the suspended and slow-sinking fractions. Horizontally, Gammaproteobacteria and Betaproteobacteria exhibited inverse distributions, influenced by physicochemical characteristics of water intrusions at the eddy periphery. Niche differentiations across the anticyclonic eddy underscored NCD-particle associations and mesoscale dynamics, deepening our understanding of their ecological role and impact on ocean biogeochemistry.


Subject(s)
Cyanobacteria , Nitrogen Fixation , Atlantic Ocean , Cyanobacteria/genetics , Cyanobacteria/metabolism , Seawater/microbiology
2.
Nat Commun ; 15(1): 6297, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090106

ABSTRACT

Krill are vital as food for many marine animals but also impacted by global warming. To learn how they and other zooplankton may adapt to a warmer world we studied local adaptation in the widespread Northern krill (Meganyctiphanes norvegica). We assemble and characterize its large genome and compare genome-scale variation among 74 specimens from the colder Atlantic Ocean and warmer Mediterranean Sea. The 19 Gb genome likely evolved through proliferation of retrotransposons, now targeted for inactivation by extensive DNA methylation, and contains many duplicated genes associated with molting and vision. Analysis of 760 million SNPs indicates extensive homogenizing gene-flow among populations. Nevertheless, we detect signatures of adaptive divergence across hundreds of genes, implicated in photoreception, circadian regulation, reproduction and thermal tolerance, indicating polygenic adaptation to light and temperature. The top gene candidate for ecological adaptation was nrf-6, a lipid transporter with a Mediterranean variant that may contribute to early spring reproduction. Such variation could become increasingly important for fitness in Atlantic stocks. Our study underscores the widespread but uneven distribution of adaptive variation, necessitating characterization of genetic variation among natural zooplankton populations to understand their adaptive potential, predict risks and support ocean conservation in the face of climate change.


Subject(s)
Adaptation, Physiological , Euphausiacea , Genomics , Animals , Euphausiacea/genetics , Atlantic Ocean , Adaptation, Physiological/genetics , Mediterranean Sea , Polymorphism, Single Nucleotide , Genome , Zooplankton/genetics , Gene Flow , Genetic Variation
3.
PLoS One ; 19(8): e0304347, 2024.
Article in English | MEDLINE | ID: mdl-39116053

ABSTRACT

Parasmittina is the most representative cheilostome genus of the family Smittinidae, often reported in the fouling non-indigenous marine community. Here, we present a review of Parasmittina species reported in the Southwestern Atlantic including the characterization of one species from Argentina (P. dubitata) and ten from the Brazilian coast: P. abrolhosensis, P. alba, P. bimucronata, P. ligulata comb. nov., P. longirostrata, P. pinctatae, P. serrula, P. simpulata, P. winstonae and the new species Parasmittina falciformis sp. nov. The new species is characterized by a smooth distally primary orifice with 1-2 oral spines, large lyrula, serrated condyles with hooked tips, and two types of avicularia-small and subtriangular and large sublanceolate. This study does not recognize four species previous recorded in Brazil: reports of P. betamorphaea and P. trispinosa are now assigned to P. pinctatae; records of P. munita belong to P. falciformis sp. nov.; and reports of P. spathulata encompass at least two taxa, including P. abrolhosensis and P. simpulata. In this study, five species complexes (P. alba, P. longirostrata, P. serrula, P. simpulata and P. winstonae) were identified and require further investigations. While six species characterized here were first described based on specimens from the Southwestern Atlantic (P. abrolhosensis, P. alba, P. dubitata, P. ligulata comb. nov., P. simpulata and P. falciformis sp. nov.), the remaining species are mainly known from the Indo-Pacific. These taxa are here recognized as exotic (P. longirostrata) and cryptogenic (P. bimucronata, P. pinctatae, P. serrula and P. winstonae) in the studied area. Most of the non-native taxa are widespread along the Brazilian coast, growing on both artificial and natural surfaces, indicating that they are well-established in the area. As non-native bryozoans can negatively influence the environment, affecting human economic activities and beach usage, further studies on the fauna presented here are suggested to determine the origin of these taxa and help prevent bioinvasion events along the SW Atlantic.


Subject(s)
Bryozoa , Animals , Atlantic Ocean , Brazil , Bryozoa/classification , Bryozoa/anatomy & histology , Phylogeny , Argentina , Biodiversity , Species Specificity
4.
PeerJ ; 12: e17829, 2024.
Article in English | MEDLINE | ID: mdl-39099657

ABSTRACT

Over the past few decades, corals of the genus Tubastraea have spread globally, revealing themselves to be organisms of great invasive capacity. Their constant expansion on the Brazilian coast highlights the need for studies to monitor the invasion process. The growth, fecundity, settlement, and data on the coverage area of three co-occurring Tubastraea species in the 2015-2016 period were related to temperature variation and light irradiance on the rocky shores of Arraial do Cabo, Rio de Janeiro. Hence, this study sought to understand and compare the current invasion scenario and characteristics of the life history strategy of sun coral species based on environmental variables, considering the uniqueness of this upwelling area in the southwestern Atlantic. For that, we evaluate the fecundity, settlement, and growth rates of corals by carrying out comparative studies between species over time and correlating them with the variables temperature and irradiance, according to seasonality. Field growth of colonies was measured every two months during a sample year. Monthly collections were performed to count reproductive oocytes to assess fecundity. Also, quadrats were scrapped from an area near a large patch of sun coral to count newly attached coral larvae and used years later to assess diversity and percentage coverage. Results showed that corals presented greater growth during periods of high thermal amplitude and in months with below-average temperatures. Only Tubastraea sp. had greater growth and polyp increase in areas with higher light incidence, showing a greater increase in total area compared to all the other species analyzed. Despite the observed affinity with high temperatures, settlement rates were also higher during the same periods. Months with low thermal amplitude and higher temperature averages presented high fecundity. While higher water temperature averages showed an affinity with greater coral reproductive activity, growth has been shown to be inversely proportional to reproduction. Our study recorded the most significant coral growth for the region, an increase in niche, high annual reproductive activity, and large area coverage, showing the ongoing adaptation of the invasion process in the region. However, lower temperatures in the region affect these corals' reproductive activity and growth, slowing down the process of introduction into the region. To better understand the advantages of these invasion strategies in the environment, we must understand the relationships between them and the local community that may be acting to slow down this colonization process.


Subject(s)
Anthozoa , Fertility , Animals , Anthozoa/growth & development , Anthozoa/physiology , Fertility/physiology , Brazil , Introduced Species , Temperature , Coral Reefs , Seasons , Atlantic Ocean , Life History Traits , Reproduction/physiology
5.
PeerJ ; 12: e17666, 2024.
Article in English | MEDLINE | ID: mdl-39157769

ABSTRACT

Ontocetus is one of the most notable extinct odobenines owing to its global distribution in the Northern Hemisphere. Originating in the Late Miocene of the western North Pacific, this lineage quickly spread to the Atlantic Ocean during the Pliocene, with notable occurrences in England, Belgium, The Netherlands, Morocco and the eastern seaboard of the United States. Reassessment of a pair of mandibles from the Lower Pleistocene of Norwich (United Kingdom) and a mandible from the Upper Pliocene of Antwerp (Belgium) that were referred to as Ontocetus emmonsi reveals existences of features of both Ontocetus and Odobenus. The presence of four post-canine teeth, a lower canine larger than the cheek-teeth and a lower incisor confirms the assignment to Ontocetus; simultaneously, characteristics such as a fused and short mandibular symphysis, a well-curved mandibular arch and thin septa between teeth align with traits usually found in Odobenus. Based on a combination of these characters, we describe Ontocetus posti, sp. nov. Its mandibular anatomy suggests, a better adaptation to suction-feeding than what was previously described in the genus suggesting that Ontocetus posti sp. nov. likely occupied a similar ecological niche to the extant walrus Odobenus rosmarus. Originating from the North Pacific Ocean, Ontocetus most likely dispersed via the Central American Seaway. Although initially discovered in the Lower Pliocene deposits of the western North Atlantic, Ontocetus also left its imprint in the North Sea basin and Moroccan Plio-Pleistocene deposits. The closure of the Isthmus of Panama during the Mio-Pliocene boundary significantly impacted the contemporary climate, inducing global cooling. This event constrained Ontocetus posti in the North Sea basin leaving the taxon unable to endure the abrupt climate changes of the Early Pleistocene, ultimately going extinct before the arrival of the extant counterpart, Odobenus rosmarus.


Subject(s)
Fossils , Walruses , Animals , Walruses/physiology , Walruses/anatomy & histology , Atlantic Ocean , Mandible/anatomy & histology , Caniformia/physiology , Caniformia/anatomy & histology , Feeding Behavior/physiology , Adaptation, Physiological/physiology
6.
Mar Environ Res ; 200: 106653, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39094430

ABSTRACT

Along the northern Mid-Atlantic Ridge (nMAR), in habitats under moderate (<10 °C) hydrothermal influence on the Snake Pit vent field (SP), large assemblages dominated by Bathymodiolin mussels remain poorly characterised, contrary to those in warmer habitats dominated by gastropods and alvinocaridid shrimps that were recently described. In this study, we assessed and compared the population structure, biomass, diversity and trophic interactions of two Bathymodiolus puteoserpentis assemblages and their associated fauna at SP. Three sampling units distanced by 30 cm were sampled in 2014 during the BICOSE cruise at the top of the Moose site (''Elan'' site), while few meters further down three others, distanced by ∼1 m were obtained in 2018 during the BICOSE 2 cruise at the edifice's base. We observed a micro-scale heterogeneity between these six sampling units partially explained by temperature variations, proximity to hydrothermal fluids and position on the edifice. Meiofauna dominate or co-dominate most of the sampling units, with higher densities at the base of the edifice. In terms of macrofauna, high abundance of Pseudorimula midatlantica gastropods was observed at the top of the vent edifice, while numerous Ophioctenella acies ophiuroids were found at the base. Contrary to what was expected, the apparent health and abundance of mussels seems to indicate a current climax stage of the community. However, the modification of B. puteoserpentis isotopic signatures, low number of juveniles decreasing over the two years and observations made during several French cruises in the study area raise questions about the fate of the B. puteoserpentis population over time, which remains to be verified in a future sampling campaign.


Subject(s)
Ecosystem , Hydrothermal Vents , Animals , Atlantic Ocean , Biodiversity , Bivalvia/physiology , Ecology , Biomass , Environmental Monitoring , Mytilidae/physiology
7.
J Acoust Soc Am ; 156(2): 1070-1080, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39140880

ABSTRACT

This study focuses on the acoustic classification of delphinid species at the southern continental slope of Brazil. Recordings were collected between 2013 and 2015 using towed arrays and were processed using a classifier to identify the species in the recordings. Using Raven Pro 1.6 software (Cornell Laboratory of Ornithology, Ithaca, NY), we analyzed whistles for species identification. The random forest algorithm in R facilitates classification analysis based on acoustic parameters, including low, high, delta, center, beginning, and ending frequencies, and duration. Evaluation metrics, such as correct and incorrect classification percentages, global accuracy, balanced accuracy, and p-values, were employed. Receiver operating characteristic curves and area-under-the-curve (AUC) values demonstrated well-fitting models (AUC ≥ 0.7) for species definition. Duration and delta frequency emerged as crucial parameters for classification, as indicated by the decrease in mean accuracy. Multivariate dispersion plots visualized the proximity between acoustic and visual match data and exclusively acoustic encounter (EAE) data. The EAE results classified as Delphinus delphis (n = 6), Stenella frontalis (n = 3), and Stenella longirostris (n = 2) provide valuable insights into the presence of these species between approximately 23° and 34° S in Brazil. This study demonstrates the effectiveness of acousting classification in discriminating delphinids through whistle parameters.


Subject(s)
Acoustics , Dolphins , Vocalization, Animal , Animals , Vocalization, Animal/classification , Atlantic Ocean , Dolphins/classification , Dolphins/physiology , Sound Spectrography , Brazil , Species Specificity , Signal Processing, Computer-Assisted
8.
An Acad Bras Cienc ; 96(3): e20230490, 2024.
Article in English | MEDLINE | ID: mdl-39166615

ABSTRACT

Bioseston is a heterogeneous assemblage of bacterioplankton, phytoplankton, zooplankton, and planktonic debris. A detailed knowledge of biosestons is essential for understanding the dynamics of trophic flows in marine ecosystems. The distributional features of seston biomass in plankton (micro- and mesoplankton) in the Southwest Atlantic Ocean (Rio de Janeiro State, Brazil) were analyzed using stratified samples gathered to a depth of 2,400 m during night time. The horizontal pattern of biomass distribution was analyzed vis-a-vis station depth during both wet and dry periods, with higher values recorded in the continental shelf than in the slope, confirming the terrestrial contribution of nutrient sources to the marine environment. This horizontal variation reinforces the occurrence of seasonal vortices in Cabo Frio and Cabo de São Tomé on the central coast of Brazil. Environmental variables reflect the hydrological signatures of the water masses along the Brazilian coast. The largest seston biomass was related to high temperatures, salinities, and low inorganic nutrient concentrations in tropical and South Atlantic central waters. The observed distribution patterns suggest that seston biomass in plankton in the region may be structured based on partitioned horizontal and vertical habitats and food resources.


Subject(s)
Biomass , Plankton , Seasons , Atlantic Ocean , Brazil , Plankton/growth & development , Plankton/classification , Plankton/physiology , Animals , Ecosystem , Phytoplankton/classification , Phytoplankton/growth & development , Phytoplankton/physiology , Spatio-Temporal Analysis
9.
An Acad Bras Cienc ; 96(suppl 1): e20231342, 2024.
Article in English | MEDLINE | ID: mdl-39166612

ABSTRACT

The present study provides a detailed record of foraminiferal fauna and their ecological implications from surface sediments from Atlantic shelf of Tierra del Fuego, Argentina. The foraminiferal assemblage is mostly composed by four main hyaline genera, such as Cibicidoides, Cibicides, Globocassidulina and Buccella, which allowed the identification of three environmental zones. Zone 1 (Z1, 37 to 90 m) encompasses the eastern Beagle Channel and San Sebastian Bay. The assemblage reflected well-oxygenated marine inner shelf habitat, adapted to cold temperate waters. Zone 2 (Z2, up to 98.4 m), is located around the southern tip of Tierra del Fuego. The assemblage suggested a deeper marine environment, well oxygenated and with higher energy, probably due to the effect of tides and mainly by the influence of Malvinas Current. Finally, Zone 3 (Z3, up to 195 m) is located furthest from the Atlantic coast and the assemblage suggested an environment characteristic of outer shelf, with well-oxygenated cold waters and high-energy environment, reflected by species adhered to the substrate and coarse sediments. The distribution and abundance of certain species showed the influence of the Malvinas Current, while others evidenced a contribution of the Cape Horn waters.


Subject(s)
Biodiversity , Foraminifera , Geologic Sediments , Atlantic Ocean , Foraminifera/classification , Argentina , Population Density , Ecosystem
10.
Sci Rep ; 14(1): 19342, 2024 08 20.
Article in English | MEDLINE | ID: mdl-39164316

ABSTRACT

Environmental gradients in the sea may coincide with phenotypic or genetic gradients resulting from an evolutionary balance between selection and dispersal. The population differentiation of the swimming crab, Liocarcinus depurator, an important by-catch species in the Mediterranean Sea and North-East Atlantic, was assessed using both genetic and morphometric approaches. A total of 472 specimens were collected along its distribution area, and 17 morphometric landmarks, one mitochondrial gene (COI) and 11 polymorphic microsatellite markers were scored in 350, 287 and 280 individuals, respectively. Morphometric data lacked significant differences, but genetic analyses showed significant genetic differentiation between Atlantic and Mediterranean populations, with a steeper gradient in COI compared to microsatellite markers. Interestingly, nuclear differentiation was due to an outlier locus with a gradient in the Atlantic-Mediterranean transition area overlapping with the mtDNA gradient. Such overlapping clines are likely to be maintained by natural selection. Our results suggest a scenario of past isolation with local adaptation and secondary contact between the two basins. Local adaptation during the process of vicariance may reinforce genetic differentiation at loci maintained by environmental selection even after secondary contact.


Subject(s)
Brachyura , DNA, Mitochondrial , Microsatellite Repeats , Animals , Brachyura/genetics , Mediterranean Sea , Microsatellite Repeats/genetics , DNA, Mitochondrial/genetics , Atlantic Ocean , Mitochondria/genetics , Genetic Variation , Genetics, Population , Cell Nucleus/genetics , Selection, Genetic
11.
Commun Biol ; 7(1): 1015, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39160260

ABSTRACT

The deep-sea remains the biggest challenge to biodiversity exploration, and anthropogenic disturbances extend well into this realm, calling for urgent management strategies. One of the most diverse, productive, and vulnerable ecosystems in the deep sea are sponge grounds. Currently, environmental DNA (eDNA) metabarcoding is revolutionising the field of biodiversity monitoring, yet complex deep-sea benthic ecosystems remain challenging to assess even with these novel technologies. Here, we evaluate the effectiveness of whole-community metabarcoding to characterise metazoan diversity in sponge grounds across the North Atlantic by leveraging the natural eDNA sampling properties of deep-sea sponges themselves. We sampled 97 sponge tissues from four species across four North-Atlantic biogeographic regions in the deep sea and screened them using the universal COI barcode region. We recovered unprecedented levels of taxonomic diversity per unit effort, especially across the phyla Chordata, Cnidaria, Echinodermata and Porifera, with at least 406 metazoan species found in our study area. These assemblages identify strong spatial patterns in relation to both latitude and depth, and detect emblematic species currently employed as indicators for these vulnerable habitats. The remarkable performance of this approach in different species of sponges, in different biogeographic regions and across the whole animal kingdom, illustrates the vast potential of natural samplers as high-resolution biomonitoring solutions for highly diverse and vulnerable deep-sea ecosystems.


Subject(s)
Biodiversity , DNA Barcoding, Taxonomic , Porifera , Porifera/genetics , Porifera/classification , Animals , DNA Barcoding, Taxonomic/methods , Atlantic Ocean , DNA, Environmental/analysis , Ecosystem
12.
Mar Pollut Bull ; 206: 116741, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39089204

ABSTRACT

This study explores microplastic and cellulosic microparticle occurrences in the NE Atlantic, focusing on the Porcupine Bank Canyon and Porcupine Seabight. Water samples from depths ranging between 605 and 2126 m and Lophelia pertusa coral samples from 950 m depth were analysed. Microparticles were detected in deep-water habitats, with concentrations varying from 2.33 to 9.67 particles L-1 in the Porcupine Bank Canyon, notably lower at greater depths. This challenges the assumption of deeper habitats solely acting as microplastic sinks. We also found evidence of microparticle adsorption and ingestion by L. pertusa. The presence of microparticles in cold-water corals underscores their vulnerability to pollutants. Furthermore, the dominance of rayon microparticles in both water and coral samples raises questions about marine pollution sources, potentially linked to terrestrial origins. This research emphasises the critical need for comprehensive exploration and conservation efforts in deep-sea environments, especially to protect vital ecosystems like L. pertusa reefs.


Subject(s)
Anthozoa , Environmental Monitoring , Microplastics , Water Pollutants, Chemical , Animals , Microplastics/analysis , Water Pollutants, Chemical/analysis , Atlantic Ocean , Ecosystem , Cellulose/analysis , Coral Reefs
13.
Proc Biol Sci ; 291(2029): 20241183, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39163979

ABSTRACT

In the Atlantic Arctic, bowhead whales (Balaena mysticetus) were nearly exterminated by European whalers between the seventeenth and nineteenth centuries. The collapse of the East Greenland-Svalbard-Barents Sea population, from an estimated 50 000 to a few hundred individuals, drastically reduced predation on mesozooplankton. Here, we tested the hypothesis that this event strongly favoured the demography of the little auk (Alle alle), a zooplanktivorous feeder competitor of bowhead whales and the most abundant seabird in the Arctic. To estimate the effect of bowhead whaling on little auk abundance, we modelled the trophic niche overlap between the two species using deterministic simulations of mesozooplankton spatial distribution. We estimated that bowhead whaling could have led to a 70% increase in northeast Atlantic Arctic little auk populations, from 2.8 to 4.8 million breeding pairs. While corresponding to a major population increase, this is far less than predicted by previous studies. Our study illustrates how a trophic shift can result from the near extirpation of a marine megafauna species, and the methodological framework we developed opens up new opportunities for marine trophic modelling.


Subject(s)
Food Chain , Animals , Arctic Regions , Bowhead Whale/physiology , Population Dynamics , Atlantic Ocean , Models, Biological , Zooplankton/physiology , Predatory Behavior , Greenland
14.
Nat Commun ; 15(1): 7325, 2024 Aug 25.
Article in English | MEDLINE | ID: mdl-39183190

ABSTRACT

Microeukaryotes are key contributors to marine carbon cycling. Their physiology, ecology, and interactions with the chemical environment are poorly understood in offshore ecosystems, and especially in the deep ocean. Using the Autonomous Underwater Vehicle Clio, microbial communities along a 1050 km transect in the western North Atlantic Ocean were surveyed at 10-200 m vertical depth increments to capture metabolic signatures spanning oligotrophic, continental margin, and productive coastal ecosystems. Microeukaryotes were examined using a paired metatranscriptomic and metaproteomic approach. Here we show a diverse surface assemblage consisting of stramenopiles, dinoflagellates and ciliates represented in both the transcript and protein fractions, with foraminifera, radiolaria, picozoa, and discoba proteins enriched at >200 m, and fungal proteins emerging in waters >3000 m. In the broad microeukaryote community, nitrogen stress biomarkers were found at coastal sites, with phosphorus stress biomarkers offshore. This multi-omics dataset broadens our understanding of how microeukaryotic taxa and their functional processes are structured along environmental gradients of temperature, light, and nutrients.


Subject(s)
Dinoflagellida , Ecosystem , Seawater , Atlantic Ocean , Dinoflagellida/metabolism , Dinoflagellida/genetics , Ciliophora/genetics , Ciliophora/metabolism , Transcriptome , Stramenopiles/genetics , Stramenopiles/metabolism , Carbon Cycle , Nitrogen/metabolism , Proteomics/methods
15.
Sci Data ; 11(1): 720, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956105

ABSTRACT

Calcification and biomass production by planktonic marine organisms influences the global carbon cycle and fuels marine ecosystems. The major calcifying plankton group coccolithophores are highly diverse, comprising ca. 250-300 extant species. However, coccolithophore size (a key functional trait) and degree of calcification are poorly quantified, as most of our understanding of this group comes from a small number of species. We generated a novel reference dataset of coccolithophore morphological traits, including cell-specific data for coccosphere and cell size, coccolith size, number of coccoliths per cell, and cellular calcite content. This dataset includes observations from 1074 individual cells and represents 61 species from 25 genera spanning equatorial to temperate coccolithophore populations that were sampled during the Atlantic Meridional Transect (AMT) 14 cruise in 2004. This unique dataset can be used to explore relationships between morphological traits (cell size and cell calcite) and environmental conditions, investigate species-specific and community contributions to pelagic carbonate production, export and plankton biomass, and inform and validate coccolithophore representation in marine ecosystem and biogeochemical models.


Subject(s)
Haptophyta , Atlantic Ocean , Plankton , Biomass , Calcification, Physiologic , Calcium Carbonate , Ecosystem
16.
Nat Commun ; 15(1): 5637, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38965212

ABSTRACT

Climate warming is one of the facets of anthropogenic global change predicted to increase in the future, its magnitude depending on present-day decisions. The north Atlantic and Arctic Oceans are already undergoing community changes, with warmer-water species expanding northwards, and colder-water species retracting. However, the future extent and implications of these shifts remain unclear. Here, we fitted a joint species distribution model to occurrence data of 107, and biomass data of 61 marine fish species from 16,345 fishery independent trawls sampled between 2004 and 2022 in the northeast Atlantic Ocean, including the Barents Sea. We project overall increases in richness and declines in relative dominance in the community, and generalised increases in species' ranges and biomass across three different future scenarios in 2050 and 2100. The projected decline of capelin and the practical extirpation of polar cod from the system, the two most abundant species in the Barents Sea, drove an overall reduction in fish biomass at Arctic latitudes that is not replaced by expanding species. Furthermore, our projections suggest that Arctic demersal fish will be at high risk of extinction by the end of the century if no climate refugia is available at eastern latitudes.


Subject(s)
Biomass , Climate Change , Fishes , Animals , Arctic Regions , Atlantic Ocean , North Sea , Biodiversity , Ecosystem , Oceans and Seas , Global Warming , Population Dynamics
17.
J Eukaryot Microbiol ; 71(4): e13039, 2024.
Article in English | MEDLINE | ID: mdl-38956983

ABSTRACT

The planktonic dinoflagellate Prorocentrum compressum is widespread in warm and temperate seas. A strain identified as P. cf. compressum BEA 0681B isolated from the island of Gran Canaria, NE Atlantic Ocean, showed a divergence in rDNA/ITS phylogenies with respect to P. compressum. The Canarian strain was oval, with an average length-to-width ratio of 1.35, smooth thecal surface with less than 150 thecal pores, including oblique pores, sometimes with a bifurcated opening. In contrast, P. compressum was rounder, with a length-to-width ratio < 1.2, with reticulate-foveate ornamentation and 200-300 pores per valve. We propose Prorocentrum canariense sp. nov. These species clustered as the most early-branching lineage in the clade Prorocentrum sensu stricto. Although this clade mainly contains planktonic species, the closer relatives were the benthic species P. tsawwassenense and P. elegans. Interestingly, P. compressum and P. canariense sp. nov. are widely distributed in temperate and warm seas without an apparent morphological adaptation to planktonic life. The formation of two concentric hyaline mucilaginous walls could contribute to this success. We discuss the use of Prorocentrum bidens to solve the nomenclature issue of P. compressum that was described citing a diatom as basionym.


Subject(s)
DNA, Protozoan , DNA, Ribosomal , Dinoflagellida , Phylogeny , Dinoflagellida/classification , Dinoflagellida/genetics , DNA, Ribosomal/genetics , DNA, Protozoan/genetics , Atlantic Ocean , Sequence Analysis, DNA , DNA, Ribosomal Spacer/genetics , DNA, Ribosomal Spacer/analysis , Molecular Sequence Data
18.
Parasite ; 31: 43, 2024.
Article in English | MEDLINE | ID: mdl-39082879

ABSTRACT

Anisakid nematodes are a globally distributed group of marine mammal parasites. Kogiid whales, including the pygmy sperm whale Kogia breviceps, host an assemblage of specific anisakid species. Currently, three species are known to be specific to kogiid hosts, i.e., Skrjabinisakis paggiae, S. brevispiculata, and the less studied Pseudoterranova ceticola. The aim of this study was to investigate the species diversity of anisakid nematodes sampled from a pygmy sperm whale stranded in 2013 at the edge of its distribution range in the Northeast Atlantic, specifically in the North of Scotland. Nematodes were assigned to genus level based on morphology and identified by sequence analysis of the mtDNA cox2 gene and the rDNA ITS region. The present finding represents the first observation of syntopic occurrence of adult stages of S. brevispiculata, S. paggiae, and P. ceticola in a pygmy sperm whale in the Northeast Atlantic, and represent the northernmost record of these species in this area. Skrjabinisakis brevispiculata was the most abundant species, accounting for 55% of the identified nematodes, predominantly in the adult stage. Anisakis simplex (s.s.) was also abundant, with most specimens in the preadult stage, followed by S. paggiae and P. ceticola. The pygmy sperm whale is rarely documented in Scottish waters, and its occurrence in the area could suggest expansion of its geographic range. The presence of S. brevispiculata, S. paggiae, and P. ceticola in this whale species in this region may indicate a shift in the whole host community involved in the life cycle of these parasites in northern waters. However, it is also plausible that these parasites were acquired while the whale was feeding in more southern regions, before migrating northbound.


Title: Diversité des parasites Anisakidae chez un cachalot pygmée, Kogia breviceps (Cetacea : Kogiidae) échoué à la limite de son aire de répartition dans l'Atlantique Nord-Est. Abstract: Les nématodes Anisakidae sont un groupe de parasites de mammifères marins réparti dans le monde entier. Les cétacés Kogiidae, y compris le cachalot pygmée Kogia breviceps, hébergent un assemblage d'espèces d'Anisakidae spécifiques. Actuellement, trois espèces sont connues pour être spécifiques aux hôtes Kogiidae, à savoir Skrjabinisakis paggiae, S. brevispiculata et Pseudoterranova ceticola, la moins étudiée. Le but de cette étude était d'étudier la diversité des espèces de nématodes Anisakidae échantillonnés sur un cachalot pygmée échoué en 2013 à la limite de son aire de répartition dans l'Atlantique Nord-Est, plus précisément au nord de l'Écosse. Les nématodes ont été attribués au niveau du genre en fonction de la morphologie et identifiés par analyse de séquence du gène cox2 de l'ADNmt et de la région ITS de l'ADNr. La présente découverte représente la première observation de l'apparition syntopique de stades adultes de S. brevispiculata, S. paggiae et P. ceticola chez un cachalot pygmée dans l'océan Atlantique Nord-Est, et représente le signalement le plus septentrional de ces espèces dans cette zone. Skrjabinisakis brevispiculata était l'espèce la plus abondante, représentant 55% des nématodes identifiés, principalement au stade adulte. Anisakis simplex (s.s.) était également abondant, la plupart des spécimens étant au stade préadulte, suivi par S. paggiae et P. ceticola. Le cachalot pygmée est rarement documenté dans les eaux écossaises et sa présence dans la région pourrait suggérer une expansion de son aire de répartition géographique. La présence de S. brevispiculata, S. paggiae et P. ceticola chez cette espèce de cachalot dans cette région peut indiquer un changement dans l'ensemble de la communauté hôte impliquée dans le cycle de vie de ces parasites dans les eaux nordiques. Cependant, il est également plausible que ces parasites aient été acquis alors que le cachalot se nourrissait dans des régions plus au sud, avant de migrer vers le nord.


Subject(s)
Anisakis , Whales , Animals , Atlantic Ocean , Anisakis/genetics , Anisakis/classification , Anisakis/isolation & purification , Whales/parasitology , Anisakiasis/veterinary , Anisakiasis/parasitology , DNA, Mitochondrial/genetics , Phylogeny , Scotland , Male , Female , Ascaridida Infections/veterinary , Ascaridida Infections/parasitology , Ascaridida Infections/epidemiology , Biodiversity
19.
Microbiology (Reading) ; 170(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-39073401

ABSTRACT

Sponges (phylum Porifera) harbour specific microbial communities that drive the ecology and evolution of the host. Understanding the structure and dynamics of these communities is emerging as a primary focus in marine microbial ecology research. Much of the work to date has focused on sponges from warm and shallow coastal waters, while sponges from the deep ocean remain less well studied. Here, we present a metataxonomic analysis of the microbial consortia associated with 23 individual deep-sea sponges. We identify a high abundance of archaea relative to bacteria across these communities, with certain sponge microbiomes comprising more than 90 % archaea. Specifically, the archaeal family Nitrosopumilaceae is prolific, comprising over 99 % of all archaeal reads. Our analysis revealed that sponge microbial communities reflect the host sponge phylogeny, indicating a key role for host taxonomy in defining microbiome composition. Our work confirms the contribution of both evolutionary and environmental processes to the composition of microbial communities in deep-sea sponges.


Subject(s)
Archaea , Bacteria , Microbiota , Phylogeny , Porifera , Porifera/microbiology , Archaea/classification , Archaea/genetics , Archaea/isolation & purification , Animals , Atlantic Ocean , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Seawater/microbiology , RNA, Ribosomal, 16S/genetics , Biodiversity
20.
Sci Total Environ ; 948: 174947, 2024 Oct 20.
Article in English | MEDLINE | ID: mdl-39047826

ABSTRACT

Studies on the occurrence of POPs and other persistent compounds in pristine areas are extremely valuable, as they offer insights on the long-range transportation of POPs and the occurrence of natural compound producers' areas. In this regard, this study aimed to report data of both anthropogenic (polychlorinated biphenyls, PCBs, and polybrominated diphenyl ethers, PBDEs) and natural (methoxylated PBDEs, MeO-BDEs) compounds in tissues of the black triggerfish, Melichthys niger (Tetraodontiformes, Balistidae), specimens (n = 30) sampled in 2018 during a scientific expedition conducted at Trindade Island. Concentrations of ∑28PCBs ranged from 73 to 1052 ng g-1 lw in liver, 334 to 1981 ng g-1 lw in gonads, and 20 to 257 ng g-1 lw in muscle, with the predominance of PCB-180 in liver and PCB-52 in gonad and muscle. Concentrations of ∑7PBDEs ranged from

Subject(s)
Environmental Monitoring , Halogenated Diphenyl Ethers , Persistent Organic Pollutants , Polychlorinated Biphenyls , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism , Brazil , Halogenated Diphenyl Ethers/metabolism , Halogenated Diphenyl Ethers/analysis , Polychlorinated Biphenyls/analysis , Polychlorinated Biphenyls/metabolism , Coral Reefs , Atlantic Ocean
SELECTION OF CITATIONS
SEARCH DETAIL