Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 616
Filter
1.
Medicine (Baltimore) ; 103(27): e38699, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38968529

ABSTRACT

Investigations into the therapeutic potential of Astragalus Mongholicus (AM, huáng qí) and Largehead Atractylodes (LA, bái zhú) reveal significant efficacy in mitigating the onset and progression of knee osteoarthritis (KOA), albeit with an elusive mechanistic understanding. This study delineates the primary bioactive constituents and their molecular targets within the AM-LA synergy by harnessing the comprehensive Traditional Chinese Medicine (TCM) network databases, including TCMSP, TCMID, and ETCM. Furthermore, an analysis of 3 gene expression datasets, sourced from the gene expression omnibus database, facilitated the identification of differential genes associated with KOA. Integrating these findings with data from 5 predominant databases yielded a refined list of KOA-associated targets, which were subsequently aligned with the gene signatures corresponding to AM and LA treatment. Through this alignment, specific molecular targets pertinent to the AM-LA therapeutic axis were elucidated. The construction of a protein-protein interaction network, leveraging the shared genetic markers between KOA pathology and AM-LA intervention, enabled the identification of pivotal molecular targets via the topological analysis facilitated by CytoNCA plugins. Subsequent GO and KEGG enrichment analyses fostered the development of a holistic herbal-ingredient-target network and a core target-signal pathway network. Molecular docking techniques were employed to validate the interaction between 5 central molecular targets and their corresponding active compounds within the AM-LA complex. Our findings suggest that the AM-LA combination modulates key biological processes, including cellular activity, reactive oxygen species modification, metabolic regulation, and the activation of systemic immunity. By either augmenting or attenuating crucial signaling pathways, such as MAPK, calcium, and PI3K/AKT pathways, the AM-LA dyad orchestrates a comprehensive regulatory effect on immune-inflammatory responses, cellular proliferation, differentiation, apoptosis, and antioxidant defenses, offering a novel therapeutic avenue for KOA management. This study, underpinned by gene expression omnibus gene chip analyses and network pharmacology, advances our understanding of the molecular underpinnings governing the inhibitory effects of AM and LA on KOA progression, laying the groundwork for future explorations into the active components and mechanistic pathways of TCM in KOA treatment.


Subject(s)
Atractylodes , Drugs, Chinese Herbal , Molecular Docking Simulation , Network Pharmacology , Osteoarthritis, Knee , Atractylodes/chemistry , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/pharmacology , Osteoarthritis, Knee/drug therapy , Osteoarthritis, Knee/genetics , Network Pharmacology/methods , Humans , Protein Interaction Maps , Astragalus Plant/chemistry , Medicine, Chinese Traditional/methods , Oligonucleotide Array Sequence Analysis , Astragalus propinquus
2.
J Agric Food Chem ; 72(25): 14165-14176, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38872428

ABSTRACT

Atractylodes macrocephala Koidz, a traditional Chinese medicine, contains atractylenolide I (ATR-I), which has potential anticancer, anti-inflammatory, and immune-modulating properties. This study evaluated the therapeutic potential of ATR-I for indomethacin (IND)-induced gastric mucosal lesions and its underlying mechanisms. Noticeable improvements were observed in the histological morphology and ultrastructures of the rat gastric mucosa after ATR-I treatment. There was improved blood flow, a significant decrease in the expression of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), IL-1ß, and IL-18, and a marked increase in prostaglandin E2 (PGE2) expression in ATR-I-treated rats. Furthermore, there was a significant decrease in the mRNA and protein expression levels of NOD-like receptor thermal protein domain associated protein 3 (NLRP3), apoptosis-associated speck-like protein (ASC), cysteinyl aspartate specific proteinase-1 (caspase-1), and nuclear factor-κB (NF-κB) in rats treated with ATR-I. The results show that ATR-I inhibits the NLRP3 inflammasome signaling pathway and effectively alleviates local inflammation, thereby improving the therapeutic outcomes against IND-induced gastric ulcers in rats.


Subject(s)
Atractylodes , Gastric Mucosa , Indomethacin , Inflammasomes , Lactones , NLR Family, Pyrin Domain-Containing 3 Protein , Rats, Sprague-Dawley , Sesquiterpenes , Stomach Ulcer , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Indomethacin/adverse effects , Stomach Ulcer/drug therapy , Stomach Ulcer/chemically induced , Stomach Ulcer/metabolism , Rats , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry , Lactones/pharmacology , Lactones/chemistry , Inflammasomes/metabolism , Inflammasomes/genetics , Inflammasomes/drug effects , Male , Atractylodes/chemistry , Gastric Mucosa/drug effects , Gastric Mucosa/metabolism , Humans , NF-kappa B/genetics , NF-kappa B/metabolism , NF-kappa B/immunology , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/immunology , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Interleukin-1beta/immunology , Caspase 1/genetics , Caspase 1/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Interleukin-6/immunology , Interleukin-18/genetics , Interleukin-18/metabolism
3.
Curr Microbiol ; 81(7): 218, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856763

ABSTRACT

Atractylodes macrocephala Koidz (AMK) is a perennial herb from the plant family Asteraceae (formerly Compositae). This herb is mainly distributed in mountainous wetlands in Zhejiang, Sichuan, Yunnan, and Hunan provinces of China. Its medicinal production and quality, however, are severely impacted by root rot disease. In our previous study, endophytic bacterium designated AM201 exerted a high biocontrol effect on the root rot disease of AMK. However, the molecular mechanisms underlying this effect remain unclear. In this study, the identity of strain AM201 as Rhodococcus sp. was determined through analysis of its morphology, physiological and biochemical characteristics, as well as 16S rDNA sequencing. Subsequently, we performed transcriptome sequencing and bioinformatics analysis to compare and analyze the transcriptome profiles of root tissues from two groups: AM201 (AMK seedlings inoculated with Fusarium solani [FS] and AM201) and FS (AMK seedlings inoculated with FS alone). We also conducted morphological, physiological, biochemical, and molecular identification analyses for the AM201 strain. We obtained 1,560 differentially expressed genes, including 187 upregulated genes and 1,373 downregulated genes. We screened six key genes (GOLS2, CIPK25, ABI2, egID, PG1, and pgxB) involved in the resistance of AM201 against AMK root rot disease. These genes play a critical role in reactive oxygen species (ROS) clearance, Ca2+ signal transduction, abscisic acid signal inhibition, plant root growth, and plant cell wall defense. The strain AM201 was identified as Rhodococcus sp. based on its morphological characteristics, physiological and biochemical properties, and 16S rDNA sequencing results. The findings of this study could enable to prevent and control root rot disease in AMK and could offer theoretical guidance for the agricultural production of other medicinal herbs.


Subject(s)
Atractylodes , Endophytes , Gene Expression Profiling , Plant Diseases , Plant Roots , Rhodococcus , Rhodococcus/genetics , Rhodococcus/metabolism , Rhodococcus/physiology , Atractylodes/microbiology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Plant Roots/microbiology , Endophytes/genetics , Endophytes/metabolism , Endophytes/classification , Endophytes/physiology , Endophytes/isolation & purification , Transcriptome , Fusarium/genetics , Fusarium/physiology , China , RNA, Ribosomal, 16S/genetics
4.
Nutrients ; 16(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38892616

ABSTRACT

(1) Background: Irritable bowel syndrome (IBS) is a common disease in the gastrointestinal (GI) tract. Atractylodes macrocephala Koidz (AMK) is known as one of the traditional medicines that shows a good efficacy in the GI tract. (2) Methods: We investigated the effect of AMK in a network pharmacology and zymosan-induced IBS animal model. In addition, we performed electrophysiological experiments to confirm the regulatory mechanisms related to IBS. (3) Results: Various characteristics of AMK were investigated using TCMSP data and various analysis systems. AMK restored the macroscopic changes and weight to normal. Colonic mucosa and inflammatory factors were reduced. These effects were similar to those of amitriptyline and sulfasalazine. In addition, transient receptor potential (TRP) V1, voltage-gated Na+ (NaV) 1.5, and NaV1.7 channels were inhibited. (4) Conclusion: These results suggest that AMK may be a promising therapeutic candidate for IBS management through the regulation of ion channels.


Subject(s)
Atractylodes , Disease Models, Animal , Irritable Bowel Syndrome , TRPV Cation Channels , Zymosan , Animals , Irritable Bowel Syndrome/drug therapy , Irritable Bowel Syndrome/chemically induced , TRPV Cation Channels/metabolism , Mice , Atractylodes/chemistry , Male , Plant Extracts/pharmacology , NAV1.7 Voltage-Gated Sodium Channel/metabolism , Colon/drug effects , Colon/metabolism , Colon/pathology , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects
5.
Drug Des Devel Ther ; 18: 2169-2187, 2024.
Article in English | MEDLINE | ID: mdl-38882048

ABSTRACT

Purpose: Traditional Chinese medicine (TCM) therapy is an important means to treat hepatocellular carcinoma (HCC), Astragalus (Latin name: Hedysarum Multijugum Maxim; Chinese name: Huangqi, HQ) and Atractylodes (Latin name: Atractylodes Macrocephala Koidz; Chinese name: Baizhu, BZ) (HQBZ), a classic herb pair, is often used in combination to HCC. However, the main components and potential mechanisms of HQBZ therapy in HCC remain unclear. This study aimed to identify the potential active ingredients and molecular mechanisms of action of HQBZ in HCC treatment. Methods: The HQBZ-Compound-Target-HCC network and HQBZ-HCC transcriptional regulatory network were constructed to screen the core active compound components and targets of HQBZ therapy for HCC. Molecular docking techniques are used to verify the stability of binding core active compound components to targets. GO and KEGG enrichment analysis were used to explore the signaling pathway of HQBZ in HCC treatment, the mechanism of HQBZ treatment of HCC was verified based on in vivo H22 tumor bearing mice and in vitro cell experiments. Results: Network pharmacology and molecular docking studies showed that HQBZ treatment of HCC was related to the targeted regulation of IL-6 and STAT3 by the active compound biatractylolide, KEGG pathway enrichment analysis suggest that HQBZ may play a role in the treatment of HCC through IL-6/STAT3 signaling pathway. In vitro experiment results proved that HQBZ could regulate IL-6/STAT3 signaling pathway transduction on CD8+T cells, inhibit CD8+T cell exhaustion and restore the function of exhausted CD8+T cells. In vivo experiment results proved that HQBZ can regulate IL-6/STAT3 signaling pathway transduction in H22 liver cancer model mouse tumor tissue, increased the proportion of tumor infiltrating CD8+T cells. Conclusion: This study found that HQBZ may play a therapeutic role in HCC by targeting IL-6 and STAT3 through biatractylolide, its mechanism of action is related to regulating IL-6/STAT3 signaling pathway, reversing T cell failure and increasing tumor infiltration CD8+T cells.


Subject(s)
Antineoplastic Agents, Phytogenic , Atractylodes , Carcinoma, Hepatocellular , Drugs, Chinese Herbal , Liver Neoplasms , Network Pharmacology , STAT3 Transcription Factor , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Animals , Humans , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Mice , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/antagonists & inhibitors , Atractylodes/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Molecular Docking Simulation , Astragalus Plant/chemistry , Cell Proliferation/drug effects , Liver Neoplasms, Experimental/drug therapy , Liver Neoplasms, Experimental/pathology , Liver Neoplasms, Experimental/metabolism , Interleukin-6/metabolism , Interleukin-6/antagonists & inhibitors , Medicine, Chinese Traditional , Drug Screening Assays, Antitumor
6.
Phytomedicine ; 130: 155739, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38797027

ABSTRACT

BACKGROUND: Atractylodes macrocephala Koidz. (Baizhu in Chinese, BZ) is a typical traditional edible-medicinal herb used for thousands of years. Known as "the spleen-reinforcing medicine", it is often used clinically to treat reduced digestive function, abdominal distension, and diarrhoea, which are all caused by spleen deficiency. Among BZ's processing products, honey bran-fried BZ (HBBZ) is the only processed product recorded in BZ in the 2020 Chinese Pharmacopoeia (ChP). There are differences in effectiveness, traditional application, and clinical indications between them. PURPOSE: This review reviewed BZ and its main product HBBZ from botany, ethnopharmacology, chemical composition, pharmacological effectiveness, and safety. The changes in chemical composition and pharmacological effectiveness of BZ induced by the processing of traditional Chinese medicine were emphatically described. METHODS: Keywords related to Atractylodes macrocephala Koidz., honey bran frying, essential oil, lactones, polysaccharide and combinations to include published studies of BZ and HBBZ from 2004-2023 were searched in the following databases: Pubmed, Chengdu University of TCM Library, Google Scholar, China National Knowledge Infrastructure (CNKI), and Wanfang database. All studies, published in English or Chinese, were included. However, in the process of chemical composition collection, we reviewed all available literature on the chemical composition of BZ and HBBZ. CONCLUSION: Honey bran frying processing methods will affect BZ's chemical composition and pharmacological effectiveness. The types and contents of chemical components in the HBBZ showed some changes compared with those in BZ. For example, the content of volatile oil decreased and the content of lactones increased after stir-fried bran. In addition, new ingredients such as phenylacetaldehyde, 2-acetyl pyrrole, 6- (1,1-dimethylethyl) -3,4-dihydro-1 (2H) -naphthalone and 5-hydroxymethylfurfural appeared. Both BZ and HBBZ have a variety of pharmacological effectiveness. After stir-fried with honey bran, the "Zao Xing" is reduced, and the efficacy of tonify spleen is strengthened, which is more suitable for patients with weak spleen and stomach.


Subject(s)
Atractylodes , Drugs, Chinese Herbal , Honey , Medicine, Chinese Traditional , Atractylodes/chemistry , Honey/analysis , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Humans , Lactones/pharmacology , Lactones/analysis , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Polysaccharides/pharmacology , Polysaccharides/chemistry , Animals
7.
Zhongguo Zhong Yao Za Zhi ; 49(9): 2434-2440, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38812152

ABSTRACT

The quality control of Chinese medicinal decoction pieces is one of the key tasks in the traditional Chinese medicine industry. In this study, multi-source information fusion was employed to fuse the data from near-infrared spectroscopy, electronic tongues, and other tests and establish an overall quality consistency evaluation method for Atractylodis Macrocephalae Rhizoma, which provided methodological support for the overall quality evaluation of Atractylodis Macrocephalae Rhizoma. The near-infrared spectroscopy information was measured in both static and dynamic states for 23 batches of Atractylodis Macrocephalae Rhizoma samples from different sources, and the electronic tongue sensory information, moisture content, and leachate content were measured. The overall quality of Atractylodis Macrocephalae Rhizoma was evaluated by multi-source information fusion. The results showed that the near-infrared spectroscopy information of 16122103, 801000509, 801000352, 701003656, HX21L01, and 160956 was different from that of other batches of Atractylodis Macrocephalae Rhizoma powder in the static state, and 701003298, 16122103, 701003656, 701003107, 801000229, and 18090404 were the different batches in the dynamic state. The moisture content showed no significant difference between batches. The leachate content in the batch 801000509 was different from that in other batches. The electronic tongue sensory information of 150721004, 151237, 160703004, HX21M01, HX21K04, HX21K01, and 601003516 was different from that of other batches. Furthermore, data layer fusion was employed to analyze the overall quality of Atractylodis Macrocephalae Rhizoma. Four batches, 150721004, HX21M01, HX21K04, and HX21K01, showed the parameters exceeding the 95% control limits and differed from the other samples in terms of the overall quality. This study integrated the information of moisture, near-infrared spectroscopy, and other sources to evaluate the quality consistency among 23 batches of Atractylodis Macrocephalae Rhizoma samples, which provides a reference for the quality consistency evaluation of Chinese medicinal decoction pieces.


Subject(s)
Atractylodes , Drugs, Chinese Herbal , Quality Control , Rhizome , Spectroscopy, Near-Infrared , Rhizome/chemistry , Atractylodes/chemistry , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/analysis , Drugs, Chinese Herbal/standards , Spectroscopy, Near-Infrared/methods
8.
Zhongguo Zhong Yao Za Zhi ; 49(8): 2138-2146, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38812229

ABSTRACT

In this study, four Atractylodes chinensis(A. chinensis) with different leaf shapes, such as the split leaf, long and narrow leaf, oval leaf, and large round leaf, were used as experimental materials to establish a method for simultaneously determining atractylodin, atractylenolide Ⅰ, ß-eudesmol, and atractylon in the rhizome of A. chinensis. The expression of key enzyme genes for biosynthesis of acetyl-CoA carboxylase(ACC), 3-hydroxy-3-methylglutaryl-CoA reductase(HMGR), and farnesyl pyrophosphate synthase(FPPS) was detected by real-time fluorescence quantitative polymerase chain reaction(qRT-PCR). High performance liquid chromatography(HPLC) was used to compare the difference in the content of four active components in A. chinensis with different leaf shapes, and the correlation between the content of active components and the expression of key enzyme genes in biosynthesis was discussed. The results show that there was good linearity among atractylodin, atractylenolide Ⅰ, ß-eudesmol, and atractylon in the range of 3.30-33.00 µg·mL~(-1)(r =0.999 7), 12.04-120.40 µg·mL~(-1)(r =0.999 5), 29.16-291.60 µg·mL~(-1)(r =0.999 5), and 14.20-142.00 µg·mL~(-1)(r =0.999 5), respectively. The average recoveries were 99.77%(RSD=2.1%), 98.56%(RSD=1.2%), 103.0%(RSD=1.2%), and 100.6%(RSD=1.5%), respectively. The method was accurate and had good reproducibility, which could be used to simultaneously detect atractylodin, atractylenolide Ⅰ, ß-eudesmol, and atractylon. The results showed that there were significant differences in the content of four active components in A. chinensis with different leaf shapes. The content of atractylodin, atractylenolide Ⅰ, and ß-eudesmol in A. chinensis with split leaves was the highest, which were 1.341 9, 5.237 2, and 12.084 3 mg·g~(-1), respectively. The content of atractylon in A. chinensis with long and narrow leaves was the highest(5.470 1 mg·g~(-1)). The content of atractylodin, atractylenolide Ⅰ, ß-eudesmol, and atractylon in A. chinensis with oval leaves was the lowest. The total content of the four effective components in descending order was A. chinensis with split leaves > A. chinensis with long and narrow leaves > A. chinensis with large round leaves > A. chinensis with oval leaves. The gene expression levels of key enzymes ACC, HMGR, and FPPS in A. chinensis with split leaves were the highest(P < 0.05), and the gene expression levels of key enzymes ACC and HMGR in A. chinensis with oval leaves were the lowest(P < 0.05). The gene expression level of key enzyme FPPS in A. chinensis with large round leaves was the lowest. In A. chinensis with different leaf shapes, the key enzyme gene ACC was significantly positively correlated with the polyacetylene component, namely atractylodin(P < 0.01), and the key enzyme genes HMGR and FPPS were positively correlated with the sesquiterpene components, namely atractylenolide Ⅰ, ß-eudesmol, and atractylon. In summary, the quality of A. chinensis with split leaves is the best, and the biosynthesis of atractylodin is significantly correlated with the gene expression of key enzyme ACC, which provides a theoretical basis for screening and optimizing the germplasm resources of A. chinensis and improving the quality of medicinal materials.


Subject(s)
Atractylodes , Lactones , Plant Leaves , Sesquiterpenes , Atractylodes/genetics , Atractylodes/chemistry , Atractylodes/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/chemistry , Sesquiterpenes/metabolism , Sesquiterpenes/analysis , Lactones/metabolism , Lactones/analysis , Plant Proteins/genetics , Plant Proteins/metabolism , Furans/metabolism , Drugs, Chinese Herbal , Gene Expression Regulation, Plant , Rhizome/genetics , Rhizome/chemistry , Rhizome/metabolism , Sesquiterpenes, Eudesmane
9.
Int J Biol Macromol ; 271(Pt 2): 132467, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38763249

ABSTRACT

ß-Elemene, an important component of the volatile oil of Atractylodis macrocephala, has been widely utilized as an antitumor drug for over 20 years. However, the germacrene A synthase (GAS) genes responsible for the biosynthesis of ß-elemene in A. macrocephala were previously unidentified. In this study, two new AmGASs were identified from the A. macrocephala transcriptome, demonstrating their capability to convert farnesyl pyrophosphate into germacrene A, which subsequently synthesizes ß-elemene through Cope rearrangement. Additionally, two highly catalytic AmGAS1 mutations, I307A and E392A, resulted in a 2.23-fold and 1.57-fold increase in ß-elemene synthesis, respectively. Furthermore, precursor supply and fed-batch strategies were employed to enhance the precursor supply, resulting in ß-elemene yields of 7.3 mg/L and 33.3 mg/L, respectively. These findings identify a promising candidate GAS for ß-elemene biosynthesis and lay the foundation for further functional studies on terpene synthases in A. macrocephala.


Subject(s)
Sesquiterpenes, Germacrane , Sesquiterpenes , Sesquiterpenes/metabolism , Sesquiterpenes/chemistry , Sesquiterpenes, Germacrane/metabolism , Alkyl and Aryl Transferases/metabolism , Alkyl and Aryl Transferases/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Polyisoprenyl Phosphates/metabolism , Atractylodes/metabolism , Atractylodes/chemistry , Atractylodes/genetics , Biosynthetic Pathways , Transcriptome
10.
Phytomedicine ; 129: 155698, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38728919

ABSTRACT

BACKGROUND: Gestational diabetes could elevate the risk of congenital heart defects (CHD) in infants, and effective preventive and therapeutic medications are currently lacking. Atractylenolide-I (AT-I) is the active ingredient of Atractylodes Macrocephala Koidz (known as Baizhu in China), which is a traditional pregnancy-supporting Chinese herb. PURPOSE: In this study, we investigated the protective effect of AT-I on the development of CHD in embryos exposed to high glucose (HG). STUDY DESIGN AND METHODS: First, systematic review search results revealed associations between gestational diabetes mellitus (GDM) and cardiovascular malformations. Subsequently, a second systematic review indicated that heart malformations were consistently associated with oxidative stress and cell apoptosis. We assessed the cytotoxic impacts of Atractylenolide compounds (AT-I, AT-II, and AT-III) on H9c2 cells and chick embryos, determining an optimal concentration of AT-I for further investigation. Second, immunofluorescence, western blot, Polymerase Chain Reaction (PCR), and flow cytometry were utilized to delve into the mechanisms through which AT-I mitigates oxidative stress and apoptosis in cardiac cells. Molecular docking was employed to investigate whether AT-I exerts cardioprotective effects via the STAT3 pathway. Then, we developed a streptozotocin-induced diabetes mellitus (PGDM) mouse model to evaluate AT-I's protective efficacy in mammals. Finally, we explored how AT-I protects hyperglycemia-induced abnormal fetal heart development through microbiota analysis and untargeted metabolomics analysis. RESULTS: The study showed the protective effect of AT-I on embryonic development using a chick embryo model which rescued the increase in the reactive oxygen species (ROS) and decrease in cell survival induced by HG. We also provided evidence suggesting that AT-I might directly interact with STAT3, inhibiting its phosphorylation. Further, in the PGDM mouse model, we observed that AT-I not only partially alleviated PGDM-related blood glucose issues and complications but also mitigated hyperglycemia-induced abnormal fetal heart development in pregnant mice. This effect is hypothesized to be mediated through alterations in gut microbiota composition. We proposed that dysregulation in microbiota metabolism could influence the downstream STAT3 signaling pathway via EGFR, consequently impacting cardiac development and formation. CONCLUSIONS: This study marks the first documented instance of AT-I's effectiveness in reducing the risk of early cardiac developmental anomalies in fetuses affected by gestational diabetes. AT-I achieves this by inhibiting the STAT3 pathway activated by ROS during gestational diabetes, significantly reducing the risk of fetal cardiac abnormalities. Notably, AT-I also indirectly safeguards normal fetal cardiac development by influencing the maternal gut microbiota and suppressing the EGFR/STAT3 pathway.


Subject(s)
Apoptosis , Diabetes, Gestational , Heart Defects, Congenital , Hyperglycemia , Lactones , Oxidative Stress , STAT3 Transcription Factor , Sesquiterpenes , Animals , STAT3 Transcription Factor/metabolism , Lactones/pharmacology , Sesquiterpenes/pharmacology , Hyperglycemia/drug therapy , Female , Chick Embryo , Pregnancy , Apoptosis/drug effects , Mice , Oxidative Stress/drug effects , Diabetes, Gestational/drug therapy , Signal Transduction/drug effects , Diabetes Mellitus, Experimental/drug therapy , Rats , Cell Line , Atractylodes/chemistry , Molecular Docking Simulation , Humans
11.
J Chromatogr A ; 1725: 464931, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38703457

ABSTRACT

Atractylodis rhizoma is a common bulk medicinal material with multiple species. Although different varieties of atractylodis rhizoma exhibit variations in their chemical constituents and pharmacological activities, they have not been adequately distinguished due to their similar morphological features. Hence, the purpose of this research is to analyze and characterize the volatile organic compounds (VOCs) in samples of atractylodis rhizoma using multiple techniques and to identify the key differential VOCs among different varieties of atractylodis rhizoma for effective discrimination. The identification of VOCs was carried out using headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) and headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS), resulting in the identification of 60 and 53 VOCs, respectively. The orthogonal partial least squares discriminant analysis (OPLS-DA) model was employed to screen potential biomarkers and based on the variable importance in projection (VIP ≥ 1.2), 24 VOCs were identified as critical differential compounds. Random forest (RF), K-nearest neighbor (KNN) and back propagation neural network based on genetic algorithm (GA-BPNN) models based on potential volatile markers realized the greater than 90 % discriminant accuracies, which indicates that the obtained key differential VOCs are reliable. At the same time, the aroma characteristics of atractylodis rhizoma were also analyzed by ultra-fast gas chromatography electronic nose (Ultra-fast GC E-nose). This study indicated that the integration of HS-SPME-GC-MS, HS-GC-IMS and ultra-fast GC E-nose with chemometrics can comprehensively reflect the differences of VOCs in atractylodis rhizoma samples from different varieties, which will be a prospective tool for variety discrimination of atractylodis rhizoma.


Subject(s)
Atractylodes , Electronic Nose , Gas Chromatography-Mass Spectrometry , Solid Phase Microextraction , Volatile Organic Compounds , Volatile Organic Compounds/analysis , Gas Chromatography-Mass Spectrometry/methods , Solid Phase Microextraction/methods , Atractylodes/chemistry , Ion Mobility Spectrometry/methods , Rhizome/chemistry , Discriminant Analysis
12.
Biomed Chromatogr ; 38(7): e5870, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38664069

ABSTRACT

Spleen deficiency can lead to various abnormal physiological functions of the spleen. Atractylodis Macrocephalae Rhizoma (AMR) is a traditional Chinese medicine used to invigorate the spleen and tonify qi. The study aimed to identify the primary active components influencing the efficacy of AMR in strengthening the spleen and replenishing qi through spectrum-effect relationship and chemometrics. Network pharmacology was used to investigate the mechanism by which AMR strengthens the spleen and replenishes qi, with molecular docking utilized for validation purposes. The findings indicated that bran-fried AMR exhibited superior efficacy, with atractylenolides and atractylone identified as the primary active constituents. Atractylenolide II emerged as the most influential component impacting the effectiveness of AMR, while the key target was androgen receptor. Furthermore, crucial pathways implicated included the mitogen-activated protein cascade (MAPK) cascade, RNA polymerase II transcription factor activity, ligand-activated sequence-specific DNA binding, and RNA polymerase II sequence-specific DNA-binding transcription factor binding. In summary, our study has identified the primary active components associated with the efficacy of AMR and has provided an initial exploration of its mechanism of action. This offers a theoretical foundation for future investigations into the material basis and molecular mechanisms underlying the pharmacodynamics of AMR.


Subject(s)
Atractylodes , Drugs, Chinese Herbal , Lactones , Molecular Docking Simulation , Network Pharmacology , Sesquiterpenes , Spleen , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Animals , Atractylodes/chemistry , Lactones/chemistry , Lactones/pharmacology , Sesquiterpenes/chemistry , Sesquiterpenes/pharmacology , Spleen/drug effects , Spleen/metabolism , Rhizome/chemistry , Male
13.
J Nat Med ; 78(3): 702-708, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38662303

ABSTRACT

Two new sesterterpenoids, atractylodes japonica terpenoid acid I (1) and atractylodes japonica terpenoid aldehyde I (2), were isolated from the rhizomes of Atractylodes japonica Koidz. ex Kitam together with ten known compounds (3-12). Their structures were elucidated on the basis of comprehensive spectroscopic analysis (1D/2D NMR, HRESIMS and IR). In addition, all of these isolated compounds were evaluated for their cytotoxic activities against human gastric cancer cell MGC-803 and human hepatocellular cancer cell HepG-2. Most of them exhibited moderate to weak inhibitory effects with IC50 values in the range of 25.15-88.85 µM except for 9-12.


Subject(s)
Atractylodes , Rhizome , Sesterterpenes , Atractylodes/chemistry , Humans , Molecular Structure , Cell Line, Tumor , Sesterterpenes/chemistry , Sesterterpenes/pharmacology , Sesterterpenes/isolation & purification , Rhizome/chemistry , Hep G2 Cells , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Magnetic Resonance Spectroscopy , Plant Extracts/chemistry , Plant Extracts/pharmacology
14.
Phytomedicine ; 129: 155629, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38677271

ABSTRACT

BACKGROUND: Acute pancreatitis (AP) is an inflammatory disorder of the exocrine pancreas, especially hyperlipidemia acute pancreatitis (HLAP) is the third leading cause of acute pancreatitis which is more severe with a greater incidence of persistent multiorgan failure. HLAP inflicts injury upon the organelles within the acinar cell, particularly mitochondria, the endolysosomal-autophagy system, and is accompanied by senescence-associated secretory phenotype (SASP). RAD, only two consists of Rhizoma Alismatis and Atractylodes macrocephala Rhizoma, which is best known for its ability to anti-inflammatory and lipid-lowering. Nevertheless, the mechanism by which RAD alleviates HLAP remains obscure, necessitating further investigation. PURPOSE: The study aimed to assess the effects of the RAD on HLAP and to elucidate the underlying mechanism in vivo and in vitro, offering a potential medicine for clinical treatment for HLAP. STUDY DESIGN AND METHODS: C57BL/6 mice with hyperlipidemia acute pancreatitis were induced by HFD and CER, then administrated with RAD. AR42J were stimulated by cerulein or conditioned medium and then cultured with RAD. Serums were analyzed to evaluate potential pancreas and liver damage. Furthermore, tissue samples were obtained for histological, and protein investigations by H&E, Oil red staining, and Western blot. In addition, western blot and immunofluorescent staining were utilized to estimate the effect of RAD on mitochondrial function, autophagy flux, and SASP. RESULTS: In vivo, RAD considerably alleviated systemic inflammation while attenuating TC, TG, AMY, LPS, inflammatory cytokines, histopathology changes, oxidative damage, mitochondrial fission, and autophagy markers in HLAP mice. Impaired autophagy flux and mitochondrial dysfunction resulted in a significant enhancement of NLRP3 and IL-1ß in the pancreas. RAD could reverse these changes. In vitro, RAD significantly restored mitochondrial membrane potential and oxidative phosphorylation levels. RAD decreased Beclin-1 and LC3-II expression and increased LAMP-1 and Parkin-Pink expression, which showed that RAD significantly ameliorated HLAP-induced damage to the mitochondria function by suppressing mitochondrial oxidative damage and enhancing autophagy flux and mitophagy to remove the damaged mitochondria. In addition, we found that RAD could up-regulate the expression of BAX, and Bad and down-regulate the expression of p16, and p21, indicating that RAD could promote damaged cell apoptosis and alleviate SASP. CONCLUSIONS: This study revealed that RAD ameliorates mitochondrial function to alleviate SASP through enhancing autophagy flux, mitophagy, and apoptosis which provided a molecular basis for the advancement and development of protection strategies against HLAP.


Subject(s)
Apoptosis , Autophagy , Hyperlipidemias , Mice, Inbred C57BL , Mitochondria , Pancreatitis , Animals , Pancreatitis/drug therapy , Autophagy/drug effects , Apoptosis/drug effects , Hyperlipidemias/drug therapy , Mitochondria/drug effects , Mitochondria/metabolism , Mice , Male , Atractylodes/chemistry , Drugs, Chinese Herbal/pharmacology , Pancreas/drug effects , Pancreas/pathology , Rhizome/chemistry , Disease Models, Animal , Alisma/chemistry
15.
Biomed Pharmacother ; 175: 116519, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38663104

ABSTRACT

OBJECTIVES: To elucidate the therapeutic effects and mechanisms of Atractylodes macrocephala extract crystallize (BZEP) and BZEP self-microemulsion (BZEPWR) on metabolic dysfunction-associated fatty liver disease (MAFLD) induced by "high sugar, high fat, and excessive alcohol consumption" based on the gut-liver axis HDL/LPS signaling pathway. METHODS: In this study, BZEP and BZEPWR were obtained via isolation, purification, and microemulsification. Furthermore, an anthropomorphic MAFLD rat model of "high sugar, high fat, and excessive alcohol consumption" was established. The therapeutic effects of BZEPWR and BZEP on the model rats were evaluated in terms of liver function, lipid metabolism (especially HDL-C), serum antioxidant indexes, and liver and intestinal pathophysiology. To determine the lipoproteins in the serum sample, the amplitudes of a plurality of NMR spectra were derived via deconvolution of the composite methyl signal envelope to yield HDL-C subclass concentrations. The changes in intestinal flora were detected via 16 S rRNA gene sequencing. In addition, the gut-liver axis HDL/LPS signaling pathway was validated using immunohistochemistry, immunofluorescence, and western blot. RESULTS: The findings established that BZEPWR and BZEP improved animal signs, serum levels of liver enzymes (ALT and AST), lipid metabolism (TC, TG, HDL-C, and LDL-C), and antioxidant indexes (GSH, SOD, and ROS). In addition, pathological damage to the liver, colon, and ileum was ameliorated, and the intestinal barrier function of the model rats was restored. At the genus level, BZEPWR and BZEP exerted positive effects on beneficial bacteria, such as Lactobacillus and norank_f__Muribaculaceae, and inhibitory effects on harmful bacteria, such as unclassified_f__Lachnospiraceae and Blautia. Twenty HDL-C subspecies were detected, and their levels were differentially increased in both BZEPWR and BZEP groups, with BZEPWR exhibiting a stronger elevating effect on specific HDL-C subspecies. Also, the gut-liver axis HDL/LPS signaling pathway was studied, which indicated that BZEPWR and BZEP significantly increased the expressions of ABCA1, LXR, occludin, and claudin-1 proteins in the gut and serum levels of HDL-C. Concomitantly, the levels of LPS in the serum and TLR4, Myd88, and NF-κB proteins in the liver were decreased. CONCLUSION: BZEPWR and BZEP exert restorative and reversal effects on the pathophysiological damage to the gut-liver axis in MAFLD rats, and the therapeutic mechanism may be related to the regulation of the intestinal flora and the HDL/LPS signaling pathway.


Subject(s)
Atractylodes , Emulsions , Gastrointestinal Microbiome , Lipopolysaccharides , Liver , Plant Extracts , Rats, Sprague-Dawley , Signal Transduction , Animals , Signal Transduction/drug effects , Male , Rats , Liver/drug effects , Liver/metabolism , Atractylodes/chemistry , Plant Extracts/pharmacology , Gastrointestinal Microbiome/drug effects , Lipoproteins, HDL/blood , Disease Models, Animal , Lipid Metabolism/drug effects , Fatty Liver/drug therapy , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Antioxidants/pharmacology
16.
Nutrients ; 16(7)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38612999

ABSTRACT

Atractylodes macrocephala Koidz (AMK) is a traditional herbal medicine used for thousands of years in East Asia to improve a variety of illnesses and conditions, including cancers. This study explored the effect of AMK extract on apoptosis and tumor-grafted mice using AGS human gastric adenocarcinoma cells. We investigated the compounds, target genes, and associated diseases of AMK using the Traditional Chinese Medical Systems Pharmacy (TCMSP) database platform. Cell viability assay, cell cycle and mitochondrial depolarization analysis, caspase activity assay, reactive oxygen species (ROS) assay, and wound healing and spheroid formation assay were used to investigate the anti-cancer effects of AMK extract on AGS cells. Also, in vivo studies were conducted using subcutaneous xenografts. AMK extract reduced the viability of AGS cells and increased the sub-G1 cell fraction and the mitochondrial membrane potential. Also, AMK extract increased the production of ROS. AMK extract induced the increased caspase activities and modulated the mitogen-activated protein kinases (MAPK). In addition, AMK extract effectively inhibited AGS cell migration and led to a notable reduction in the growth of AGS spheroids. Moreover, AMK extract hindered the growth of AGS xenograft tumors in NSG mice. Our results suggest that AMK has anti-cancer effects by promoting cell cycle arrest and inhibiting the proliferation of AGS cancer cells and a xenograft model through apoptosis. This study could provide a novel approach to treat gastric cancer.


Subject(s)
Atractylodes , Stomach Neoplasms , Humans , Animals , Mice , Stomach Neoplasms/drug therapy , Reactive Oxygen Species , Caspases , Plant Extracts/pharmacology
17.
Vet Med Sci ; 10(3): e1412, 2024 05.
Article in English | MEDLINE | ID: mdl-38504633

ABSTRACT

BACKGROUND: Lipopolysaccharide (LPS) can induce systemic inflammation and affect the growth and development of poultry. As a kind of traditional Chinese medicine, polysaccharide of Atractylodes macrocephala Koidz (PAMK) can effectively improve the growth performance of animals and improve the immunity of animal bodies. OBJECTIVES: The purpose of this study was to investigate the effects of PAMK on LPS-induced inflammatory response, proliferation, differentiation and apoptosis of chicken embryonic myogenic cells. METHODS: We used chicken embryonic myogenic cells as a model by detecting EdU/MYHC immunofluorescence, the expression of inflammation, proliferation, differentiation-related genes and proteins and the number of apoptotic cells in the condition of adding LPS, PAMK, belnacasan (an inhibitor of Caspase1) or their combinations. RESULTS: The results showed that LPS stimulation increased the expression of inflammatory factors, inhibited proliferation and differentiation, and excessive apoptosis in chicken embryonic myogenic cells, and PAMK alleviated these adverse effects induced by LPS. After the addition of belnacasan (inhibitor of Caspase1), apoptosis in myogenic cells was inhibited, and therefore, the number of apoptotic cells and the expression of pro-apoptotic genes Caspase1 and Caspase3 were increased. In addition, belnacasan inhibited the increased expression of inflammatory factors, inhibited proliferation, differentiation and excessive apoptosis in chicken embryonic myogenic cells induced by LPS. CONCLUSIONS: This study provides a theoretical basis for further exploring the mechanism of action of PAMK and exogenous LPS on chicken embryonic myogenic cells and lays the foundation for the development and application of green feed additives in animal husbandry industry.


Subject(s)
Atractylodes , Lipopolysaccharides , Animals , Lipopolysaccharides/toxicity , Chickens , Polysaccharides/pharmacology , Apoptosis , Cell Proliferation , Inflammation/veterinary
18.
J Agric Food Chem ; 72(14): 7707-7715, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38530236

ABSTRACT

In this study, near-infrared (NIR) spectroscopy and high-performance liquid chromatography (HPLC) combined with chemometrics tools were applied for quick discrimination and quantitative analysis of different varieties and origins of Atractylodis rhizoma samples. Based on NIR data, orthogonal partial least squares discriminant analysis (OPLS-DA) and K-nearest neighbor (KNN) models achieved greater than 90% discriminant accuracy of the three species and two origins of Atractylodis rhizoma. Moreover, the contents of three active ingredients (atractyloxin, atractylone, and ß-eudesmol) in Atractylodis rhizoma were simultaneously determined by HPLC. There are significant differences in the content of the three components in the samples of Atractylodis rhizoma from different varieties and origins. Then, partial least squares regression (PLSR) models for the prediction of atractyloxin, atractylone, and ß-eudesmol content were successfully established. The complete Atractylodis rhizoma spectra gave rise to good predictions of atractyloxin, atractylone, and ß-eudesmol content with R2 values of 0.9642, 0.9588, and 0.9812, respectively. Based on the results of this present research, it can be concluded that NIR is a great nondestructive alternative to be applied as a rapid classification system by the drug industry.


Subject(s)
Atractylodes , Drugs, Chinese Herbal , Sesquiterpenes, Eudesmane , Atractylodes/chemistry , Drugs, Chinese Herbal/chemistry , Spectroscopy, Near-Infrared/methods , Chemometrics , Least-Squares Analysis
19.
Molecules ; 29(6)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38543015

ABSTRACT

The rhizomes of the genus Atractylodes DC. consist of various bioactive components, including sesquiterpenes, which have attracted a great deal of research interest in recent years. In the present study, we reviewed the previously published literatures prior to November 2023 on the chemical structures, biosynthetic pathways, and pharmacological activities of the sesquiterpenoids from this genus via online databases such as Web of Science, Google Scholar, and ScienceDirect. Phytochemical studies have led to the identification of more than 160 sesquiterpenes, notably eudesmane-type sesquiterpenes. Many pharmacological activities have been demonstrated, particularly anticancer, anti-inflammatory, and antibacterial and antiviral activities. This review presents updated, comprehensive and categorized information on the phytochemistry and pharmacology of sesquiterpenes in Atractylodes DC., with the aim of offering guidance for the future exploitation and utilization of active ingredients in this genus.


Subject(s)
Atractylodes , Sesquiterpenes, Eudesmane , Sesquiterpenes , Atractylodes/chemistry , Rhizome/chemistry , Sesquiterpenes/chemistry , Sesquiterpenes, Eudesmane/chemistry , Phytochemicals/pharmacology , Phytochemicals/analysis , Ethnopharmacology , Plant Extracts/pharmacology , Plant Extracts/analysis , Phytotherapy
20.
Int J Mol Sci ; 25(4)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38396809

ABSTRACT

H9N2 avian influenza poses a significant public health risk, necessitating effective vaccines for mass immunization. Oral inactivated vaccines offer advantages like the ease of administration, but their efficacy often requires enhancement through mucosal adjuvants. In a previous study, we established a novel complex of polysaccharide from Atractylodes macrocephala Koidz binding with zinc oxide nanoparticles (AMP-ZnONPs) and preliminarily demonstrated its immune-enhancing function. This work aimed to evaluate the efficacy of AMP-ZnONPs as adjuvants in an oral H9N2-inactivated vaccine and the vaccine's impact on intestinal mucosal immunity. In this study, mice were orally vaccinated on days 0 and 14 after adapting to the environment. AMP-ZnONPs significantly improved HI titers, the levels of specific IgG, IgG1 and IgG2a in serum and sIgA in intestinal lavage fluid; increased the number of B-1 and B-2 cells and dendritic cell populations; and enhanced the mRNA expression of intestinal homing factors and immune-related cytokines. Interestingly, AMP-ZnONPs were more likely to affect B-1 cells than B-2 cells. AMP-ZnONPs showed mucosal immune enhancement that was comparable to positive control (cholera toxin, CT), but not to the side effect of weight loss caused by CT. Compared to the whole-inactivated H9N2 virus (WIV) group, the WIV + AMP-ZnONP and WIV + CT groups exhibited opposite shifts in gut microbial abundance. AMP-ZnONPs serve as an effective and safe mucosal adjuvant for oral WIV, improving cellular, humoral and mucosal immunity and microbiota in the gastrointestinal tract, avoiding the related undesired effects of CT.


Subject(s)
Atractylodes , Influenza A Virus, H9N2 Subtype , Influenza Vaccines , Zinc Oxide , Animals , Mice , Adjuvants, Immunologic/pharmacology , Immunity, Mucosal , Vaccines, Inactivated , Polysaccharides/pharmacology , Antibodies, Viral
SELECTION OF CITATIONS
SEARCH DETAIL
...