Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 912
Filter
1.
Chemosphere ; 363: 142923, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39059642

ABSTRACT

Biobeds are presented as an alternative for good pesticide wastewater management on farms. This work proposes a new test for in-situ biomonitoring of pesticide detoxification in biobeds. It is based on the assessment of visually appreciable injuries to Eisenia fetida. The severity of the injury to each exposed individual is assessed from the morphological changes observed in comparison with the patterns established in seven categories and, an injury index is calculated. A linear relationship between the proposed injury index and the pesticide concentration was determined for each pesticide sprayed individually in the biomixture. The five pesticides used were atrazine, prometryn, clethodim, haloxyfop-P-methyl and dicamba. In addition, a multiple linear regression model (i.e., a multivariate response surface) was fitted, which showed a good generalization capacity. The sensitivity range of the injury test was tested from 0.01 to 630 mg kg-1 as the total pesticide concentration. This index is then used to monitor the detoxification of these pesticides in a biomixture (composed of wheat stubble, river waste, and soil, 50:25:25% by volume) over 210 days. The results are compared with standardized tests (Eisenia fetida avoidance test and Lactuca sativa seed germination test) carried out on the same biomixture. The results are also compared with data on the removal of pesticides. The injury test showed a better correlation with the removal of pesticides than the avoidance test and seed germination test. This simple and inexpensive test has proved to be useful for decontamination in-situ monitoring in biobeds.


Subject(s)
Biological Monitoring , Oligochaeta , Pesticides , Pesticides/analysis , Pesticides/metabolism , Oligochaeta/metabolism , Biological Monitoring/methods , Animals , Atrazine/toxicity , Atrazine/analysis , Soil Pollutants/analysis , Soil Pollutants/toxicity , Environmental Monitoring/methods , Wastewater/chemistry , Prometryne/toxicity , Dicamba
2.
J Hazard Mater ; 476: 135172, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38996685

ABSTRACT

Developing sensors with high selectivity and sensitivity is of great significance for pesticide analysis in environmental assessment. Herein, a versatile three-way sensor array was designed for the detection of the pesticide atrazine, based on the integration of catalytic hairpin assembly (CHA) amplification and three-mode signal transducers. With atrazine, CHA was triggered to generate abundant G-quadruplex. The produced G-quadruplex hybrid could assemble with thioflavin T (TFT) or hemin to mimic enzyme and induce the fluorescence enhancement by TFT, or the colorimetric increase by the oxidized chromogenic substrate and the naked-eye color change by inhibiting the L-cysteine-mediated aggregation of gold nanoparticles. A distinctive three-mode array was successfully constructed with convenience, on-site accessibility and high sensitivity for enzyme-free practical analysis of atrazine. It is also effective and reliable for analyzing real samples including paddy water, paddy soil and polished rice. The detection limits for atrazine were as low as 7.4 pg/mL by colorimetric observation and 0.25 pg/mL by fluorescent detection. Furthermore, the array was exploited to monitor the residue, distribution and bioaccumulation of atrazine in maize and rice for food security and environmental assessment. Hence, this work presented a versatile example for sensitive and on-site all-in-one pesticide analysis arrays with multiple signal report modes.


Subject(s)
Atrazine , Crops, Agricultural , DNA, Catalytic , G-Quadruplexes , Atrazine/analysis , DNA, Catalytic/chemistry , DNA, Catalytic/metabolism , Crops, Agricultural/chemistry , Aptamers, Nucleotide/chemistry , Environmental Monitoring/methods , Biosensing Techniques/methods , Oryza/chemistry , Zea mays/chemistry , Herbicides/analysis , Herbicides/chemistry , Pesticides/analysis , Pesticides/chemistry , Metal Nanoparticles/chemistry , Gold/chemistry , Benzothiazoles/chemistry , Limit of Detection , Hemin/chemistry , Water Pollutants, Chemical/analysis , Colorimetry
3.
Sci Rep ; 14(1): 17662, 2024 07 26.
Article in English | MEDLINE | ID: mdl-39085276

ABSTRACT

This study focused on strategically employing the carboxylesterase enzyme Ha006a, derived from the pesticide-resistant microorganism Helicoverpa armigera, to detect atrazine. A comprehensive analysis through biochemical, biophysical and bioinformatics approaches was conducted to determine the interaction between the Ha006a protein and the herbicide atrazine. These experimental findings elucidated the potential of leveraging the inherent pesticide sequestration mechanism of the Ha006a enzyme for sensor fabrication. Numerous optimizations were undertaken to ensure the precision, reproducibility and convenient storage of the resulting electrochemical sensor, Ha006a/MCPE. This biosensor exhibited exceptional performance in detecting atrazine, demonstrating outstanding selectivity with a lower limit of detection of 5.4 µM. The developed biosensor has emerged as a reliable and cost-effective green tool for the detection of atrazine from diverse environmental samples. The Ha006a-based biosensor fabrication has expanded the possibilities for the efficient integration of insect enzymes as analytical tools, paving the way for the design of cost-effective biosensors capable of detecting and quantifying pesticides.


Subject(s)
Atrazine , Biosensing Techniques , Electrochemical Techniques , Molecular Docking Simulation , Atrazine/analysis , Atrazine/metabolism , Biosensing Techniques/methods , Electrochemical Techniques/methods , Animals , Herbicides/analysis , Carboxylesterase/metabolism , Reproducibility of Results
4.
Anal Chem ; 96(29): 11862-11868, 2024 07 23.
Article in English | MEDLINE | ID: mdl-38989925

ABSTRACT

Current molecular logic gates are predominantly focused on the qualitative assessment of target presence, which has certain limitations in scenarios requiring quantitative assessment, such as chemical contaminant monitoring. To bridge this gap, we have developed a novel DNA logic gate featuring a tunable threshold, specifically tailored to the limits of contaminants. At the core of this logic gate is a DNA-gold nanoparticle (AuNP) hybrid film that incorporates aptamer sequences to selectively bind to acetamiprid (ACE) and atrazine (ATR). Upon interaction with these contaminants, the film degrades, releasing AuNPs that, in the presence of Hg2+, catalyze the oxidation of TMB, resulting in a visible blue coloration on test paper. This aptamer-enabled process effectively establishes an OR logic gate, with ACE and ATR as inputs and the appearance of blue color as the output. A key innovation of our system is its tunable input threshold. By adjusting the concentration of Hg2+, we can fine-tune the color mutation points to match the input threshold to predefined limits, such as Maximum Residue Limits (MRLs). This alignment allows semiquantitative assessment of contaminant levels, providing intuitive visual feedback of contaminant exceedance. Validation experiments with spiked samples confirm its accuracy and reliability by closely matching HPLC results. Therefore, our colorimetric DNA logic gate is emerging as a promising tool for easy and semiquantitative monitoring of chemical contaminants across diverse applications.


Subject(s)
Atrazine , Colorimetry , DNA , Gold , Metal Nanoparticles , Neonicotinoids , Metal Nanoparticles/chemistry , Gold/chemistry , Atrazine/analysis , Atrazine/chemistry , Neonicotinoids/analysis , Neonicotinoids/chemistry , DNA/chemistry , Aptamers, Nucleotide/chemistry , Computers, Molecular , Mercury/analysis , Mercury/chemistry
5.
Ecotoxicol Environ Saf ; 283: 116794, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39079404

ABSTRACT

Recent pesticide use is alarmingly high and unregulated in several parts of the world. Pesticide fate in soil is controlled by sorption processes which affect the subsequent transport and chemical reactivity in the environment, as well as uptake by plants. Sorption processes are dependent on soil composition and properties, but these are beginning to be affected by global warming-linked factors leading to soil depletion. Thus, it is vital to decipher soils' response, especially in the sub-Sahara (SS), to the depletion of some inherent components in the presence of pesticides. This was ascertained by monitoring a model pesticide (atrazine) sorption and desorption on whole SS soil (WS), and the same soil whose organic matter (OMR) and iron oxides (IOR) were substantially depleted, as well as studying atrazine uptake from these soils by fast-growing vegetables. Organic matter depletion enhanced equilibrium in OMR. Sorption was enhanced at lower ambient pH, higher initial atrazine concentration, and higher temperature. Hysteresis was low resulting in high desorption. Overall, atrazine desorption of ≥65 % was observed; it was higher in OMR (≥95 %) since SOM enhanced hysteresis. Though sub-Saharan soils are rich in iron oxides, SOM played a significantly higher role in sorption than iron oxides in this soil. This result suggests a high potential for atrazine to leach into the aquifer in the sub-Saharan. Atrazine uptake experiment by waterleaf and spinach showed that it could be detected in soil after 63 d, and its presence significantly affected the growth of both vegetables especially in soils with depleted SOM and iron oxides, and at high (100 µg/kg) atrazine spiking. Spinach may be a higher atrazine accumulator than waterleaf. It may be concluded that waterleaf and spinach grown on atrazine-contaminated soils, especially on SOM/iron oxide-depleted soils, are likely to accumulate atrazine.


Subject(s)
Atrazine , Ferric Compounds , Global Warming , Soil Pollutants , Soil , Atrazine/analysis , Soil/chemistry , Soil Pollutants/analysis , Ferric Compounds/chemistry , Adsorption , Herbicides/analysis , Herbicides/chemistry
6.
Sci Total Environ ; 945: 173971, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38876342

ABSTRACT

Pesticides are widely used in agriculture where they do not only reach their targets but also distribute to other environmental compartments and negatively affect non-target organisms. To prospectively assess their environmental risk, several tools and models using pesticide persistence (DT50) and leaching potential (groundwater ubiquity score (GUS), EXPOSIT) have been developed. Here, we simultaneously quantified 18 pesticides in soil and drainage water during a conventionally grown potato culture at field scale with high temporal resolution and compared our findings with predictions of the above models. Overall dissipations of all freshly applied compounds in soil were in line with published DT50 field values and their occurrences in drainage water were generally consistent with GUS and EXPOSIT models, respectively. In contrast, soil concentrations of the legacy pesticide atrazine and one of its transformation products (atrazine-2-hydroxy) were constant during the entire sampling campaign. Moreover, during peak discharge atrazine concentrations in drainage water were diluted whereas those of freshly applied pesticides were maximal. This difference demonstrates that the applied risk assessment tools were capable of predicting environmental concentrations and dissipation of pesticides at the short and medium time scale of a few half-lives after application, but fell short of capturing long-term trace residues.


Subject(s)
Agriculture , Environmental Monitoring , Pesticides , Soil Pollutants , Soil , Solanum tuberosum , Water Pollutants, Chemical , Pesticides/analysis , Soil Pollutants/analysis , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Soil/chemistry , Agriculture/methods , Models, Chemical , Risk Assessment , Atrazine/analysis
7.
Sci Rep ; 14(1): 13327, 2024 06 10.
Article in English | MEDLINE | ID: mdl-38858445

ABSTRACT

This study investigates the environmental impact of burning herbicide-contaminated biomass, focusing on atrazine (ATZ) and diuron (DIU) sprayed on rice straw prior to burning. Samples of soil, biomass residues, total suspended particulate (TSP), particulate matter with an aerodynamic diameter ≤ 10 µm (PM10), and aerosols were collected and analyzed. Soil analysis before and after burning contaminated biomass showed significant changes, with 2,4-dichlorophenoxyacetic acid (2,4-D) initially constituting 79.2% and decreasing by 3.3 times post-burning. Atrazine-desethyl, sebuthylazine, and terbuthylazine were detected post-burning. In raw rice straw biomass, terbuthylazine dominated at 80.0%, but burning ATZ-contaminated biomass led to the detection of atrazine-desethyl and notable increases in sebuthylazine and terbuthylazine. Conversely, burning DIU-contaminated biomass resulted in a shift to 2,4-D dominance. Analysis of atmospheric components showed changes in TSP, PM10, and aerosol samples. Linuron in ambient TSP decreased by 1.6 times after burning ATZ-contaminated biomass, while atrazine increased by 2.9 times. Carcinogenic polycyclic aromatic hydrocarbons (PAHs), including benzo[a]anthracene (BaA), benzo[a]pyrene (BaP), and benzo[b]fluoranthene (BbF), increased by approximately 9.9 to 13.9 times after burning ATZ-contaminated biomass. In PM10, BaA and BaP concentrations increased by approximately 11.4 and 19.0 times, respectively, after burning ATZ-contaminated biomass. This study sheds light on the environmental risks posed by burning herbicide-contaminated biomass, emphasizing the need for sustainable agricultural practices and effective waste management. The findings underscore the importance of regulatory measures to mitigate environmental contamination and protect human health.


Subject(s)
Atrazine , Biomass , Diuron , Herbicides , Oryza , Soil , Atrazine/analysis , Oryza/chemistry , Herbicides/analysis , Soil/chemistry , Diuron/analysis , Soil Pollutants/analysis , Air Pollutants/analysis , Environmental Monitoring , Particulate Matter/analysis
8.
Anal Chem ; 96(19): 7772-7779, 2024 05 14.
Article in English | MEDLINE | ID: mdl-38698542

ABSTRACT

There is growing attention focused toward the problems of ecological sustainability and food safety raised from the abuse of herbicides, which underscores the need for the development of a portable and reliable sensor for simple, rapid, and user-friendly on-site analysis of herbicide residues. Herein, a novel multifunctional hydrogel composite is explored to serve as a portable and flexible sensor for the facile and efficient analysis of atrazine (ATZ) residues. The hydrogel electrode is fabricated by doping graphite-phase carbon nitride (g-C3N4) into the aramid nanofiber reinforced poly(vinyl alcohol) hydrogel via a simple solution-casting procedure. Benefiting from the excellent electroactivity and large specific surface area of the solid nanoscale component, the prepared hydrogel sensor is capable of simple, rapid, and sensitive detection of ATZ with a detection limit down to 0.002 ng/mL and per test time less than 1 min. After combination with a smartphone-controlled portable electrochemical analyzer, the flexible sensor exhibited satisfactory analytical performance for the ATZ assay. We further demonstrated the applications of the sensor in the evaluation of the ATZ residues in real water and soil samples as well as the user-friendly on-site point-of-need detection of ATZ residues on various agricultural products. We envision that this flexible and portable sensor will open a new avenue on the development of next-generation analytical tools for herbicide monitoring in the environment and agricultural products.


Subject(s)
Atrazine , Electrochemical Techniques , Herbicides , Hydrogels , Atrazine/analysis , Herbicides/analysis , Hydrogels/chemistry , Electrochemical Techniques/instrumentation , Graphite/chemistry , Electrodes , Limit of Detection , Nitriles/chemistry , Nitriles/analysis , Nanofibers/chemistry , Water Pollutants, Chemical/analysis
9.
Chemosphere ; 360: 142411, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38789050

ABSTRACT

Atrazine is an herbicide with a high soil leaching capacity, contaminating subsurface water sources. Once the water table is contaminated, riparian species can be exposed to atrazine. In this way, understanding the impacts of this exposure must be evaluated for planning strategies that minimize the effects of this herbicide on native forest species. We aimed to evaluate forest species' sensitivity and antioxidant response to exposure to subsurface waters contaminated with atrazine, as well the dissipation this herbicide. The experiment was conducted in a greenhouse in a completely randomized design, with three replications and one plant per experimental unit. The treatments were arranged in a 2 × 10 factorial. The first factor corresponded to the presence or absence (control) of the atrazine in the subsurface water. The second factor comprised 10 forest species: Amburana cearensis, Anadenanthera macrocarpa, Bauhinia cheilantha, Enterolobium contortisiliquum, Hymenaea courbaril, Libidibia ferrea, Mimosa caesalpiniifolia, Mimosa tenuiflora, Myracrodruon urundeuva, and Tabebuia aurea. The forest species studied showed different sensitivity levels to atrazine in subsurface water. A. cearensis and B. cheilantha species do not have efficient antioxidant systems to prevent severe oxidative damage. The species A. macrocarpa, E. contortisiliquum, L. ferrea, and M. caesalpiniifolia are moderately affected by atrazine. H. courbaril, M. urundeuva, and T. aurea showed greater tolerance to atrazine due to the action of the antioxidant system of these species, avoiding membrane degradation events linked to the production of reactive oxygen species (ROS). Among the forest species, H. courbaril has the most significant remedial potential due to its greater tolerance and reduced atrazine concentrations in the soil.


Subject(s)
Antioxidants , Atrazine , Forests , Herbicides , Seedlings , Water Pollutants, Chemical , Atrazine/analysis , Herbicides/analysis , Antioxidants/metabolism , Antioxidants/analysis , Water Pollutants, Chemical/analysis , Seedlings/drug effects , Soil Pollutants/analysis , Soil/chemistry
10.
Environ Res ; 252(Pt 4): 119121, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38734291

ABSTRACT

Extensive utilization of pesticides and herbicides to boost agricultural production increased the environmental health risks, which can be mitigate with the aid of highly sensitive detection systems. In this study, an electrochemical sensor for monitoring the carcinogenic pesticides in the environmental samples has been developed based on sulfur-doped graphitic-carbon nitride-gold nanoparticles (SCN-AuNPs) nanohybrid. Thermal polycondensation of melamine with thiourea followed by solvent exfoliation via ultrasonication leads to SCN formation and electroless deposition of AuNPs on SCN leads to SCN-AuNPs nanohybrid synthesis. The chemical composition, S-doping, and the morphology of the nanohybrid were confirmed by various microscopic and spectroscopic tools. The as-synthesized nanohybrid was fabricated with glassy carbon (GC) electrode for determining the carcinogenic hydrazine (HZ) and atrazine (ATZ) in field water samples. The present sensor exhibited superior electrocatalytic activity than GC/SCN and GC/AuNPs electrodes due to the synergism between SCN and AuNPs and the amperometric studies showed the good linear range of detection of 20 nM-0.5 mM and 500 nM-0.5 mM with the limit of detection of 0.22 and 69 nM (S/N = 3) and excellent sensitivity of 1173.5 and 13.96 µA mM-1 cm-2 towards HZ and ATZ, respectively. Ultimately, the present sensor is exploited in environmental samples for monitoring HZ and ATZ and the obtained results are validated with high-performance liquid chromatography (HPLC) technique. The excellent recovery percentage and close agreement with the results of HPLC analysis proved the practicability of the present sensor. In addition, the as-prepared materials were utilized for the photocatalytic degradation of ATZ and the SCN-AuNPs nanohybrid exhibited higher photocatalytic activity with the removal efficiency of 93.6% at 90 min. Finally, the degradation mechanism was investigated and discussed.


Subject(s)
Carcinogens , Gold , Graphite , Metal Nanoparticles , Water Pollutants, Chemical , Gold/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Metal Nanoparticles/chemistry , Graphite/chemistry , Carcinogens/analysis , Atrazine/analysis , Atrazine/chemistry , Sulfur/chemistry , Sulfur/analysis , Electrochemical Techniques/methods , Hydrazines/analysis , Hydrazines/chemistry , Nitrogen Compounds/chemistry , Nitrogen Compounds/analysis , Nitriles/chemistry , Nitriles/analysis , Environmental Monitoring/methods
11.
Environ Pollut ; 350: 124009, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38670423

ABSTRACT

Water reuse for potable purposes can represent a realistic source supply of drinking water in areas with water scarcity. Therefore, combining conventional wastewater treatment technologies with advanced technologies is necessary to remove contaminants and obtain high-quality and safe water. In this study, the pesticides and degradation products, atrazine (ATZ), hydroxyatrazine (ATZOH), deethylatrazine (DEA), deisopropylatrazine (DIA), simazine (SMZ), ametryn (AMT), diuron (DIU), 2,4-D, fipronil (FIP), fipronil sulfide (FIP-SF) and fipronil sulfone (FIP-SN) were evaluated in effluent after membrane bioreactor (MBR), effluent after advanced treatment by multiple barriers (MBR, reverse osmosis, UV/H2O2 and activated carbon), in tap water collected in the urban region of Campinas and in the Atibaia River (water supply source from city of Campinas). The pesticide concentrations in the Atibaia River and the post-MBR effluent ranged between 1 and 434 ng L-1 and 1 and 470 ng L-1, respectively. Therefore, the Atibaia River and the post-MBR effluent had the same magnitude pesticide concentrations. In the production of potable water reuse, after the multiple barriers processes, only fipronil (1 ng L-1) and atrazine (3 ng L-1) were quantified in some of the samples. In tap water from Campinas, atrazine, ATZOH, DEA, diuron, and 2,4-D were quantified in concentrations ranging between 3 and 425 ng L-1. Therefore, when comparing drinking water obtained from conventional treatment with potable water reuse, according to the pesticides studied, it is possible to conclude that the advanced treatment used on a pilot scale is promising for use in a potable water reuse plant. However, studies involving more microbiological and chemical parameters should be conducted to classify potable water reuse as drinking water.


Subject(s)
Pesticides , Water Pollutants, Chemical , Water Purification , Water Pollutants, Chemical/analysis , Pesticides/analysis , Water Purification/methods , Pilot Projects , Drinking Water/chemistry , Waste Disposal, Fluid/methods , Wastewater/chemistry , Atrazine/analysis , Bioreactors
12.
Environ Pollut ; 349: 123940, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38599268

ABSTRACT

A quantitative multiresidue study of current-use pesticides in multiple matrices was undertaken with field sampling at 32 headwater streams near Lac Saint-Pierre in Québec, Canada. A total of 232 samples were collected in five campaigns of stream waters and streambed sediments from streams varying in size and watershed land use. Novel multiresidue analytical methods from previous work were successfully applied for the extraction of pesticide residues from sediments via pressurized liquid extraction (PLE) and quantitative analysis using ultra high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) with online sample preparation on a hydrophilic-lipophilic balance (HLB) column. Of the 31 target compounds, including 29 pesticides and two degradation products of atrazine, 29 compounds were detected at least once. Consistent with other studies, atrazine and metolachlor were the most widely-detected herbicides. Detections were generally higher in water than sediment samples and the influence of land use on pesticide concentrations was only detectable in water samples. Small streams with a high proportion of agricultural land use in their watershed were generally found to have the highest pesticide concentrations. Corn and soybean monoculture crops, specifically, were found to cause the greatest impact on pesticide concentration in headwater streams and correlated strongly with many of the most frequently detected pesticides. This study highlights the importance of performing multiresidue pesticide monitoring programs in headwater streams in order to capture the impacts of agricultural intensification on freshwater ecosystems.


Subject(s)
Agriculture , Environmental Monitoring , Pesticides , Rivers , Water Pollutants, Chemical , Rivers/chemistry , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Quebec , Pesticides/analysis , Pesticide Residues/analysis , Atrazine/analysis , Tandem Mass Spectrometry , Geologic Sediments/chemistry , Herbicides/analysis
13.
J Hazard Mater ; 470: 134216, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38581877

ABSTRACT

In vivo monitoring of multiple pesticide contamination is of great significance for evaluating the health risks of different pesticides, agricultural production safety, and ecological and environmental assessment. Here, we report a hydrogel microneedle array coupled light-addressable photoelectrochemical sensor for tracking multiple pesticide uptake and elimination in living animals and plants, holding three prominent merits: i) enables in-situ detection of in vivo pesticides, avoiding cumbersome and complex sample transportation and handling processes; ii) allows repeated in vivo sampling of the same organism, improving tracking test controllability and accuracy; iii) avoids lethal sampling, providing a better understanding of the pesticides fate in living organisms. The coupled sensor is mechanically robust for withstanding more than 0.35 N per needle and highly swellable (800 %) for timely extraction of sufficient in vivo solution for analysis. For proof-of-concept, it achieves in-situ detection of atrazine, acetamiprid, and carbendazim efficiently and quantitatively in artificial agarose skin models, mouse skin interstitial fluids, and plant leaves with little inflammatory reaction. This simple, highly integrated, minimally invasive, and high-throughput in vivo monitoring method is ideal for future field environmental monitoring and plant and animal disease diagnosis.


Subject(s)
Benzimidazoles , Carbamates , Needles , Neonicotinoids , Pesticides , Animals , Neonicotinoids/analysis , Pesticides/analysis , Atrazine/analysis , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Environmental Monitoring/methods , Mice , Plant Leaves/chemistry , Light , Hydrogels/chemistry , Skin/chemistry
14.
Environ Sci Technol ; 58(15): 6814-6824, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38581381

ABSTRACT

Identifying persistent, mobile, and toxic (PMT) substances from synthetic chemicals is critical for chemical management and ecological risk assessment. Inspired by the triazine analogues (e.g., atrazine and melamine) in the original European Union's list of PMT substances, the occurrence and compositions of alkylamine triazines (AATs) in the estuarine sediments of main rivers along the eastern coast of China were comprehensively explored by an integrated strategy of target, suspect, and nontarget screening analysis. A total of 44 AATs were identified, of which 23 were confirmed by comparison with authentic standards. Among the remaining tentatively identified analogues, 18 were emerging pollutants not previously reported in the environment. Tri- and di-AATs were the dominant analogues, and varied geographic distributions of AATs were apparent in the investigated regions. Toxic unit calculations indicated that there were acute and chronic risks to algae from AATs on a large geographical scale, with the antifouling biocide cybutryne as a key driver. The assessment of physicochemical properties further revealed that more than half of the AATs could be categorized as potential PMT and very persistent and very mobile substances at the screening level. These results highlight that AATs are a class of PMT substances posing high ecological impacts on the aquatic environment and therefore require more attention.


Subject(s)
Atrazine , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Rivers/chemistry , Triazines/analysis , Atrazine/analysis , China , Environmental Monitoring
15.
Ying Yong Sheng Tai Xue Bao ; 35(3): 789-796, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38646767

ABSTRACT

We established the optimal model by using the automatic machine learning method to predict the degradation efficiency of herbicide atrazine in soil, which could be used to assess the residual risk of atrazine in soil. We collected 494 pairs of data from 49 published articles, and selected seven factors as input features, including soil pH, organic matter content, saturated hydraulic conductivity, soil moisture, initial concentration of atrazine, incubation time, and inoculation dose. Using the first-order reaction rate constant of atrazine in soil as the output feature, we established six models to predict the degradation efficiency of atrazine in soil, and conducted comprehensive analysis of model performance through linear regression and related evaluation indicators. The results showed that the XGBoost model had the best performance in predicting the first-order reaction rate constant (k). Based on the prediction model, the feature importance ranking of each factor was in an order of soil moisture > incubation time > pH > organic matter > initial concentration of atrazine > saturated hydraulic conductivity > inoculation dose. We used SHAP to explain the potential relationship between each feature and the degradation ability of atrazine in soil, as well as the relative contribution of each feature. Results of SHAP showed that time had a negative contribution and saturated hydraulic conductivity had a positive contribution. High values of soil moisture, initial concentration of atrazine, pH, inoculation dose and organic matter content were generally distributed on both sides of SHAP=0, indicating their complex contributions to the degradation of atrazine in soil. The XGBoost model method combined with the SHAP method had high accuracy in predicting the performance and interpretability of the k model. By using machine learning method to fully explore the value of historical experimental data and predict the degradation efficiency of atrazine using environmental parameters, it is of great significance to set the threshold for atrazine application, reduce the residual and diffusion risks of atrazine in soil, and ensure the safety of soil environment.


Subject(s)
Atrazine , Herbicides , Models, Theoretical , Soil Pollutants , Soil , Atrazine/analysis , Atrazine/chemistry , Soil Pollutants/analysis , Soil Pollutants/chemistry , Herbicides/analysis , Herbicides/chemistry , Soil/chemistry , Biodegradation, Environmental , Machine Learning , Forecasting
16.
Curr Microbiol ; 81(5): 117, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38492090

ABSTRACT

Atrazine is an important herbicide that has been widely used for weed control in recent decades. However, with the extensive use of atrazine, its residue seriously pollutes the environment. Therefore, the microbial degradation and detoxification of atrazine have received extensive attention. To date, the aerobic degradation pathway of atrazine has been well studied; however, little is known about its anaerobic degradation in the environment. In this study, an anaerobic microbial consortium capable of efficiently degrading atrazine was enriched from soil collected from an herbicide-manufacturing plant. Six metabolites including hydroxyatrazine, deethylatrazine, N-isopropylammelide, deisopropylatrazine, cyanuric acid, and the novel metabolite 4-ethylamino-6-isopropylamino-1,3,5-triazine (EIPAT) were identified, and two putative anaerobic degradation pathways of atrazine were proposed: a hydrolytic dechlorination pathway is similar to that seen in aerobic degradation, and a novel pathway initiated by reductive dechlorination. During enrichment, Denitratisoma, Thiobacillus, Rhodocyclaceae_unclassified, Azospirillum, and Anaerolinea abundances significantly increased, dominating the enriched consortium, indicating that they may be involved in atrazine degradation. These findings provide valuable evidence for elucidating the anaerobic catabolism of atrazine and facilitating anaerobic remediation of residual atrazine pollution.


Subject(s)
Atrazine , Herbicides , Soil Pollutants , Atrazine/analysis , Atrazine/chemistry , Atrazine/metabolism , Herbicides/metabolism , Soil/chemistry , Anaerobiosis , Microbial Consortia , Biodegradation, Environmental , Soil Microbiology , Soil Pollutants/metabolism
17.
J Environ Sci Health B ; 59(3): 98-111, 2024.
Article in English | MEDLINE | ID: mdl-38297504

ABSTRACT

Argentina stands as one of the leading consumers of herbicides. In a laboratory incubation experiment, the persistence and production of degradation metabolites of Atrazine, 2,4-D, and Glyphosate were investigated in a loamy clay soil under two contrasting agricultural practices: continuous soybean cultivation (T1) and intensified rotations with grasses and legumes (T2). The soils were collected from a long-term no-till trial replicating the influence of the meteorological conditions in the productive region. The soil was enriched with diluted concentrations of 6.71, 9.95, and 24 mg a.i./kg-1 of soil for the respective herbicides, equivalent to annual doses commonly used in the productive region. Samples were taken at intervals of 0, 0.5, 1, 2, 4, 6, 8, 16, 32, and 64 days, and analysis was conducted using high-resolution liquid chromatography UPLC MS/MS. An optimal fit to the first-order kinetic model was observed for each herbicide in both rotations, resulting in relatively short half-lives. Intensified crop sequences favored the production of biotic degradation metabolites. The impact of the high frequency of soybean cultivation revealed a trend of soil acidification and a reduced biological contribution to attenuation processes in soil contamination.


Subject(s)
Atrazine , Herbicides , Soil Pollutants , Atrazine/analysis , Glyphosate , Soil/chemistry , Argentina , Tandem Mass Spectrometry , Soil Pollutants/analysis , Herbicides/chemistry , Glycine max , Crop Production , 2,4-Dichlorophenoxyacetic Acid
18.
Environ Pollut ; 345: 123507, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38325508

ABSTRACT

As a potential low-cost and environmentally friendly strategy, bioremediation of herbicide polluted soil has attracted increasing attention. However, there is a lack of knowledge regarding the response of the atrazine-degrading bacterial community to coinoculation of arbuscular mycorrhizal (AM) fungi and rhizobia for atrazine dissipation. In this study, a pot experiment was conducted with AM fungi Glomus mosseae (AM), rhizobia Rhizobium trifolii TA-1 (R) and their coinoculation (AMR) with atrazine. In each treatment, the atrazine-degrading bacterial community of four soil size aggregates, namely large macroaggregates (LMa), small macroaggregates (SMa), microaggregates (Mia) and primary particles (P) were investigated. The results showed that the atrazine residue concentration was lowest in AMR, and that in LMa was also significantly lower than that in the other smaller aggregate sizes. Overall, inoculation, the aggregate fraction and their interaction had significant effects on soil TN, SOC, AP and pH. For the atrazine-degrading bacterial community, the Chao1 index increased with decreasing particle size, but the Shannon index decreased. Moreover, the abundances of the dominant atrazine-degrading bacterial genera Arthrobacter, Bacillus, Marmoricola and Nocardioides in the Mia and P particle size groups were greater than those in the LMa and SMa groups in each treatment. The bacterial communities in the Mia and P particle sizes in each treatment group were more complex. Therefore, coinoculation of AM fungi and rhizobia stimulated atrazine dissipation by changing the atrazine-degrading bacterial community, and the response of the atrazine-degrading bacterial community to each aggregate size varied depending on its distinct soil physicochemical properties.


Subject(s)
Atrazine , Mycorrhizae , Rhizobium , Soil Pollutants , Atrazine/analysis , Mycorrhizae/physiology , Soil , Soil Microbiology , Fungi , Bacteria , Biodegradation, Environmental , Soil Pollutants/analysis
19.
Environ Pollut ; 343: 123286, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38171425

ABSTRACT

The ecological functioning of black soil largely depends on the activities of various groups of microorganisms. However, little is known about how atrazine, a widely used herbicide with known harmful effects on the environment, influences the microbial ecology of black soil, and the extracellular enzymes related to the carbon, nitrogen and phosphorus cycles. Here, we evaluated the change in extracellular enzymes and bacterial community characteristics in black soil after exposure to various concentrations of atrazine. Low concentrations of applied atrazine (10 - 20 mg kg-1) were almost completely degraded after 120 days. At high concentrations (80 - 100 mg kg-1), about 95% of the applied atrazine was degraded over the same period. Additionally, linear fitting of data indicated that the total enzymatic activity index (TEI) and bacterial α-diversity index were negatively correlated with atrazine applied concentration. The atrazine had a greater effect on bacterial beta diversity after 120 days, which differentiated species clusters treated with low and high atrazine concentrations. Soil bacterial community structure and function were affected by atrazine, especially at high atrazine concentrations (80 - 100 mg kg-1). Key microorganisms such as Sphingomonas and Nocardioides were identified as biomarkers for atrazine dissipation. Functional prediction indicated that most metabolic pathways might be involved in atrazine dissipation. Overall, the findings enhance our understanding of the factors driving atrazine degradation in black soil and supports the use of biomarkers as indicators of atrazine dissipation.


Subject(s)
Atrazine , Herbicides , Soil Pollutants , Atrazine/analysis , Soil , Soil Microbiology , Herbicides/analysis , Bacteria/metabolism , Soil Pollutants/analysis , Biomarkers/metabolism , Biodegradation, Environmental
20.
Int J Environ Health Res ; 34(3): 1443-1452, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37266965

ABSTRACT

This meta-analysis evaluates the association between atrazine (ATR) exposure and small for gestational age (SGA), preterm birth (PTB), and low birth weight (LBW). A comprehensive search was done on academic databases (e.g. PubMed, Scopus, Embase, and Google Scholar) to achieve all pertinent studies up to May 2023. A pooled odd ratio (OR) and corresponding 95% confidence interval (CI) were applied to evaluate this correlation. As a result, five eligible studies met the inclusion criteria and were included in our study, and the result of the present meta-analysis showed that ATR exposure increased the risk of SGA (OR = 1.11; 95% CI = 1.03-1.20 for highest versus lowest category of ATR), PTB (OR = 1.16; 95% CI = 1.03-1.30), and LBW (OR = 1.26; 95% CI = 1.10-1.44). This meta-analysis suggests that ATR in drinking water may be a risk factor for SGA, PTB, and LBW.


Subject(s)
Atrazine , Drinking Water , Premature Birth , Infant, Newborn , Female , Humans , Atrazine/toxicity , Atrazine/analysis , Premature Birth/chemically induced , Premature Birth/epidemiology , Infant, Low Birth Weight , Infant, Small for Gestational Age
SELECTION OF CITATIONS
SEARCH DETAIL