Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 437
Filter
1.
Theranostics ; 14(9): 3719-3738, 2024.
Article in English | MEDLINE | ID: mdl-38948070

ABSTRACT

Rationale: Autophagy dysregulation is known to be a mechanism of doxorubicin (DOX)-induced cardiotoxicity (DIC). Mitochondrial-Endoplasmic Reticulum Contacts (MERCs) are where autophagy initiates and autophagosomes form. However, the role of MERCs in autophagy dysregulation in DIC remains elusive. FUNDC1 is a tethering protein of MERCs. We aim to investigate the effect of DOX on MERCs in cardiomyocytes and explore whether it is involved in the dysregulated autophagy in DIC. Methods: We employed confocal microscopy and transmission electron microscopy to assess MERCs structure. Autophagic flux was analyzed using the mCherry-EGFP-LC3B fluorescence assay and western blotting for LC3BII. Mitophagy was studied through the mCherry-EGFP-FIS1 fluorescence assay and colocalization analysis between LC3B and mitochondria. A total dose of 18 mg/kg of doxorubicin was administrated in mice to construct a DIC model in vivo. Additionally, we used adeno-associated virus (AAV) to cardiac-specifically overexpress FUNDC1. Cardiac function and remodeling were evaluated by echocardiography and Masson's trichrome staining, respectively. Results: DOX blocked autophagic flux by inhibiting autophagosome biogenesis, which could be attributed to the downregulation of FUNDC1 and disruption of MERCs structures. FUNDC1 overexpression restored the blocked autophagosome biogenesis by maintaining MERCs structure and facilitating ATG5-ATG12/ATG16L1 complex formation without altering mitophagy. Furthermore, FUNDC1 alleviated DOX-induced oxidative stress and cardiomyocytes deaths in an autophagy-dependent manner. Notably, cardiac-specific overexpression of FUNDC1 protected DOX-treated mice against adverse cardiac remodeling and improved cardiac function. Conclusions: In summary, our study identified that FUNDC1-meditated MERCs exerted a cardioprotective effect against DIC by restoring the blocked autophagosome biogenesis. Importantly, this research reveals a novel role of FUNDC1 in enhancing macroautophagy via restoring MERCs structure and autophagosome biogenesis in the DIC model, beyond its previously known regulatory role as an mitophagy receptor.


Subject(s)
Autophagy , Cardiotoxicity , Doxorubicin , Endoplasmic Reticulum , Membrane Proteins , Mitochondrial Proteins , Myocytes, Cardiac , Animals , Doxorubicin/adverse effects , Doxorubicin/pharmacology , Mice , Autophagy/drug effects , Cardiotoxicity/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/drug effects , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Mitochondria/metabolism , Mitochondria/drug effects , Mitophagy/drug effects , Male , Autophagosomes/metabolism , Autophagosomes/drug effects , Mice, Inbred C57BL , Disease Models, Animal
2.
Exp Cell Res ; 440(1): 114118, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38852763

ABSTRACT

Autophagy phenomenon in the cell maintains proteostasis balance by eliminating damaged organelles and protein aggregates. Imbalance in autophagic flux may cause accumulation of protein aggregates in various neurodegenerative disorders. Regulation of autophagy by either calcium or chaperone play a key role in the removal of protein aggregates from the cell. The neuromuscular rare genetic disorder, GNE Myopathy, is characterized by accumulation of rimmed vacuoles having protein aggregates of ß-amyloid and tau that may result from altered autophagic flux. In the present study, the autophagic flux was deciphered in HEK cell-based model for GNE Myopathy harbouring GNE mutations of Indian origin. The refolding activity of HSP70 chaperone was found to be reduced in GNE mutant cells compared to wild type controls. The autophagic markers LC3II/I ratio was altered with increased number of autophagosome formation in GNE mutant cells compared to wild type cells. The cytosolic calcium levels were also increased in GNE mutant cells of Indian origin. Interestingly, treatment of GNE mutant cells with HSP70 activator, BGP-15, restored the expression and refolding activity of HSP70 along with autophagosome formation. Treatment with calcium chelator, BAPTA-AM restored the cytoplasmic calcium levels and autophagosome formation but not LC3II/I ratio significantly. Our study provides insights towards GNE mutation specific response for autophagy regulation and opens up a therapeutic advancement area in calcium signalling and HSP70 function for GNE related Myopathy.


Subject(s)
Autophagy , Calcium , Distal Myopathies , HSP70 Heat-Shock Proteins , Multienzyme Complexes , Mutation , Humans , Autophagy/genetics , Autophagy/drug effects , Mutation/genetics , Calcium/metabolism , Distal Myopathies/genetics , Distal Myopathies/metabolism , Distal Myopathies/pathology , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Multienzyme Complexes/genetics , Multienzyme Complexes/metabolism , HEK293 Cells , Autophagosomes/metabolism , Autophagosomes/drug effects , India
3.
Elife ; 132024 Jul 03.
Article in English | MEDLINE | ID: mdl-38899618

ABSTRACT

The autophagy-lysosome pathway plays an indispensable role in the protein quality control by degrading abnormal organelles and proteins including α-synuclein (αSyn) associated with the pathogenesis of Parkinson's disease (PD). However, the activation of this pathway is mainly by targeting lysosomal enzymic activity. Here, we focused on the autophagosome-lysosome fusion process around the microtubule-organizing center (MTOC) regulated by lysosomal positioning. Through high-throughput chemical screening, we identified 6 out of 1200 clinically approved drugs enabling the lysosomes to accumulate around the MTOC with autophagy flux enhancement. We further demonstrated that these compounds induce the lysosomal clustering through a JIP4-TRPML1-dependent mechanism. Among them, the lysosomal-clustering compound albendazole promoted the autophagy-dependent degradation of Triton-X-insoluble, proteasome inhibitor-induced aggregates. In a cellular PD model, albendazole boosted insoluble αSyn degradation. Our results revealed that lysosomal clustering can facilitate the breakdown of protein aggregates, suggesting that lysosome-clustering compounds may offer a promising therapeutic strategy against neurodegenerative diseases characterized by the presence of aggregate-prone proteins.


Subject(s)
Autophagy , Lysosomes , Parkinson Disease , Lysosomes/drug effects , Lysosomes/metabolism , Parkinson Disease/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/pathology , Autophagy/drug effects , Humans , alpha-Synuclein/metabolism , Albendazole/pharmacology , Microtubule-Organizing Center/metabolism , Autophagosomes/metabolism , Autophagosomes/drug effects
4.
Sci Rep ; 14(1): 13258, 2024 06 10.
Article in English | MEDLINE | ID: mdl-38858422

ABSTRACT

Lung cancer is the most common oncological disease worldwide, with non-small cell lung cancer accounting for approximately 85% of lung cancer cases. α-Hederin is a monodesmosidic triterpenoid saponin isolated from the leaves of Hedera helix L. or Nigella sativa and has been extensively studied for its antitumor activity against a variety of tumor cells. It has been suggested that α-Hederin is a potential regulator of autophagy and has high promise for application. However, the specific mechanism and characteristics of α-Hederin in regulating autophagy are not well understood. In this study, we confirmed the potential of α-Hederin application in lung cancer treatment and comprehensively explored the mechanism and characteristics of α-Hederin in regulating autophagy in lung cancer cells. Our results suggest that α-Hederin is an incomplete autophagy inducer that targets mTOR to activate the classical autophagic pathway, inhibits lysosomal acidification without significantly affecting the processes of autophagosome transport, lysosome biogenesis, autophagosome and lysosome fusion, and finally leads to impaired autophagic flux and triggers autophagic damage in NSCLC.


Subject(s)
Autophagy , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Lysosomes , Oleanolic Acid , Saponins , Humans , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/drug therapy , Lysosomes/metabolism , Lysosomes/drug effects , Autophagy/drug effects , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/drug therapy , Oleanolic Acid/analogs & derivatives , Oleanolic Acid/pharmacology , Saponins/pharmacology , Cell Line, Tumor , TOR Serine-Threonine Kinases/metabolism , Autophagosomes/metabolism , Autophagosomes/drug effects , A549 Cells
5.
Free Radic Biol Med ; 220: 111-124, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38697493

ABSTRACT

Hepatocellular carcinoma (HCC) is a global public health problem with increased morbidity and mortality. Agrimol B, a natural polyphenol, has been proved to be a potential anticancer drug. Our recent report showed a favorable anticancer effect of agrimol B in HCC, however, the mechanism of action remains unclear. Here, we found agrimol B inhibits the growth and proliferation of HCC cells in vitro as well as in an HCC patient-derived xenograft (PDX) model. Notably, agrimol B drives autophagy initiation and blocks autophagosome-lysosome fusion, resulting in autophagosome accumulation and autophagy arrest in HCC cells. Mechanistically, agrimol B downregulates the protein level of NADH:ubiquinone oxidoreductase core subunit S1 (NDUFS1) through caspase 3-mediated degradation, leading to mitochondrial reactive oxygen species (mROS) accumulation and autophagy arrest. NDUFS1 overexpression partially restores mROS overproduction, autophagosome accumulation, and growth inhibition induced by agrimol B, suggesting a cytotoxic role of agrimol B-induced autophagy arrest in HCC cells. Notably, agrimol B significantly enhances the sensitivity of HCC cells to sorafenib in vitro and in vivo. In conclusion, our study uncovers the anticancer mechanism of agrimol B in HCC involving the regulation of oxidative stress and autophagy, and suggests agrimol B as a potential therapeutic drug for HCC treatment.


Subject(s)
Autophagy , Carcinoma, Hepatocellular , Cell Proliferation , Liver Neoplasms , Mitochondria , Reactive Oxygen Species , Xenograft Model Antitumor Assays , Animals , Humans , Mice , Apoptosis/drug effects , Autophagosomes/metabolism , Autophagosomes/drug effects , Autophagy/drug effects , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Electron Transport Complex I/metabolism , Indoles , Liver Neoplasms/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Liver Neoplasms/genetics , Mice, Nude , Mitochondria/metabolism , Mitochondria/drug effects , Mitochondria/pathology , Reactive Oxygen Species/metabolism , Sorafenib/pharmacology , Spiro Compounds
6.
Chin J Nat Med ; 22(5): 387-401, 2024 May.
Article in English | MEDLINE | ID: mdl-38796213

ABSTRACT

Hernandezine (Her), a bisbenzylisoquinoline alkaloid extracted from Thalictrum flavum, is recognized for its range of biological activities inherent to this herbal medicine. Despite its notable properties, the anti-cancer effects of Her have remained largely unexplored. In this study, we elucidated that Her significantly induced cytotoxicity in cancer cells through the activation of apoptosis and necroptosis mechanisms. Furthermore, Her triggered autophagosome formation by activating the AMPK and ATG5 conjugation systems, leading to LC3 lipidation. Our findings revealed that Her caused damage to the mitochondrial membrane, with the damaged mitochondria undergoing mitophagy, as evidenced by the elevated expression of mitophagy markers. Conversely, Her disrupted autophagic flux, demonstrated by the upregulation of p62 and accumulation of autolysosomes, as observed in the RFP-GFP-LC3 reporter assay. Initially, we determined that Her did not prevent the fusion of autophagosomes and lysosomes. However, it inhibited the maturation of cathepsin D and increased lysosomal pH, indicating an impairment of lysosomal function. The use of the early-stage autophagy inhibitor, 3-methyladenine (3-MA), did not suppress LC3II, suggesting that Her also induces noncanonical autophagy in autophagosome formation. The application of Bafilomycin A1, an inhibitor of noncanonical autophagy, diminished the recruitment of ATG16L1 and the accumulation of LC3II by Her, thereby augmenting Her-induced cell death. These observations imply that while autophagy initially plays a protective role, the disruption of the autophagic process by Her promotes programmed cell death. This study provides the first evidence of Her's dual role in inducing apoptosis and necroptosis while also initiating and subsequently impairing autophagy to promote apoptotic cell death. These insights contribute to a deeper understanding of the mechanisms underlying programmed cell death, offering potential avenues for enhancing cancer prevention and therapeutic strategies.


Subject(s)
Apoptosis , Autophagy , Cathepsin D , Lysosomes , Cathepsin D/metabolism , Cathepsin D/genetics , Humans , Lysosomes/drug effects , Lysosomes/metabolism , Apoptosis/drug effects , Autophagy/drug effects , Cell Line, Tumor , Benzylisoquinolines/pharmacology , Autophagosomes/drug effects , Autophagosomes/metabolism , Hydrogen-Ion Concentration , Autophagy-Related Protein 5/genetics , Autophagy-Related Protein 5/metabolism
7.
J Ethnopharmacol ; 331: 118159, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38677572

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Tanreqing injection (TRQ) is widely used, traditional Chinese medicine (TCM) injection used in China to treat respiratory infections. Modern pharmacological studies have confirmed that TRQ can protect against influenza viruses. However, the mechanism by which TRQ inhibits influenza viruses remains unclear. AIM OF THE STUDY: To explore the therapeutic effects and possible mechanisms of TRQ inhibition by the influenza virus. MATERIALS AND METHODS: Ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF MS) was used to determine the chemical composition of TRQ. Isobaric tags for relative and absolute quantification (iTRAQ) were used to define differential proteins related to TRQ inhibition of viruses. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed for functional annotation. For experimental validation, we established an in vitro model of the influenza virus infection by infecting A549 cells with the virus. The detection of the signaling pathway was carried out through qPCR, western blotting,and immunofluorescence. RESULTS: Fifty one components were identified using UPLC/Q-TOF MS. We confirmed the inhibitory effect of TRQ on influenza virus replication in vitro. Ninety nine differentially expressed proteins related to the inhibitory effect of TRQ were identified using iTRAQ. KEGG functional enrichment analysis showed that the TRQ may inhibit influenza virus replication by affecting autophagy. Through network analysis, 29 targets were selected as major targets, and three key targets, HSPA5, PARP1, and GAPDH, may be the TRQ targets affecting autophagy. In vitro experiments showed that TRQ inhibits influenza virus replication by interfering with the expression and localization of STX17 and VAMP8 proteins, thereby promoting the fusion of autophagosomes with lysosomes. CONCLUSION: TRQ inhibits influenza virus replication by promoting the fusion of autophagosomes with lysosomes. We additionally established potential gene and protein targets which are affected by TRQ. Therefore, our findings provide new therapeutic targets and a foundation further studies on influenza treatment with TRQ.


Subject(s)
Antiviral Agents , Autophagosomes , Drugs, Chinese Herbal , Lysosomes , Virus Replication , Drugs, Chinese Herbal/pharmacology , Virus Replication/drug effects , Humans , A549 Cells , Antiviral Agents/pharmacology , Lysosomes/drug effects , Lysosomes/metabolism , Autophagosomes/drug effects , Autophagosomes/metabolism , Endoplasmic Reticulum Chaperone BiP , Animals , Autophagy/drug effects
8.
J Biol Chem ; 299(11): 105272, 2023 11.
Article in English | MEDLINE | ID: mdl-37739033

ABSTRACT

The cytoplasmic accumulation of the nuclear protein transactive response DNA-binding protein 43 kDa (TDP-43) has been linked to the progression of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. TDP-43 secreted into the extracellular space has been suggested to contribute to the cell-to-cell spread of the cytoplasmic accumulation of TDP-43 throughout the brain; however, the underlying mechanisms remain unknown. We herein demonstrated that the secretion of TDP-43 was stimulated by the inhibition of the autophagy-lysosomal pathway driven by progranulin (PGRN), a causal protein of frontotemporal lobar degeneration. Among modulators of autophagy, only vacuolar-ATPase inhibitors, such as bafilomycin A1 (Baf), increased the levels of the full-length and cleaved forms of TDP-43 and the autophagosome marker LC3-II (microtubule-associated proteins 1A/1B light chain 3B) in extracellular vesicle fractions prepared from the culture media of HeLa, SH-SY5Y, or NSC-34 cells, whereas vacuolin-1, MG132, chloroquine, rapamycin, and serum starvation did not. The C-terminal fragment of TDP-43 was required for Baf-induced TDP-43 secretion. The Baf treatment induced the translocation of the aggregate-prone GFP-tagged C-terminal fragment of TDP-43 and mCherry-tagged LC3 to the plasma membrane. The Baf-induced secretion of TDP-43 was attenuated in autophagy-deficient ATG16L1 knockout HeLa cells. The knockdown of PGRN induced the secretion of cleaved TDP-43 in an autophagy-dependent manner in HeLa cells. The KO of PGRN in mouse embryonic fibroblasts increased the secretion of the cleaved forms of TDP-43 and LC3-II. The treatment inducing TDP-43 secretion increased the nuclear translocation of GFP-tagged transcription factor EB, a master regulator of the autophagy-lysosomal pathway in SH-SY5Y cells. These results suggest that the secretion of TDP-43 is promoted by dysregulation of the PGRN-driven autophagy-lysosomal pathway.


Subject(s)
Autophagy , DNA-Binding Proteins , Lysosomes , Progranulins , Humans , Autophagy/drug effects , Autophagy/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , HeLa Cells , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Lysosomes/metabolism , Progranulins/genetics , Progranulins/metabolism , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Gene Expression Regulation/drug effects , Extracellular Vesicles/metabolism , Enzyme Inhibitors/pharmacology , Autophagosomes/drug effects , Autophagosomes/metabolism , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism
9.
Eur J Med Chem ; 244: 114846, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36283182

ABSTRACT

Autophagy is an essential homeostatic and catabolic process crucial for the degradation or recycling of proteins and cellular components. Drug resistance has been demonstrated to be closely implicated in increased autophagy. Autophagy inhibition to reverse drug resistance involves in the five stages of autophagy, including phagophore initiation, vesicle nucleation, vesicle elongation, vesicle fusion and cargo degradation. Herein, emphases were placed on discussions on the targets responsible for the upstream phagophore initiation and nucleation of autophagosome, as well as the ones mediating the downstream autophagosome and lysosome fusion and cargo degradation. The structure-activity relationships (SARs) and action mechanisms of the corresponding target-based small molecule autophagy inhibitors were analyzed and delineated. This review will provide a promising guidance for the design and optimization of drug-like scaffolds in the discovery of autophagy inhibitors able to eliminate drug resistance.


Subject(s)
Autophagy , Drug Design , Drug Resistance , Autophagosomes/drug effects , Autophagosomes/metabolism , Autophagy/drug effects , Lysosomes/metabolism , Membrane Fusion , Structure-Activity Relationship
10.
Nat Commun ; 13(1): 931, 2022 02 17.
Article in English | MEDLINE | ID: mdl-35177641

ABSTRACT

Koolen-de Vries syndrome (KdVS) is a rare disorder caused by haploinsufficiency of KAT8 regulatory NSL complex subunit 1 (KANSL1), which is characterized by intellectual disability, heart failure, hypotonia, and congenital malformations. To date, no effective treatment has been found for KdVS, largely due to its unknown pathogenesis. Using siRNA screening, we identified KANSL1 as an essential gene for autophagy. Mechanistic study shows that KANSL1 modulates autophagosome-lysosome fusion for cargo degradation via transcriptional regulation of autophagosomal gene, STX17. Kansl1+/- mice exhibit impairment in the autophagic clearance of damaged mitochondria and accumulation of reactive oxygen species, thereby resulting in defective neuronal and cardiac functions. Moreover, we discovered that the FDA-approved drug 13-cis retinoic acid can reverse these mitophagic defects and neurobehavioral abnormalities in Kansl1+/- mice by promoting autophagosome-lysosome fusion. Hence, these findings demonstrate a critical role for KANSL1 in autophagy and indicate a potentially viable therapeutic strategy for KdVS.


Subject(s)
Abnormalities, Multiple/genetics , Intellectual Disability/genetics , Mitophagy/genetics , Nuclear Proteins/genetics , Abnormalities, Multiple/drug therapy , Abnormalities, Multiple/immunology , Abnormalities, Multiple/pathology , Animals , Autophagosomes/drug effects , Autophagosomes/metabolism , Autophagosomes/pathology , Cerebral Cortex/cytology , Cerebral Cortex/pathology , Chromosome Deletion , Chromosomes, Human, Pair 17/genetics , Chromosomes, Human, Pair 17/immunology , Disease Models, Animal , Female , Haploinsufficiency/immunology , HeLa Cells , Humans , Intellectual Disability/drug therapy , Intellectual Disability/immunology , Intellectual Disability/pathology , Isotretinoin/pharmacology , Isotretinoin/therapeutic use , Lysosomes/drug effects , Lysosomes/metabolism , Lysosomes/pathology , Mice , Mice, Transgenic , Mitophagy/drug effects , Mitophagy/immunology , Neurons , Nuclear Proteins/metabolism , Primary Cell Culture
11.
Biochem Biophys Res Commun ; 592: 31-37, 2022 02 12.
Article in English | MEDLINE | ID: mdl-35016149

ABSTRACT

Tributyltin (TBT) is an environmental pollutant that remains in marine sediments and is toxic to mammals. For example, TBT elicits neurotoxic and immunosuppressive effects on rats. However, it is not entirely understood how TBT causes toxicity. Autophagy plays a pivotal role in protein quality control and eliminates aggregated proteins and damaged organelles. We previously reported that TBT dephosphorylates mammalian target of rapamycin (mTOR), which may be involved in enhancement of autophagosome synthesis, in primary cultures of cortical neurons. Autophagosomes can accumulate due to enhancement of autophagosome synthesis or inhibition of autophagic degradation, and we did not clarify whether TBT alters autophagic flux. Here, we investigated the mechanism by which TBT causes accumulation of autophagosomes in SH-SY5Y cells. TBT inhibited autophagy without affecting autophagosome-lysosome fusion before it caused cell death. TBT dramatically decreased the acidity of lysosomes without affecting lysosomal membrane integrity. TBT decreased the mature protein level of cathepsin B, and this may be related to the decrease in lysosomal acidity. These results suggest that TBT inhibits autophagic degradation by decreasing lysosomal acidity. Autophagy impairment may be involved in the mechanism underlying neuronal death and/or T-cell-dependent thymus atrophy induced by TBT.


Subject(s)
Autophagy , Lysosomes/metabolism , Trialkyltin Compounds/pharmacology , Autophagosomes/drug effects , Autophagosomes/metabolism , Autophagy/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Humans , Hydrolysis , Intracellular Membranes/drug effects , Intracellular Membranes/metabolism , Lysosomes/drug effects , Microtubule-Associated Proteins/metabolism , Sequestosome-1 Protein/metabolism
12.
Exp Cell Res ; 411(2): 113001, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34973945

ABSTRACT

Autophagy is involved in the activation of hepatic stellate cells (HSCs) and liver fibrosis. Previous studies have shown that interleukin 10 (IL-10) has a marked therapeutic effect against liver fibrosis. However, few studies have evaluated the effect of IL-10 on autophagy in HSCs and fibrotic livers. The aim of this study was to assess the effect of IL-10 on the autophagy of HSCs in vitro and in vivo and then to explore the underlying pathway. In vitro, The results revealed that IL-10 had inhibitory effects on hydrogen peroxide (H2O2)-induced autophagy, as evidenced by the decreased LC3II/I ratio and Beclin1 expression, increased p62 expression, reduced numbers of autophagosomes, and blocked autophagy initiation in HSCs. Mechanistically, IL-10 significantly promoted the phosphorylation of the signal transducer and activator of transcription 3(STAT3) and mammalian target of rapamycin (mTOR), leading to the activation of STAT3 and mTOR, which in turn inhibited autophagy. In vivo, the increased expression of IL-10 in fibrotic livers inhibited significantly liver fibrosis and decreased the autophagic activity in fibrotic livers and HSCs. Overall, our results indicate that IL-10 suppressed H2O2-induced autophagy in HSCs by activating the STAT3-mTOR signaling pathway. Present study provides a new theoretical basis for the anti-fibrotic effects of IL-10.


Subject(s)
Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism , Interleukin-10/metabolism , Interleukin-10/pharmacology , Animals , Autophagosomes/drug effects , Autophagosomes/pathology , Autophagy/drug effects , Cell Line , Hepatic Stellate Cells/pathology , Humans , Hydrogen Peroxide/pharmacology , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Liver Cirrhosis/prevention & control , Models, Biological , Oxidative Stress/drug effects , Rats , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism
13.
Bioengineered ; 13(1): 357-369, 2022 01.
Article in English | MEDLINE | ID: mdl-34974811

ABSTRACT

Raddeanin A (RA) has indicated suppressive effects on various human tumor cells, and insufficient vitamin D was associated with human papillomavirus (HPV) persistence and gynecological tumors. However, combined effects of RA and vitamin D on HPV-positive cells remain elusive. Herein, we aimed to investigate the combined effects of RA and 1ɑ,25(OH)2D3 (VD3) on cellular viability and modulation of HPV18E6/E7, programmed cell death 1 ligand (PD-L1) and vitamin D receptor (VDR) expression in HeLa cells in vitro. HeLa cells were treated with RA alone or VD3 combined with RA. Cell viability was measured using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT), and apoptosis was detected by flow cytometry. Real-time PCR (qRT-PCR) and Western blot were used to determine the gene/protein expression levels. The autophagosomes were observed by Transmission electron microscopy (TEM). The result showed that cell viability was inhibited by RA, and apoptosis in HeLa cells treated with RA was elevated accordingly. The expression of Bax, Cleaved-caspase-3, Cleaved-caspase-9 and Cleaved-PARP increased, and Bcl-2 decreased. The autophagy was induced by RA, as evidenced by elevated autophagosomes and the increased LC3-II/I ratio and Beclin-1. The expression of HPV18E6/E7, PD-L1 and VDR was reduced by RA. Moreover, RA combined with VD3 had a stronger effect on HeLa cells than RA alone. In conclusion, RA inhibits HeLa proliferation and induces apoptosis and autophagy via suppressing HPV18E6/E7, PD-L1 and VDR, and VD3 showed reinforced effects of RA on HeLa cells. Therefore, combined usage of VD3 with RA might be a potential novel immunotherapy strategy for HPV-related diseases.


Subject(s)
B7-H1 Antigen/metabolism , Calcitriol/pharmacology , DNA-Binding Proteins/metabolism , Oncogene Proteins, Viral/metabolism , Receptors, Calcitriol/metabolism , Saponins/pharmacology , Autophagosomes/drug effects , Autophagosomes/metabolism , Autophagy , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Synergism , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Viral/drug effects , HeLa Cells , Humans , Microscopy, Electron, Transmission
14.
Sci Rep ; 12(1): 79, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34996966

ABSTRACT

Autophagic flux can be quantified based on the accumulation of lipidated LC3B in the presence of late-stage autophagy inhibitors. This method has been widely applied to identify novel compounds that activate autophagy. Here we scrutinize this approach and show that bafilomycin A1 (BafA) but not chloroquine is suitable for flux quantification due to the stimulating effect of chloroquine on non-canonical LC3B-lipidation. Significant autophagic flux increase by rapamycin could only be observed when combining it with BafA concentrations not affecting basal flux, a condition which created a bottleneck, rather than fully blocking autophagosome-lysosome fusion, concomitant with autophagy stimulation. When rapamycin was combined with saturating concentrations of BafA, no significant further increase of LC3B lipidation could be detected over the levels induced by the late-stage inhibitor. The large assay window obtained by this approach enables an effective discrimination of autophagy activators based on their cellular potency. To demonstrate the validity of this approach, we show that a novel inhibitor of the acetyltransferase EP300 activates autophagy in a mTORC1-dependent manner. We propose that the creation of a sensitized background rather than a full block of autophagosome progression is required to quantitatively capture changes in autophagic flux.


Subject(s)
Autophagosomes/metabolism , Autophagy , Lipid Metabolism , Microtubule-Associated Proteins/metabolism , Autophagosomes/drug effects , Autophagosomes/genetics , Autophagy/drug effects , Biological Assay , Biomarkers/metabolism , Chloroquine/pharmacology , Dose-Response Relationship, Drug , E1A-Associated p300 Protein/metabolism , HeLa Cells , Humans , Lipid Metabolism/drug effects , Macrolides/pharmacology , Mechanistic Target of Rapamycin Complex 1/metabolism , Microtubule-Associated Proteins/genetics
15.
FEBS Lett ; 596(4): 491-509, 2022 02.
Article in English | MEDLINE | ID: mdl-35007347

ABSTRACT

In autophagy, LC3-positive autophagophores fuse and encapsulate the autophagic cargo in a double-membrane structure. In contrast, lipidated LC3 (LC3-II) is directly formed at the phagosomal membrane in LC3-associated phagocytosis (LAP). In this study, we dissected the effects of autophagy inhibitors on LAP. SAR405, an inhibitor of VPS34, reduced levels of LC3-II and inhibited LAP. In contrast, the inhibitors of endosomal acidification bafilomycin A1 and chloroquine increased levels of LC3-II, due to reduced degradation in acidic lysosomes. However, while bafilomycin A1 inhibited LAP, chloroquine did not. Finally, EACC, which inhibits the fusion of autophagosomes with lysosomes, promoted LC3 degradation possibly by the proteasome. Targeting LAP with small molecule inhibitors is important given its emerging role in infectious and autoimmune diseases.


Subject(s)
Autophagosomes/drug effects , Autophagy/drug effects , Dendritic Cells/drug effects , Phagocytosis/drug effects , Proteasome Endopeptidase Complex/drug effects , Autophagosomes/metabolism , Autophagy/genetics , Cell Differentiation , Chloroquine/pharmacology , Class III Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Class III Phosphatidylinositol 3-Kinases/genetics , Class III Phosphatidylinositol 3-Kinases/metabolism , Dendritic Cells/cytology , Dendritic Cells/metabolism , Endosomes/drug effects , Endosomes/metabolism , Gene Expression Regulation , Humans , Lysosomes/drug effects , Lysosomes/metabolism , Macrolides/pharmacology , Microtubule-Associated Proteins/antagonists & inhibitors , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Monocytes/cytology , Monocytes/metabolism , Phagocytosis/genetics , Phagosomes/drug effects , Phagosomes/metabolism , Primary Cell Culture , Proteasome Endopeptidase Complex/metabolism , Pyridines/pharmacology , Pyrimidinones/pharmacology , Thiophenes/pharmacology , Zymosan/metabolism
16.
Biochem Pharmacol ; 197: 114933, 2022 03.
Article in English | MEDLINE | ID: mdl-35093393

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is becoming an increasingly serious disease worldwide. Unfortunately, no specific drug has been approved to treat NAFLD. Accumulating evidence suggests that lipotoxicity, which is induced by an excess of intracellular triacylglycerols (TAGs), is a potential mechanism underlying the ill-defined progression of NAFLD. Under physiological conditions, a balance is maintained between TAGs and free fatty acids (FFAs) in the liver. TAGs are catabolized to FFAs through neutral lipolysis and/or lipophagy, while FFAs can be anabolized to TAGs through an esterification reaction. However, in the livers of patients with NAFLD, lipophagy appears to fail. Reversing this abnormal state through several lipophagic molecules (mTORC1, AMPK, PLIN, etc.) facilitates NAFLD amelioration; therefore, restoring failed lipophagy may be a highly efficient therapeutic strategy for NAFLD. Here, we outline the lipophagy phases with the relevant important proteins and discuss the roles of lipophagy in the progression of NAFLD. Additionally, the potential candidate drugs with therapeutic value targeting these proteins are discussed to show novel strategies for future treatment of NAFLD.


Subject(s)
Autophagy/drug effects , Drug Delivery Systems/methods , Lipid Metabolism/drug effects , Liver/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Animals , Autophagosomes/drug effects , Autophagosomes/metabolism , Autophagy/physiology , Berberine/administration & dosage , Fatty Acids, Nonesterified/antagonists & inhibitors , Fatty Acids, Nonesterified/metabolism , Fibroblast Growth Factors/administration & dosage , Humans , Lipid Metabolism/physiology , Lipolysis/drug effects , Lipolysis/physiology , Liver/drug effects , Mechanistic Target of Rapamycin Complex 1/administration & dosage , Transient Receptor Potential Channels/administration & dosage , Triglycerides/antagonists & inhibitors , Triglycerides/metabolism
17.
Hepatology ; 75(2): 438-454, 2022 02.
Article in English | MEDLINE | ID: mdl-34580902

ABSTRACT

BACKGROUND AND AIMS: HBV infection has been reported to trigger endoplasmic reticulum (ER) stress and initiate autophagy. However, how ER stress and autophagy influence HBV production remains elusive. Here, we studied the effect of tunicamycin (TM), an N-glycosylation inhibitor and ER stress inducer, on HBV replication and secretion and examined the underlying mechanisms. APPROACH AND RESULTS: Protein disulfide isomerase (an ER marker), microtubule-associated protein 1 light chain 3 beta (an autophagosome [AP] marker), and sequestosome-1 (a typical cargo for autophagic degradation) expression were tested in liver tissues of patients with chronic HBV infection and hepatoma cell lines. The role of TM treatment in HBV production and trafficking was examined in hepatoma cell lines. TM treatment that mimics HBV infection triggered ER stress and increased AP formation, resulting in enhanced HBV replication and secretion of subviral particles (SVPs) and naked capsids. Additionally, TM reduced the number of early endosomes and HBsAg localization in this compartment, causing HBsAg/SVPs to accumulate in the ER. Thus, TM-induced AP formation serves as an alternative pathway for HBsAg/SVP trafficking. Importantly, TM inhibited AP-lysosome fusion, accompanied by enhanced AP/late endosome (LE)/multivesicular body fusion, to release HBsAg/SVPs through, or along with, exosome release. Notably, TM treatment inhibited HBsAg glycosylation, resulting in impairment of HBV virions' envelopment and secretion, but it was not critical for HBsAg/SVP trafficking in our cell systems. CONCLUSIONS: TM-induced ER stress and autophagic flux promoted HBV replication and the release of SVPs and naked capsids through the AP-LE/MVB axis.


Subject(s)
Antiviral Agents/pharmacology , Carcinoma, Hepatocellular/metabolism , Endoplasmic Reticulum Stress , Hepatitis B virus/physiology , Hepatitis B, Chronic/physiopathology , Liver Neoplasms/metabolism , Tunicamycin/pharmacology , Virus Replication , Autophagosomes/drug effects , Autophagy/drug effects , Capsid , Cell Line, Tumor , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress/drug effects , Endosomes/drug effects , Glycosylation/drug effects , Hepatitis B Surface Antigens/metabolism , Hepatitis B, Chronic/metabolism , Humans , Lysosomes/drug effects , Microtubule-Associated Proteins/metabolism , Multivesicular Bodies , Protein Disulfide-Isomerases/metabolism , Sequestosome-1 Protein/metabolism , Virion
18.
Pigment Cell Melanoma Res ; 35(1): 66-77, 2022 01.
Article in English | MEDLINE | ID: mdl-34482636

ABSTRACT

Melanoma cells expressing mutant B-RAF V600E are susceptible to treatment with the combination of a B-RAF inhibitor and a MEK1/2 inhibitor. We investigated the impact of the ERBB family and MAP4K inhibitor neratinib on the biology of PDX isolates of cutaneous melanoma expressing B-RAF V600E. Neratinib synergized with HDAC inhibitors to kill melanoma cells at their physiologic concentrations. Neratinib activated ATM, AMPK, ULK1, and PERK and inactivated mTORC1/2, ERK1/2, eIF2 alpha, and STAT3. Neratinib increased expression of Beclin1, ATG5, CD95, and FAS-L and decreased levels of multiple toxic BH3 domain proteins, MCL1, BCL-XL, FLIP-s, and ERBB1/2/4. ATG13 S318 phosphorylation and autophagosome formation was dependent upon ATM, and activation of ATM was dependent on reactive oxygen species. Reduced expression of ERBB1/2/4 required autophagosome formation and reduced MCL1/BCL-XL levels required eIF2 alpha phosphorylation. Maximal levels of eIF2 alpha phosphorylation required signaling by ATM-AMPK and autophagosome formation. Knock down of eIF2 alpha, CD95, FAS-L, Beclin1, and ATG5 or over-expression of FLIP-s significantly reduced killing. Combined knock down of Beclin1 and CD95 abolished cell death. Our data demonstrate that PDX melanoma cells expressing B-RAF V600E are susceptible to being killed by neratinib and more so when combined with HDACi.


Subject(s)
Autophagosomes/drug effects , Melanoma/drug therapy , Protein Kinase Inhibitors/pharmacology , Quinolines/pharmacology , Reactive Oxygen Species/metabolism , Receptors, Death Domain/metabolism , Skin Neoplasms/drug therapy , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Autophagosomes/genetics , Autophagosomes/metabolism , Autophagosomes/pathology , Cell Line, Tumor , Dose-Response Relationship, Drug , Drug Synergism , Histone Deacetylase Inhibitors/pharmacology , Humans , Melanoma/enzymology , Melanoma/genetics , Melanoma/pathology , Mutation , Proto-Oncogene Proteins B-raf/genetics , Receptors, Death Domain/genetics , Signal Transduction , Skin Neoplasms/enzymology , Skin Neoplasms/genetics , Skin Neoplasms/pathology
19.
Clin Exp Pharmacol Physiol ; 49(1): 122-133, 2022 01.
Article in English | MEDLINE | ID: mdl-34494284

ABSTRACT

Previous studies reveal that hydrogen sulphide (H2 S) exerts neuroprotection against neurotoxin-induced Parkinson's disease (PD), but the underlying mechanism remains elusive. The present study was aimed to investigate whether H2 S inhibits neuronal apoptosis of substantia nigra with the involvement of autophagy via promoting leptin signalling in 6-hydroxydopamine (6-OHDA)-induced PD rats. In this study, neuronal apoptosis was analysed by TUNEL staining, the activity of caspase-3 was measured by Caspase-3 fluorometric assay kit, the expressions of Bax, Bcl-2, Beclin-1, LC3II, P62 and leptin were determined by Western blot analysis, and the numbers of autophagosomes and autolysosomes were assessed by transmission electron microscopy. Results showed that NaHS, a donor of exogenous H2 S, mitigates 6-OHDA-induced the increases in the numbers of TUNEL-positive cells, the activity of caspase-3 and the expression of Bax, and attenuates 6-OHDA-induced a decrease in the expression of Bcl-2 in substantia nigra of rats. In addition, 6-OHDA enhanced the expressions of Beclin-1, LC3-II and P62, increased the number of autophagosomes, and decreased the number of autolysosomes in the substantia nigra, which were also blocked by administration of NaHS. Furthermore, NaHS reversed 6-OHDA-induced the down-regulation of leptin expression in the substantia nigra, and treatment with leptin-OBR, a blocking antibody of leptin receptor, attenuated the inhibition of NaHS on neuronal apoptosis and the improvement of NaHS on the blocked autophagic flux in substantia nigra of 6-OHDA-treated rats. Taken together, these results demonstrated that H2 S attenuates neuronal apoptosis of substantia nigra depending on restoring impaired autophagic flux through up-regulating leptin signalling in PD.


Subject(s)
Apoptosis/drug effects , Autophagy/drug effects , Hydrogen Sulfide/therapeutic use , Leptin/metabolism , Neuroprotective Agents/therapeutic use , Parkinsonian Disorders/drug therapy , Substantia Nigra/drug effects , Animals , Autophagosomes/drug effects , Hydrogen Sulfide/pharmacology , Male , Microscopy, Electron, Transmission , Neuroprotective Agents/pharmacology , Oxidopamine/pharmacology , Parkinsonian Disorders/pathology , Rats , Rats, Sprague-Dawley , Substantia Nigra/metabolism , Substantia Nigra/pathology
20.
Cancer Lett ; 525: 179-197, 2022 01 28.
Article in English | MEDLINE | ID: mdl-34752845

ABSTRACT

The transient receptor potential melastatin-subfamily member 7 (TRPM7) is a ubiquitous cation channel possessing kinase activity. TRPM7 mediates a variety of physiological responses by conducting flow of cations such as Ca2+, Mg2+, and Zn2+. Here, we show that the activation of TRPM7 channel stimulated by chemical agonists of TRPM7, Clozapine or Naltriben, inhibited autophagy via mediating Zn2+ release to the cytosol, presumably from the intracellular Zn2+-accumulating vesicles where TRPM7 localizes. Zn2+ release following the activation of TRPM7 disrupted the fusion between autophagosomes and lysosomes by disturbing the interaction between Sxt17 and VAMP8 which determines fusion status of autophagosomes and lysosomes. Ultimately, the disrupted fusion resulting from stimulation of TRPM7 channels arrested autophagy. Functionally, we demonstrate that the autophagy inhibition mediated by TRPM7 triggered cell death and suppressed metastasis of cancer cells in vitro, more importantly, restricted tumor growth and metastasis in vivo, by evoking apoptosis, cell cycle arrest, and reactive oxygen species (ROS) elevation. These findings represent a strategy for stimulating TRPM7 to combat cancer.


Subject(s)
Neoplasms/drug therapy , Neoplastic Stem Cells/drug effects , Protein Serine-Threonine Kinases/genetics , R-SNARE Proteins/genetics , TRPM Cation Channels/genetics , Apoptosis/drug effects , Autophagosomes/drug effects , Autophagy/drug effects , Cell Proliferation/drug effects , Clozapine/pharmacology , Humans , Lysosomes/drug effects , Naltrexone/analogs & derivatives , Naltrexone/pharmacology , Neoplasm Metastasis , Neoplasms/genetics , Signal Transduction/drug effects , TRPM Cation Channels/agonists , Zinc/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...