Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 49.055
1.
Cell Death Dis ; 15(5): 314, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702325

Ovarian cancer is one of the common tumors of the female reproductive organs. It has a high mortality rate, is highly heterogeneous, and early detection and primary prevention are very complex. Autophagy is a cellular process in which cytoplasmic substrates are targeted for degradation in lysosomes through membrane structures called autophagosomes. The periodic elimination of damaged, aged, and redundant cellular molecules or organelles through the sequential translation between amino acids and proteins by two biological processes, protein synthesis, and autophagic protein degradation, helps maintain cellular homeostasis. A growing number of studies have found that autophagy plays a key regulatory role in ovarian cancer. Interestingly, microRNAs regulate gene expression at the posttranscriptional level and thus can regulate the development and progression of ovarian cancer through the regulation of autophagy in ovarian cancer. Certain miRNAs have recently emerged as important regulators of autophagy-related gene expression in cancer cells. Moreover, miRNA analysis studies have now identified a sea of aberrantly expressed miRNAs in ovarian cancer tissues that can affect autophagy in ovarian cancer cells. In addition, miRNAs in plasma and stromal cells in tumor patients can affect the expression of autophagy-related genes and can be used as biomarkers of ovarian cancer progression. This review focuses on the potential significance of miRNA-regulated autophagy in the diagnosis and treatment of ovarian cancer.


Autophagy , MicroRNAs , Ovarian Neoplasms , Humans , Autophagy/genetics , MicroRNAs/metabolism , MicroRNAs/genetics , Female , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Animals , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics
2.
Stem Cell Res Ther ; 15(1): 132, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702808

BACKGROUND: Induced pluripotent stem cells (iPSCs)-derived kidney organoids are a promising model for studying disease mechanisms and renal development. Despite several protocols having been developed, further improvements are needed to overcome existing limitations and enable a wider application of this model. One of the approaches to improve the differentiation of renal organoids in vitro is to include in the system cell types important for kidney organogenesis in vivo, such as macrophages. Another approach could be to improve cell survival. Mesodermal lineage differentiation is the common initial step of the reported protocols. The glycogen synthase kinase-3 (GSK-3) activity inhibitor, CHIR99021 (CHIR), is applied to induce mesodermal differentiation. It has been reported that CHIR simultaneously induces iPSCs apoptosis that can compromise cell differentiation. We thought to interfere with CHIR-induced apoptosis of iPSCs using rapamycin. METHODS: Differentiation of kidney organoids from human iPSCs was performed. Cell survival and autophagy were analyzed using Cell counting kit 8 (CCK8) kit and Autophagy detection kit. Cells were treated with rapamycin or co-cultured with human monocytes isolated from peripheral blood or iPSCs-macrophages using a transwell co-culture system. Monocyte-derived extracellular vesicles (EVs) were isolated using polyethylene glycol precipitation. Expression of apoptotic markers cleaved Caspase 3, Poly [ADP-ribose] polymerase 1 (PARP-1) and markers of differentiation T-Box Transcription Factor 6 (TBX6), odd-skipped related 1 (OSR1), Nephrin, E-Cadherin, Paired box gene 2 (Pax2) and GATA Binding Protein 3 (Gata3) was assessed by RT-PCR and western blotting. Organoids were imaged by 3D-confocal microscopy. RESULTS: We observed that CHIR induced apoptosis of iPSCs during the initial stage of renal organoid differentiation. Underlying mechanisms implied the accumulation of reactive oxygen species and decreased autophagy. Activation of autophagy by rapamacin and by an indirect co-culture of differentiating iPSCs with iPSCs-macrophages and human peripheral blood monocytes prevented apoptosis induced by CHIR. Furthermore, monocytes (but not rapamycin) strongly promoted expression of renal differentiation markers and organoids development via released extracellular vesicles. CONCLUSION: Our data suggest that co-culturing of iPSCs with human monocytes strongly improves differentiation of kidney organoids. An underlying mechanism of monocytic action implies, but not limited to, an increased autophagy in CHIR-treated iPSCs. Our findings enhance the utility of kidney organoid models.


Apoptosis , Cell Differentiation , Induced Pluripotent Stem Cells , Kidney , Monocytes , Organoids , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/drug effects , Organoids/cytology , Organoids/metabolism , Organoids/drug effects , Apoptosis/drug effects , Cell Differentiation/drug effects , Kidney/cytology , Kidney/metabolism , Monocytes/metabolism , Monocytes/cytology , Monocytes/drug effects , Pyridines/pharmacology , Pyrimidines/pharmacology , Sirolimus/pharmacology , Autophagy/drug effects , Coculture Techniques/methods , Macrophages/metabolism , Macrophages/cytology , Macrophages/drug effects
3.
Reprod Toxicol ; 1232024 Jan.
Article En | MEDLINE | ID: mdl-38706688

Exposure to gestational diabetes mellitus (GDM) during pregnancy has significant consequences for the unborn baby and newborn infant. However, whether and how GDM exposure induces the development of neonatal brain hypoxia/ischemia-sensitive phenotype and the underlying molecular mechanisms remain unclear. In this study, we used a late GDM rat model induced by administration of streptozotocin (STZ) on gestational day 12 and investigated its effects of GDM on neonatal brain development. The pregnant rats exhibited increased blood glucose levels in a dose-dependent manner after STZ administration. STZ-induced maternal hyperglycemia led to reduced blood glucose levels in neonatal offspring, resulting in growth restriction and an increased brain to body weight ratio. Importantly, GDM exposure increased susceptibility to hypoxia/ischemia (HI)-induced brain infarct sizes compared to the controls in both male and female neonatal offspring. Further molecular analysis revealed alterations in the PTEN/AKT/mTOR/autophagy signaling pathway in neonatal male offspring brains, along with increased ROS production and autophagy-related proteins (Atg5 and LC3-II). Treatment with the PTEN inhibitor bisperoxovanadate (BPV) eliminated the differences in HI-induced brain infarct sizes between the GDM-exposed and the control groups. These findings provide novel evidence of the development of a brain hypoxia/ischemia-sensitive phenotype in response to GDM exposure and highlight the role of the PTEN/AKT/mTOR/autophagy signaling pathway in this process.


Animals, Newborn , Autophagy , Brain , Diabetes, Gestational , Hypoxia-Ischemia, Brain , PTEN Phosphohydrolase , Proto-Oncogene Proteins c-akt , Rats, Sprague-Dawley , Signal Transduction , Streptozocin , TOR Serine-Threonine Kinases , Animals , Female , Pregnancy , Hypoxia-Ischemia, Brain/metabolism , TOR Serine-Threonine Kinases/metabolism , Autophagy/drug effects , Diabetes, Gestational/chemically induced , Diabetes, Gestational/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Male , PTEN Phosphohydrolase/metabolism , Brain/metabolism , Brain/drug effects , Brain/pathology , Prenatal Exposure Delayed Effects , Blood Glucose , Rats
4.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(4): 362-366, 2024 Apr.
Article Zh | MEDLINE | ID: mdl-38710519

Ferroptosis is a novel form of cell death that is induced by excessive accumulation of ferrous ions and lipid peroxides. It triggers the release of damage-associated molecular patterns through autophagy-dependent mechanisms, serving as an adjunct to immunogenic cell death and activating both adaptive and innate immunity. In the tumor microenvironment, the regulation and influence of tumor cells and immune cells undergoing ferroptosis are regulated by various factors, which plays a crucial role in tumor development, treatment, and prognosis. This article provides an overview of the biological effects of ferroptosis on immune cells such as T cells, macrophages, neutrophils and B cells and tumor cells in the tumor microenvironment.


Ferroptosis , Neoplasms , Tumor Microenvironment , Ferroptosis/immunology , Humans , Neoplasms/immunology , Neoplasms/metabolism , Tumor Microenvironment/immunology , Animals , Macrophages/immunology , Neutrophils/immunology , Autophagy/immunology , Immunity, Innate , T-Lymphocytes/immunology , B-Lymphocytes/immunology
5.
Clin Exp Pharmacol Physiol ; 51(6): e13861, 2024 Jun.
Article En | MEDLINE | ID: mdl-38724488

Relevant studies have indicated the association of HCG18 with tumour occurrence and progression. In this study, we observed that PM2.5 can enhance the growth of lung adenocarcinoma cells by modulating the expression of HCG18. Further investigations, including overexpression and knockout experiments, elucidated that HCG18 suppresses miR-195, which in turn upregulates the expression of ATG14, resulting in the upregulation of autophagy. Consequently, exposure to PM2.5 leads to elevated HCG18 expression in lung tissues, which in turn increases Atg14 expression and activates autophagy pathways through inhibition of miR-195, thereby contributing to oncogenesis.


Adenocarcinoma of Lung , Autophagy-Related Proteins , Autophagy , Disease Progression , Lung Neoplasms , MicroRNAs , Particulate Matter , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Particulate Matter/adverse effects , Autophagy/genetics , Gene Expression Regulation, Neoplastic , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism , Cell Proliferation/genetics , A549 Cells , Cell Line, Tumor , Adaptor Proteins, Vesicular Transport
6.
Hum Exp Toxicol ; 43: 9603271241251447, 2024.
Article En | MEDLINE | ID: mdl-38720657

PURPOSE: To explore the effect of acacetin on subarachnoid hemorrhage (SAH) and its possible mechanism. METHODS: SAH model of rat was established, and intraperitoneally injected with three doses of acacetin. To verify the role of PERK pathway, we used the CCT020312 (PERK inhibitor) and Tunicamycin (activators of endoplasmic reticulum stress). The SAH score, neurological function score, brain edema content, and Evans blue (EB) exudate were evaluated. Western blot was used to determine the expression of inflammation-associated proteins and PERK pathway. The activation of microglia was also determined through Iba-1 detection. TEM and immunofluorescence staining of LC3B were performed to observe the autophagy degree of SAH rats after acacetin. Tunel/NeuN staining, HE and Nissl' staining were performed for neuronal damage. RESULTS: Acacetin increased the neurological function score, reduce brain water content, Evans blue exudation and SAH scores. The microglia in cerebral cortex were activated after SAH, while acacetin could inhibit its activation, and decreased the expression of TNF-α and IL-6 proteins. The pathological staining showed the severe neuronal damage and increased neuronal apoptosis after SAH, while acacetin could improve these pathological changes. We also visualized the alleviated autophagy after acacetin. The expression of Beclin1 and ATF4 proteins were increased, but acacetin could inhibit them. Acacetin also inactivated PERK pathway, which could improve the neuronal injury and neuroinflammation after SAH, inhibit the microglia activation and the overactivated autophagy through PERK pathway. CONCLUSION: Acacetin may alleviate neuroinflammation and neuronal damage through PERK pathway, thus having the protective effect on EBI after SAH.


Autophagy , Flavones , Microglia , Neuroinflammatory Diseases , Rats, Sprague-Dawley , Signal Transduction , Subarachnoid Hemorrhage , eIF-2 Kinase , Animals , Subarachnoid Hemorrhage/drug therapy , Subarachnoid Hemorrhage/complications , Subarachnoid Hemorrhage/metabolism , Microglia/drug effects , Microglia/metabolism , Autophagy/drug effects , eIF-2 Kinase/metabolism , Male , Neuroinflammatory Diseases/drug therapy , Rats , Signal Transduction/drug effects , Flavones/pharmacology , Flavones/therapeutic use
7.
J Cancer Res Clin Oncol ; 150(5): 242, 2024 May 08.
Article En | MEDLINE | ID: mdl-38717639

BACKGROUND: Drug resistance is an important constraint on clinical outcomes in advanced cancers. LAMP2A is a limiting protein in molecular chaperone-mediated autophagy. This study was aimed to explore LAMP2A function in cisplatin (cis-diamminedichloroplatinum, DDP) resistance colorectal cancer (CRC) to seek new ideas for CRC clinical treatment. METHODS: In this study, LAMP2A expression was analyzed by molecular experimental techniques,such as qRT-PCR and western blot. Then, LAMP2A in cells was interfered by cell transfection experiments. Subsequently, the function of LAMP2A on proliferation, migration, invasion, DDP sensitivity, and autophagy of CRC/DDP cells were further investigated by a series of experiments, such as CCK-8, transwell, and western blot. RESULTS: We revealed that LAMP2A was clearly augmented in DDP-resistant CRC and was related to poor patient prognosis. Functionally, LAMP2A insertion remarkably CRC/DDP proliferation, migration, invasion ability and DDP resistance by strengthen autophagy. In contrast, LAMP2A knockdown limited the proliferation, migration, and invasion while heightened cellular sensitivity to DDP by restraining autophagy in CRC/DDP cells. Furthermore, LAMP2A silencing was able to curb tumor formation and enhance sensitivity to DDP in vivo. CONCLUSION: In summary, LAMP2A boosted malignant progression and DDP resistance in CRC/DDP cells through mediating autophagy. Clarifying LAMP2A function in DDP resistance is promising to seek cancer therapies biomarkers targeting LAMP2A activity.


Autophagy , Cisplatin , Colorectal Neoplasms , Drug Resistance, Neoplasm , Lysosomal-Associated Membrane Protein 2 , Humans , Cisplatin/pharmacology , Colorectal Neoplasms/pathology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Autophagy/drug effects , Lysosomal-Associated Membrane Protein 2/metabolism , Lysosomal-Associated Membrane Protein 2/genetics , Animals , Mice , Cell Proliferation , Antineoplastic Agents/pharmacology , Mice, Nude , Cell Movement , Cell Line, Tumor , Xenograft Model Antitumor Assays , Female , Male , Mice, Inbred BALB C , Prognosis
8.
Int J Oral Sci ; 16(1): 35, 2024 May 08.
Article En | MEDLINE | ID: mdl-38719825

The efficient clinical treatment of oral squamous cell carcinoma (OSCC) is still a challenge that demands the development of effective new drugs. Phenformin has been shown to produce more potent anti-tumor activities than metformin on different tumors, however, not much is known about the influence of phenformin on OSCC cells. We found that phenformin suppresses OSCC cell proliferation, and promotes OSCC cell autophagy and apoptosis to significantly inhibit OSCC cell growth both in vivo and in vitro. RNA-seq analysis revealed that autophagy pathways were the main targets of phenformin and identified two new targets DDIT4 (DNA damage inducible transcript 4) and NIBAN1 (niban apoptosis regulator 1). We found that phenformin significantly induces the expression of both DDIT4 and NIBAN1 to promote OSCC autophagy. Further, the enhanced expression of DDIT4 and NIBAN1 elicited by phenformin was not blocked by the knockdown of AMPK but was suppressed by the knockdown of transcription factor ATF4 (activation transcription factor 4), which was induced by phenformin treatment in OSCC cells. Mechanistically, these results revealed that phenformin triggers endoplasmic reticulum (ER) stress to activate PERK (protein kinase R-like ER kinase), which phosphorylates the transitional initial factor eIF2, and the increased phosphorylation of eIF2 leads to the increased translation of ATF4. In summary, we discovered that phenformin induces its new targets DDIT4 and especially NIBAN1 to promote autophagic and apoptotic cell death to suppress OSCC cell growth. Our study supports the potential clinical utility of phenformin for OSCC treatment in the future.


Autophagy , Carcinoma, Squamous Cell , Cell Proliferation , Endoplasmic Reticulum Stress , Mouth Neoplasms , Phenformin , Transcription Factors , Phenformin/pharmacology , Endoplasmic Reticulum Stress/drug effects , Humans , Mouth Neoplasms/drug therapy , Autophagy/drug effects , Carcinoma, Squamous Cell/drug therapy , Cell Proliferation/drug effects , Cell Line, Tumor , Transcription Factors/metabolism , Transcription Factors/drug effects , Mice , Apoptosis Regulatory Proteins/drug effects , Apoptosis Regulatory Proteins/metabolism , Apoptosis/drug effects , AMP-Activated Protein Kinases/metabolism , Animals , Blotting, Western
9.
Int J Biol Sci ; 20(7): 2370-2387, 2024.
Article En | MEDLINE | ID: mdl-38725841

The pathogenesis of Intervertebral Disc Degeneration (IDD) is complex and multifactorial, with cellular senescence of nucleus pulposus (NP) cells and inflammation playing major roles in the progression of IDD. The stimulator of interferon genes (STING) axis is a key mediator of inflammation during infection, cellular stress, and tissue damage. Here, we present a progressive increase in STING in senescent NP cells with the degradation disorder. The STING degradation function in normal NP cells can prevent IDD. However, the dysfunction of STING degradation through autophagy causes the accumulation and high expression of STING in senescent NP cells as well as inflammation continuous activation together significantly promotes IDD. In senescent NP cells and intervertebral discs (IVDs), we found that STING autophagy degradation was significantly lower than that of normal NP cells and IVDs when STING was activated by 2'3'-cGAMP. Also, the above phenomenon was found in STINGgt/gt, cGAS-/- mice with models of age-induced, lumbar instability-induced IDD as well as found in the rat caudal IVD puncture models. Taken together, we suggested that the promotion of STING autophagy degradation in senescent NP Cells demonstrated a potential therapeutic modality for the treatment of IDD.


Autophagy , Cellular Senescence , Intervertebral Disc Degeneration , Membrane Proteins , Nucleus Pulposus , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/pathology , Nucleus Pulposus/metabolism , Animals , Autophagy/physiology , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mice , Cellular Senescence/physiology , Rats , Male , Rats, Sprague-Dawley , Humans , Mice, Inbred C57BL
10.
Int J Biol Sci ; 20(7): 2592-2606, 2024.
Article En | MEDLINE | ID: mdl-38725855

Transcriptional coactivator with a PDZ-binding motif (TAZ) plays a key role in normal tissue homeostasis and tumorigenesis through interaction with several transcription factors. In particular, TAZ deficiency causes abnormal alveolarization and emphysema, and persistent TAZ overexpression contributes to lung cancer and pulmonary fibrosis, suggesting the possibility of a complex mechanism of TAZ function. Recent studies suggest that nuclear factor erythroid 2-related factor 2 (NRF2), an antioxidant defense system, induces TAZ expression during tumorigenesis and that TAZ also activates the NRF2-mediated antioxidant pathway. We thus thought to elucidate the cross-regulation of TAZ and NRF2 and the underlying molecular mechanisms and functions. TAZ directly interacted with NRF2 through the N-terminal domain and suppressed the transcriptional activity of NRF2 by preventing NRF2 from binding to DNA. In addition, the return of NRF2 to basal levels after signaling was inhibited in TAZ deficiency, resulting in sustained nuclear NRF2 levels and aberrantly increased expression of NRF2 targets. TAZ deficiency failed to modulate optimal NRF2 signaling and concomitantly impaired lysosomal acidification and lysosomal enzyme function, accumulating the abnormal autophagy vesicles and reactive oxygen species and causing protein oxidation and cellular damage in the lungs. TAZ restoration to TAZ deficiency normalized dysregulated NRF2 signaling and aberrant lysosomal function and triggered the normal autophagy-lysosomal pathway. Therefore, TAZ is indispensable for the optimal regulation of NRF2-mediated autophagy-lysosomal pathways and for preventing pulmonary damage caused by oxidative stress and oxidized proteins.


Autophagy , Lysosomes , NF-E2-Related Factor 2 , NF-E2-Related Factor 2/metabolism , Autophagy/physiology , Lysosomes/metabolism , Animals , Mice , Humans , Transcriptional Coactivator with PDZ-Binding Motif Proteins/metabolism , Signal Transduction , Transcription Factors/metabolism , Transcription Factors/genetics , Reactive Oxygen Species/metabolism , Adaptor Proteins, Signal Transducing
11.
J Cell Biol ; 223(6)2024 Jun 03.
Article En | MEDLINE | ID: mdl-38709216

Autophagy is an essential degradation program required for cell homeostasis. Among its functions is the engulfment and destruction of cytosolic pathogens, termed xenophagy. Not surprisingly, many pathogens use various strategies to circumvent or co-opt autophagic degradation. For poxviruses, it is known that infection activates autophagy, which however is not required for successful replication. Even though these complex viruses replicate exclusively in the cytoplasm, autophagy-mediated control of poxvirus infection has not been extensively explored. Using the prototypic poxvirus, vaccinia virus (VACV), we show that overexpression of the xenophagy receptors p62, NDP52, and Tax1Bp1 restricts poxvirus infection. While NDP52 and Tax1Bp1 were degraded, p62 initially targeted cytoplasmic virions before being shunted to the nucleus. Nuclear translocation of p62 was dependent upon p62 NLS2 and correlated with VACV kinase mediated phosphorylation of p62 T269/S272. This suggests that VACV targets p62 during the early stages of infection to avoid destruction and further implies that poxviruses exhibit multi-layered control of autophagy to facilitate cytoplasmic replication.


Autophagy , Cell Nucleus , Sequestosome-1 Protein , Vaccinia virus , Humans , Active Transport, Cell Nucleus , Cell Nucleus/metabolism , Cell Nucleus/virology , HEK293 Cells , HeLa Cells , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Phosphorylation , Sequestosome-1 Protein/metabolism , Sequestosome-1 Protein/genetics , Vaccinia/metabolism , Vaccinia/virology , Vaccinia/genetics , Vaccinia virus/metabolism , Vaccinia virus/genetics , Virus Replication
12.
Nat Commun ; 15(1): 3802, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714719

The interaction between nuclear receptor coactivator 4 (NCOA4) and the iron storage protein ferritin is a crucial component of cellular iron homeostasis. The binding of NCOA4 to the FTH1 subunits of ferritin initiates ferritinophagy-a ferritin-specific autophagic pathway leading to the release of the iron stored inside ferritin. The dysregulation of NCOA4 is associated with several diseases, including neurodegenerative disorders and cancer, highlighting the NCOA4-ferritin interface as a prime target for drug development. Here, we present the cryo-EM structure of the NCOA4-FTH1 interface, resolving 16 amino acids of NCOA4 that are crucial for the interaction. The characterization of mutants, designed to modulate the NCOA4-FTH1 interaction, is used to validate the significance of the different features of the binding site. Our results explain the role of the large solvent-exposed hydrophobic patch found on the surface of FTH1 and pave the way for the rational development of ferritinophagy modulators.


Cryoelectron Microscopy , Ferritins , Nuclear Receptor Coactivators , Ferritins/metabolism , Ferritins/chemistry , Ferritins/genetics , Humans , Nuclear Receptor Coactivators/metabolism , Nuclear Receptor Coactivators/chemistry , Nuclear Receptor Coactivators/genetics , Protein Binding , Binding Sites , Iron/metabolism , Autophagy , Models, Molecular , HEK293 Cells , Oxidoreductases/metabolism , Oxidoreductases/chemistry , Oxidoreductases/genetics , Proteolysis , Mutation
13.
Sci Rep ; 14(1): 10053, 2024 05 02.
Article En | MEDLINE | ID: mdl-38698047

Type 2 diabetes mellitus is a worldwide public health issue. In the globe, Egypt has the ninth-highest incidence of diabetes. Due to its crucial role in preserving cellular homeostasis, the autophagy process has drawn a lot of attention in recent years, Therefore, the purpose of this study was to evaluate the traditional medication metformin with the novel therapeutic effects of cinnamondehyde on adipocyte and hepatic autophagy in a model of high-fat diet/streptozotocin-diabetic rats. The study was conducted on 40 male albino rats, classified into 2 main groups, the control group and the diabetic group, which was subdivided into 4 subgroups (8 rats each): untreated diabetic rats, diabetic rats received oral cinnamaldehyde 40 mg/kg/day, diabetic rats received oral metformin 200 mg/kg/day and diabetic rats received a combination of both cinnamaldehyde and metformin daily for 4 weeks. The outcomes demonstrated that cinnamaldehyde enhanced the lipid profile and glucose homeostasis. Moreover, Cinnamaldehyde had the opposite effects on autophagy in both tissues; by altering the expression of genes that control autophagy, such as miRNA 30a and mammalian target of rapamycin (mTOR), it reduced autophagy in adipocytes and stimulated it in hepatic tissues. It may be inferred that by increasing the treatment efficacy of metformin and lowering its side effects, cinnamaldehyde could be utilized as an adjuvant therapy with metformin for the treatment of type 2 diabetes.


Acrolein , Acrolein/analogs & derivatives , Adipocytes , Autophagy , Diabetes Mellitus, Experimental , Liver , Metformin , Animals , Acrolein/pharmacology , Acrolein/therapeutic use , Autophagy/drug effects , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Liver/drug effects , Liver/metabolism , Liver/pathology , Male , Rats , Adipocytes/drug effects , Adipocytes/metabolism , Metformin/pharmacology , Diet, High-Fat/adverse effects , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , MicroRNAs/metabolism , MicroRNAs/genetics , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Streptozocin , Blood Glucose/metabolism , TOR Serine-Threonine Kinases/metabolism
14.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(4): 627-635, 2024 Apr 20.
Article Zh | MEDLINE | ID: mdl-38708494

OBJECTIVE: To explore the pathogenic roles of miR-21, estrogen (E2), and estrogen receptor (ER) in adenomyosis. METHODS: We examined the expression levels of miR-21 in specimens of adenomyotic tissue and benign cervical lesions using qRT-PCR. In primary cultures of cells isolated from the adenomyosis lesions, the effect of ICI82780 (an ER inhibitor) on miR-21 expression levels prior to E2 activation or after E2 deprivation were examined with qRT-PCR. We further assessed the effects of a miR-21 mimic or an inhibitor on proliferation, apoptosis, migration and autophagy of the cells. RESULTS: The expression level of miR-21 was significantly higher in adenomyosis tissues than in normal myometrium (P < 0.05). In the cells isolated from adenomyosis lesions, miR-21 expression level was significantly higher in E2 activation group than in ER inhibition + E2 activation group and the control group (P < 0.05); miR-21 expression level was significantly lower in cells in E2 deprivation+ER inhibition group than in E2 deprivation group and the control group (P < 0.05). The adenomyosis cells transfected with miR-21 inhibitor showed inhibited proliferation and migration, expansion of mitochondrial endoplasmic reticulum, increased lysosomes, presence of autophagosomes, and increased cell apoptosis, while transfection of the cells with the miR-21 mimic produced the opposite effects. CONCLUSION: MiR-21 plays an important role in promoting proliferation, migration, and antiapoptosis in adenomyosis cells by altering the cell ultrastructure, which may contribute to early pathogenesis of the disease. In addition to binding with E2, ER can also regulate miR-21 through other pathways to participate in the pathogenesis of adenomyosis, thus having a stronger regulatory effect on miR-21 than E2.


Adenomyosis , Apoptosis , Cell Proliferation , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Female , Adenomyosis/metabolism , Adenomyosis/genetics , Adenomyosis/pathology , Estrogens/metabolism , Autophagy , Cell Movement , Receptors, Estrogen/metabolism , Myometrium/metabolism , Myometrium/pathology
15.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(4): 675-681, 2024 Apr 20.
Article Zh | MEDLINE | ID: mdl-38708500

OBJECTIVE: To investigate the role of irisin in exercise-induced improvement of renal function in type 2 diabetic rats. METHODS: Forty male SD rats aged 4-6 weeks were randomized into normal control group, type 2 diabetes mellitus model group, diabetic exercise (DE) group and diabetic irisin (DI) group (n=8). The rats in DE group were trained with treadmill running for 8 weeks, and those in DI group were given scheduled irisin injections for 8 weeks. After the treatments, blood biochemical parameters of the rats were examined, and renal histopathology was observed with HE, Masson and PAS staining. Western blotting was used to detect the protein expression levels in the rats'kidneys. RESULTS: The diabetic rats showed significantly increased levels of fasting insulin, total cholesterol, triglyceride, serum creatinine and blood urea nitrogen with lowered serum irisin level (all P < 0.05). Compared with those in DM group, total cholesterol, triglyceride, serum creatinine and blood urea nitrogen levels were decreased and serum irisin levels were increased in both DE and DI groups (all P < 0.05). The rats in DM group showed obvious structural disorders and collagen fiber deposition in the kidneys, which were significantly improved in DE group and DI group. Both regular exercises and irisin injections significantly ameliorated the reduction of FNDC5, LC3-II/I, Atg7, Beclin-1, p-AMPK, AMPK and SIRT1 protein expressions and lowered of p62 protein expression in the kidneys of the diabetic rats (all P < 0.05). CONCLUSION: Both exercise and exogenous irisin treatment improve nephropathy in type 2 diabetic rats possibly due to irisin-mediated activation of the AMPK/SIRT1 pathway in the kidneys to promote renal autophagy.


Autophagy , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Fibronectins , Kidney , Physical Conditioning, Animal , Rats, Sprague-Dawley , Sirtuin 1 , Animals , Fibronectins/metabolism , Male , Rats , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Experimental/metabolism , Kidney/metabolism , Sirtuin 1/metabolism , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/therapy , Beclin-1/metabolism , Creatinine/blood , Blood Urea Nitrogen , Insulin , Triglycerides/metabolism , Triglycerides/blood , Cholesterol/blood , AMP-Activated Protein Kinases/metabolism
16.
Cell Death Dis ; 15(5): 365, 2024 May 28.
Article En | MEDLINE | ID: mdl-38806451

Epithelial-to-mesenchymal transition (EMT) is one of the main causes of peritoneal fibrosis. However, the pathophysiological mechanisms of EMT, specifically its relationship with autophagy, are still unknown. This study aimed to evaluate the role of autophagy in transforming growth factor-beta 1 (TGF-ß1)-induced EMT in human peritoneal mesothelial cells (HPMCs). Primary cultured HPMCs were treated with TGF-ß1 (2 and 5 ng/mL) and changes in autophagy markers and the relationship between autophagy and EMT were evaluated. We also identified changes in EMT- and autophagy-related signaling pathways after autophagy and NADPH oxidase 4 (NOX4) inhibition. TGF-ß1 increased the generation of NOX4 and reactive oxygen species (ROS) in HPMCs, resulting in mitochondrial damage. Treatment with GKT137831 (20 µM), a NOX1/4 inhibitor, reduced ROS in the mitochondria of HPMC cells and reduced TGF-ß1-induced mitochondrial damage. Additionally, the indirect inhibition of autophagy by GKT137831 (20 µM) downregulated TGF-ß1-induced EMT, whereas direct inhibition of autophagy using 3-methyladenine (3-MA) (2 mM) or autophagy-related gene 5 (ATG5) gene silencing decreased the TGF-ß1-induced EMT in HPMCs. The suppressor of mothers against decapentaplegic 2/3 (Smad2/3), autophagy-related phosphoinositide 3-kinase (PI3K) class III, and protein kinase B (Akt) pathways, and mitogen-activated protein kinase (MAPK) signaling pathways, such as extracellular signal-regulated kinase (ERK) and P38, were involved in TGF-ß1-induced EMT. Autophagy and NOX4 inhibition suppressed the activation of these signaling pathways. Direct inhibition of autophagy and its indirect inhibition through the reduction of mitochondrial damage by upstream NOX4 inhibition reduced EMT in HPMCs. These results suggest that autophagy could serve as a therapeutic target for the prevention of peritoneal fibrosis in patients undergoing peritoneal dialysis.


Autophagy , Epithelial Cells , Epithelial-Mesenchymal Transition , NADPH Oxidase 4 , Oxidative Stress , Reactive Oxygen Species , Signal Transduction , Transforming Growth Factor beta1 , Humans , Epithelial-Mesenchymal Transition/drug effects , Transforming Growth Factor beta1/pharmacology , Transforming Growth Factor beta1/metabolism , Autophagy/drug effects , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , NADPH Oxidase 4/metabolism , NADPH Oxidase 4/genetics , Signal Transduction/drug effects , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Epithelial Cells/pathology , Mitochondria/metabolism , Mitochondria/drug effects , Peritoneum/pathology , Pyrazolones , Pyridones
17.
BMC Cardiovasc Disord ; 24(1): 275, 2024 May 28.
Article En | MEDLINE | ID: mdl-38807081

BACKGROUND: Autophagy, as a regulator of cell survival, plays an important role in atherosclerosis (AS). Sperm associated antigen 5 (SPAG5) is closely associated with the classical autophagy pathway, PI3K/Akt/mTOR signaling pathway. This work attempted to investigate whether SPAG5 can affect AS development by regulating autophagy. METHODS: Human umbilical vein endothelial cells (HUVECs) were treated with oxidized-low density lipoprotein (ox-LDL) to induce cell damage. ApoE-/- mice were fed a Western diet to establish an AS mouse model. Haematoxylin and eosin (H&E) staining and Oil Red O staining evaluated the pathological changes and in lipid deposition in aortic tissues. CCK-8 and flow cytometry detected cell proliferation and apoptosis. Immunohistochemistry, Enzyme linked immunosorbent assay, qRT-PCR and western blotting assessed the levels of mRNA and proteins. RESULTS: Ox-LDL treatment elevated SPAG5 expression and the expression of autophagy-related proteins, LC3-I, LC3-II, Beclin-1, and p62, in HUVECs. GFP-LC3 dots were increased in ox-LDL-treated HUVECs and LPS-treated HUVECs. SPAG5 knockdown reversed both ox-LDL and LPS treatment-mediated inhibition of cell proliferation and promotion of apoptosis in HUVECs. SPAG5 silencing further elevated autophagy and repressed the expression of PI3K, p-Akt/Akt, and p-mTOR/mTOR in ox-LDL-treated HUVECs. 3-MA (autophagy inhibitor) treatment reversed SPAG5 silencing-mediated increase of cell proliferation and decrease of apoptosis in ox-LDL-treated HUVECs. In vivo, SPAG5 knockdown reduced atherosclerotic plaques in AS mice through activating autophagy and inhibiting PI3K/Akt/mTOR signaling pathway. CONCLUSION: This work demonstrated that SPAG5 knockdown alleviated AS development through activating autophagy. Thus, SPAG5 may be a potential target for AS therapy.


Apoptosis , Atherosclerosis , Autophagy , Cell Proliferation , Disease Models, Animal , Human Umbilical Vein Endothelial Cells , Mice, Knockout, ApoE , Plaque, Atherosclerotic , Proto-Oncogene Proteins c-akt , Signal Transduction , TOR Serine-Threonine Kinases , Animals , Autophagy/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/pathology , Humans , Atherosclerosis/pathology , Atherosclerosis/metabolism , Atherosclerosis/genetics , Atherosclerosis/prevention & control , TOR Serine-Threonine Kinases/metabolism , Apoptosis/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Cell Proliferation/drug effects , Aortic Diseases/pathology , Aortic Diseases/genetics , Aortic Diseases/prevention & control , Aortic Diseases/metabolism , Mice, Inbred C57BL , Lipoproteins, LDL/metabolism , Male , Cells, Cultured , Autophagy-Related Proteins/metabolism , Autophagy-Related Proteins/genetics , Aorta/pathology , Aorta/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Mice , Apolipoproteins E
18.
Chin J Nat Med ; 22(5): 387-401, 2024 May.
Article En | MEDLINE | ID: mdl-38796213

Hernandezine (Her), a bisbenzylisoquinoline alkaloid extracted from Thalictrum flavum, is recognized for its range of biological activities inherent to this herbal medicine. Despite its notable properties, the anti-cancer effects of Her have remained largely unexplored. In this study, we elucidated that Her significantly induced cytotoxicity in cancer cells through the activation of apoptosis and necroptosis mechanisms. Furthermore, Her triggered autophagosome formation by activating the AMPK and ATG5 conjugation systems, leading to LC3 lipidation. Our findings revealed that Her caused damage to the mitochondrial membrane, with the damaged mitochondria undergoing mitophagy, as evidenced by the elevated expression of mitophagy markers. Conversely, Her disrupted autophagic flux, demonstrated by the upregulation of p62 and accumulation of autolysosomes, as observed in the RFP-GFP-LC3 reporter assay. Initially, we determined that Her did not prevent the fusion of autophagosomes and lysosomes. However, it inhibited the maturation of cathepsin D and increased lysosomal pH, indicating an impairment of lysosomal function. The use of the early-stage autophagy inhibitor, 3-methyladenine (3-MA), did not suppress LC3II, suggesting that Her also induces noncanonical autophagy in autophagosome formation. The application of Bafilomycin A1, an inhibitor of noncanonical autophagy, diminished the recruitment of ATG16L1 and the accumulation of LC3II by Her, thereby augmenting Her-induced cell death. These observations imply that while autophagy initially plays a protective role, the disruption of the autophagic process by Her promotes programmed cell death. This study provides the first evidence of Her's dual role in inducing apoptosis and necroptosis while also initiating and subsequently impairing autophagy to promote apoptotic cell death. These insights contribute to a deeper understanding of the mechanisms underlying programmed cell death, offering potential avenues for enhancing cancer prevention and therapeutic strategies.


Apoptosis , Autophagy , Cathepsin D , Lysosomes , Cathepsin D/metabolism , Cathepsin D/genetics , Humans , Lysosomes/drug effects , Lysosomes/metabolism , Apoptosis/drug effects , Autophagy/drug effects , Cell Line, Tumor , Benzylisoquinolines/pharmacology , Autophagosomes/drug effects , Autophagosomes/metabolism , Hydrogen-Ion Concentration , Autophagy-Related Protein 5/genetics , Autophagy-Related Protein 5/metabolism
19.
Mol Biol Rep ; 51(1): 694, 2024 May 25.
Article En | MEDLINE | ID: mdl-38796662

BACKGROUND: Curcumin (Curcuma longa) is a well-known medicinal plant that induces autophagy in various model species, helping maintain cellular homeostasis. Its role as a caloric restriction mimetic (CRM) is being investigated. This study explores the potential of curcumin (CUR), as a CRM, to provide neuroprotection in D galactose induced accelerated senescence model of rats through modulation of autophagy. For six weeks, male rats received simultaneous supplementation of D-gal (300 mg/kg b.w., subcutaneously) and CUR (200 mg/kg b.w., oral). METHOD AND RESULTS: The oxidative stress indices, antioxidants, and electron transport chain complexes in brain tissues were measured using standard methods. Reverse transcriptase-polymerase chain reaction (RT-PCR) gene expression analysis was used to evaluate the expression of autophagy, neuroprotection, and aging marker genes. Our results show that curcumin significantly (p ≤ 0.05) enhanced the level of antioxidants and considerably lowered the level of oxidative stress markers. Supplementing with CUR also increased the activity of electron transport chain complexes in the mitochondria of aged brain tissue, demonstrating the antioxidant potential of CUR at the mitochondrial level. CUR was found to upregulate the expression of the aging marker gene (SIRT-1) and the genes associated with autophagy (Beclin-1 and ULK-1), as well as neuroprotection (NSE) in the brain. The expression of IL-6 and TNF-α was downregulated. CONCLUSION: Our findings demonstrate that CUR suppresses oxidative damage brought on by aging by modulating autophagy. These findings imply that curcumin might be beneficial for neuroprotection in aging and age-related disorders.


Aging , Antioxidants , Autophagy , Brain , Curcumin , Oxidative Stress , Animals , Curcumin/pharmacology , Autophagy/drug effects , Oxidative Stress/drug effects , Brain/drug effects , Brain/metabolism , Brain/pathology , Rats , Aging/drug effects , Male , Antioxidants/pharmacology , Neuroprotective Agents/pharmacology , Mitochondria/drug effects , Mitochondria/metabolism , Galactose/pharmacology , Sirtuin 1/metabolism , Sirtuin 1/genetics , Beclin-1/metabolism , Beclin-1/genetics
20.
Adv Clin Chem ; 121: 270-333, 2024.
Article En | MEDLINE | ID: mdl-38797543

Proteostasis is essential for normal function of proteins and vital for cellular health and survival. Proteostasis encompasses all stages in the "life" of a protein, that is, from translation to functional performance and, ultimately, to degradation. Proteins need native conformations for function and in the presence of multiple types of stress, their misfolding and aggregation can occur. A coordinated network of proteins is at the core of proteostasis in cells. Among these, chaperones are required for maintaining the integrity of protein conformations by preventing misfolding and aggregation and guide those with abnormal conformation to degradation. The ubiquitin-proteasome system (UPS) and autophagy are major cellular pathways for degrading proteins. Although failure or decreased functioning of components of this network can lead to proteotoxicity and disease, like neuron degenerative diseases, underlying factors are not completely understood. Accumulating misfolded and aggregated proteins are considered major pathomechanisms of neurodegeneration. In this chapter, we have described the components of three major branches required for proteostasis-chaperones, UPS and autophagy, the mechanistic basis of their function, and their potential for protection against various neurodegenerative conditions, like Alzheimer's, Parkinson's, and Huntington's disease. The modulation of various proteostasis network proteins, like chaperones, E3 ubiquitin ligases, proteasome, and autophagy-associated proteins as therapeutic targets by small molecules as well as new and unconventional approaches, shows promise.


Autophagy , Neurodegenerative Diseases , Proteasome Endopeptidase Complex , Proteostasis , Humans , Neurodegenerative Diseases/metabolism , Proteasome Endopeptidase Complex/metabolism , Molecular Chaperones/metabolism , Animals , Ubiquitin/metabolism
...