Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.571
Filter
1.
Mol Brain ; 17(1): 63, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39223639

ABSTRACT

ATG9A is the only integral membrane protein among core autophagy-related (ATG) proteins. We previously found that ATG9A does not co-assemble into synaptophysin-positive vesicles, but rather, localizes to a distinct pool of vesicles within synapsin condensates in both fibroblasts and nerve terminals. The endocytic origin of these vesicles further suggests the existence of different intracellular sorting or segregation mechanisms for ATG9A and synaptophysin in cells. However, the precise underlying mechanism remains largely unknown. In this follow-up study, we investigated the endosomal localization of these two proteins by exploiting the advantages of a Rab5 mutant that induces the formation of enlarged endosomes. Notably, ATG9A and synaptophysin intermix perfectly and do not segregate on giant endosomes, indicating that the separation of these two proteins is not solely caused by the inherent properties of the proteins, but possibly by other unknown factors.


Subject(s)
Autophagy-Related Proteins , Endosomes , Mutation , Synaptophysin , rab5 GTP-Binding Proteins , Endosomes/metabolism , Mutation/genetics , Synaptophysin/metabolism , Synaptophysin/genetics , rab5 GTP-Binding Proteins/metabolism , rab5 GTP-Binding Proteins/genetics , Animals , Autophagy-Related Proteins/metabolism , Autophagy-Related Proteins/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Humans , Vesicular Transport Proteins/metabolism , Vesicular Transport Proteins/genetics , Mice
2.
J Cell Biol ; 223(11)2024 Nov 04.
Article in English | MEDLINE | ID: mdl-39105757

ABSTRACT

The characterization of lipid binding to lipid transfer proteins (LTPs) is fundamental to understand their molecular mechanism. However, several structures of LTPs, and notably those proposed to act as bridges between membranes, do not provide the precise location of their endogenous lipid ligands. To address this limitation, computational approaches are a powerful alternative methodology, but they are often limited by the high flexibility of lipid substrates. Here, we develop a protocol based on unbiased coarse-grain molecular dynamics simulations in which lipids placed away from the protein can spontaneously bind to LTPs. This approach accurately determines binding pockets in LTPs and provides a working hypothesis for the lipid entry pathway. We apply this approach to characterize lipid binding to bridge LTPs of the Vps13-Atg2 family, for which the lipid localization inside the protein is currently unknown. Overall, our work paves the way to determine binding pockets and entry pathways for several LTPs in an inexpensive, fast, and accurate manner.


Subject(s)
Carrier Proteins , Molecular Dynamics Simulation , Protein Binding , Binding Sites , Carrier Proteins/metabolism , Carrier Proteins/chemistry , Carrier Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/chemistry , Lipids/chemistry , Autophagy-Related Proteins/metabolism , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/chemistry , Vesicular Transport Proteins/metabolism , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/chemistry
3.
Int J Mol Sci ; 25(15)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39125750

ABSTRACT

Autophagy is a complex physiological pathway mediating homeostasis and survival of cells degrading damaged organelles and regulating their recycling. Physiologic autophagy can maintain normal lung function, decrease lung cellular senescence, and inhibit myofibroblast differentiation. It is well known that autophagy is activated in several chronic inflammatory diseases; however, its role in the pathogenesis of chronic obstructive pulmonary disease (COPD) and the expression of autophagy-related genes (ATGs) in lower airways of COPD patients is still controversial. The expression and localization of all ATG proteins that represented key components of the autophagic machinery modulating elongation, closure, and maturation of autophagosome membranes were retrospectively measured in peripheral lungs of patients with stable COPD (n = 10), control smokers with normal lung function (n = 10), and control nonsmoking subjects (n = 8) using immunohistochemical analysis. These results show an increased expression of ATG4 protein in alveolar septa and bronchiolar epithelium of stable COPD patients compared to smokers with normal lung function and non-smoker subjects. In particular, the genes in the ATG4 protein family (including ATG4A, ATG4B, ATG4C, and ATG4D) that have a key role in the modulation of the physiological autophagic machinery are the most important ATGs increased in the compartment of lower airways of stable COPD patients, suggesting that the alteration shown in COPD patients can be also correlated to impaired modulation of autophagic machinery modulating elongation, closure, and maturation of autophagosomes membranes. Statistical analysis was performed by the Kruskal-Wallis test and the Mann-Whitney U test for comparison between groups. A statistically significant increased expression of ATG4A (p = 0.0047), ATG4D (p = 0.018), and ATG5 (p = 0.019) was documented in the bronchiolar epithelium as well in alveolar lining for ATG4A (p = 0.0036), ATG4B (p = 0.0054), ATG4C (p = 0.0064), ATG4D (p = 0.0084), ATG5 (p = 0.0088), and ATG7 (p = 0.018) in patients with stable COPD compared to control groups. The ATG4 isoforms may be considered as additional potential targets for the development of new drugs in COPD.


Subject(s)
Autophagy-Related Proteins , Autophagy , Pulmonary Disease, Chronic Obstructive , Humans , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/pathology , Autophagy-Related Proteins/metabolism , Autophagy-Related Proteins/genetics , Male , Female , Middle Aged , Autophagy/genetics , Aged , Lung/metabolism , Lung/pathology , Smoking , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/genetics
4.
Nat Commun ; 15(1): 7194, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39169022

ABSTRACT

Autophagy is a highly conserved process from yeast to mammals in which intracellular materials are engulfed by a double-membrane organelle called autophagosome and degrading materials by fusing with the lysosome. The process of autophagy is regulated by sequential recruitment and function of autophagy-related (Atg) proteins. Genetic hierarchical analyses show that the ULK1 complex comprised of ULK1-FIP200-ATG13-ATG101 translocating from the cytosol to autophagosome formation sites as a most upstream ATG factor; this translocation is critical in autophagy initiation. However, how this translocation occurs remains unclear. Here, we show that ULK1 is palmitoylated by palmitoyltransferase ZDHHC13 and translocated to the autophagosome formation site upon autophagy induction. We find that the ULK1 palmitoylation is required for autophagy initiation. Moreover, the ULK1 palmitoylated enhances the phosphorylation of ATG14L, which is required for activating PI3-Kinase and producing phosphatidylinositol 3-phosphate, one of the autophagosome membrane's lipids. Our results reveal how the most upstream ULK1 complex translocates to the autophagosome formation sites during autophagy.


Subject(s)
Acyltransferases , Autophagosomes , Autophagy-Related Protein-1 Homolog , Autophagy-Related Proteins , Autophagy , Intracellular Signaling Peptides and Proteins , Lipoylation , Autophagy-Related Protein-1 Homolog/metabolism , Autophagy-Related Protein-1 Homolog/genetics , Autophagy/physiology , Humans , Autophagy-Related Proteins/metabolism , Autophagy-Related Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Phosphorylation , Acyltransferases/metabolism , Acyltransferases/genetics , Autophagosomes/metabolism , HEK293 Cells , Phosphatidylinositol Phosphates/metabolism , Animals , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Vesicular Transport/metabolism , Adaptor Proteins, Vesicular Transport/genetics , Protein Transport , Vesicular Transport Proteins
5.
Methods Mol Biol ; 2845: 1-14, 2024.
Article in English | MEDLINE | ID: mdl-39115653

ABSTRACT

Selective removal of excess or damaged mitochondria is an evolutionarily conserved process that contributes to mitochondrial quality and quantity control. This catabolic event relies on autophagy, a membrane trafficking system that sequesters cytoplasmic constituents into double membrane-bound autophagosomes and delivers them to lysosomes (vacuoles in yeast) for hydrolytic degradation and is thus termed mitophagy. Dysregulation of mitophagy is associated with various diseases, highlighting its physiological relevance. In budding yeast, the pro-mitophagic single-pass membrane protein Atg32 is upregulated under prolonged respiration or nutrient starvation, anchored on the surface of mitochondria, and activated to recruit the autophagy machinery for the formation of autophagosomes surrounding mitochondria. In this chapter, we provide protocols to assess Atg32-mediated mitophagy using fluorescence microscopy and immunoblotting.


Subject(s)
Microscopy, Fluorescence , Mitochondria , Mitophagy , Saccharomycetales , Microscopy, Fluorescence/methods , Saccharomycetales/metabolism , Mitochondria/metabolism , Immunoblotting/methods , Autophagy-Related Proteins/metabolism , Autophagy-Related Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Autophagy/physiology , Autophagosomes/metabolism , Receptors, Cytoplasmic and Nuclear
6.
Methods Mol Biol ; 2841: 215-224, 2024.
Article in English | MEDLINE | ID: mdl-39115781

ABSTRACT

Macroautophagy/autophagy is a highly conserved process for the degradation of cellular components and plays an essential role in cellular homeostasis maintenance. During autophagy, specialized double-membrane vesicles known as autophagosomes are formed and sequester cytoplasmic cargoes and deliver them to lysosomes or vacuoles for breakdown. Central to this process are autophagy-related (ATG) proteins, with the ATG9-the only integral membrane protein in this core machinery-playing a central role in mediating autophagosome formation. Recent years have witnessed the maturation of cryo-electron microscopy (cryo-EM) and single-particle analysis into powerful tools for high-resolution structural determination of protein complexes. These advancements have significantly deepened our understanding of the intricate molecular mechanisms underlying autophagosome biogenesis. In this study, we present a protocol detailing the acquisition of the three-dimensional structure of ATG9 from Arabidopsis thaliana. The structural resolution achieved 7.8 Å determined by single-particle cryo-electron microscopy (cryo-EM).


Subject(s)
Arabidopsis Proteins , Arabidopsis , Autophagy-Related Proteins , Cryoelectron Microscopy , Cryoelectron Microscopy/methods , Arabidopsis/metabolism , Arabidopsis/ultrastructure , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/ultrastructure , Autophagy-Related Proteins/metabolism , Autophagy-Related Proteins/chemistry , Autophagosomes/metabolism , Autophagosomes/ultrastructure , Autophagy , Membrane Proteins/metabolism , Membrane Proteins/chemistry , Membrane Proteins/ultrastructure
7.
Jt Dis Relat Surg ; 35(3): 513-520, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39189559

ABSTRACT

OBJECTIVES: This study aims to explore the mechanisms of dual regulation of osteoarthritis (OA) progression by the involvement of estrogen receptor (ER) in autophagy and inflammation. MATERIALS AND METHODS: Bioinformatics methods were used to explore the relationship among associated genes. Western blot assays were used to detect related protein expression of OA in C28I2 and induced OA cellular model. Real-time quantitative polymerase chain reaction (RT-qPCR) analysis were used to detect OA related gene expression in C28I2 and induced OA cellular model. Co-immunoprecipitation (CO-IP) analysis were used to verify the direct interaction between ER and NOD-like receptor thermal protein domain associated protein 3 (NLRP3). RESULTS: The C28I2 cellular model of OA was induced by interleukin-1ß (IL-1ß). The small interfering ribonucleic acid (SiRNA)-mediated knockdown of autophagy-related 16 like 1 (ATG16L1) in C28I2 decreased the expression of MAP1LC3B (LC3B) and NLRP3. Besides, ER-beta (ERß) agonist changed the gene expression of NLRP3 and ATG16L1. Moreover, CO-IP analysis indicated the direct interaction between ER and NLRP3. CONCLUSION: Our study results revealed that ATG16L1, NLRP3, and IL-1ß interacted closely and ERß was involved in OA process by affecting autophagy and inflammatory activation.


Subject(s)
Autophagy-Related Proteins , Estrogen Receptor beta , NLR Family, Pyrin Domain-Containing 3 Protein , Osteoarthritis , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Osteoarthritis/metabolism , Osteoarthritis/pathology , Osteoarthritis/genetics , Humans , Estrogen Receptor beta/metabolism , Estrogen Receptor beta/genetics , Autophagy-Related Proteins/metabolism , Autophagy-Related Proteins/genetics , Autophagy , Interleukin-1beta/metabolism , Interleukin-1beta/genetics , Estrogen Receptor alpha/metabolism , Estrogen Receptor alpha/genetics , Cell Line
8.
BMC Genomics ; 25(1): 796, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39179961

ABSTRACT

The WD40 domain is one of the most abundant domains and is among the top interacting domains in eukaryotic genomes. The WD40 domain of ATG16L1 is essential for LC3 recruitment to endolysosomal membranes during non-canonical autophagy, but dispensable for canonical autophagy. Canonical autophagy was utilized by FMDV, while the relationship between FMDV and non-canonical autophagy is still elusive. In the present study, WD40 knockout (KO) PK15 cells were successfully generated via CRISPR/cas9 technology as a tool for studying the effect of non-canonical autophagy on FMDV replication. The results of growth curve analysis, morphological observation and karyotype analysis showed that the WD40 knockout cell line was stable in terms of growth and morphological characteristics. After infection with FMDV, the expression of viral protein, viral titers, and the number of copies of viral RNA in the WD40-KO cells were significantly greater than those in the wild-type PK15 cells. Moreover, RNA‒seq technology was used to sequence WD40-KO cells and wild-type cells infected or uninfected with FMDV. Differentially expressed factors such as Mx1, RSAD2, IFIT1, IRF9, IFITM3, GBP1, CXCL8, CCL5, TNFRSF17 were significantly enriched in the autophagy, NOD-like receptor signaling pathway, RIG-I-like receptor signaling pathway, Toll-like receptor signaling pathway, cytokine-cytokine receptor interaction and TNF signaling pathway, etc. The expression levels of differentially expressed genes were detected via qRT‒PCR, which was consistent with the RNA‒seq data. Here, we experimentally demonstrate for the first time that knockout of the WD40 domain of ATG16L1 enhances FMDV replication by downregulation innate immune factors. In addition, this result also indicates non-canonical autophagy inhibits FMDV replication. In total, our results play an essential role in regulating the replication level of FMDV and providing new insights into virus-host interactions and potential antiviral strategies.


Subject(s)
Autophagy-Related Proteins , Autophagy , Foot-and-Mouth Disease Virus , Gene Knockout Techniques , Virus Replication , Foot-and-Mouth Disease Virus/genetics , Foot-and-Mouth Disease Virus/physiology , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Animals , Autophagy/genetics , Cell Line , WD40 Repeats/genetics , CRISPR-Cas Systems , Foot-and-Mouth Disease/virology
9.
J Cancer Res Clin Oncol ; 150(8): 386, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39110225

ABSTRACT

Colorectal cancer (CRC) remains a highly prevalent gastrointestinal neoplasm, presenting significant prevalence and lethality rate. DEAD/H box RNA helicase 10 (DDX10) has been proposed as a potential oncogene in CRC, the specific action mechanism by which DDX10 modulates the aggressive biological cellular events in CRC remains implicitly elucidated, however. During this study, DDX10 expression was detected via RT-qPCR and Western blotting. Cell proliferation was estimated via EDU staining. TUNEL staining and Western blotting appraised cell apoptosis. Cell stemness was evaluated by sphere formation assay, RT-qPCR, Western blotting as well as immunofluorescence staining. Relevant assay kit examined aldehyde dehydrogenase (ALDH) activity. Western blotting and immunofluorescence staining also detected autophagy. DDX10 was hyper-expressed in CRC cells. Down-regulation of DDX10 hampered cell proliferation, aggravated the apoptosis while eliminated the ability to form spheroid cells in CRC. In addition, DDX10 deletion improved ATG10 expression and therefore activated autophagy in CRC cells. Consequently, ATG10 depletion or treatment with autophagy inhibitor 3-Methyladenine (3-MA) partially compensated the influences of DDX10 silencing on the proliferation, apoptosis and stemness of CRC cells. Accordingly, DDX10 deficiency may aggravate autophagy mediated by ATG10 to impede cell proliferation, stemness and facilitate cell apoptosis, hence blocking the progression of CRC.


Subject(s)
Apoptosis , Autophagy-Related Proteins , Autophagy , Cell Proliferation , Colorectal Neoplasms , DEAD-box RNA Helicases , Neoplastic Stem Cells , Humans , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/genetics , Autophagy/physiology , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Autophagy-Related Proteins/metabolism , Autophagy-Related Proteins/genetics , Neoplastic Stem Cells/pathology , Neoplastic Stem Cells/metabolism , Cell Line, Tumor , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Conjugating Enzymes/genetics , Mice , Animals , Vesicular Transport Proteins
10.
J Cell Sci ; 137(15)2024 08 01.
Article in English | MEDLINE | ID: mdl-39145464

ABSTRACT

Autophagy refers to a set of degradative mechanisms whereby cytoplasmic contents are targeted to the lysosome. This is best described for macroautophagy, where a double-membrane compartment (autophagosome) is generated to engulf cytoplasmic contents. Autophagosomes are decorated with ubiquitin-like ATG8 molecules (ATG8s), which are recruited through covalent lipidation, catalysed by the E3-ligase-like ATG16L1 complex. LC3 proteins are ATG8 family members that are often used as a marker for autophagosomes. In contrast to canonical macroautophagy, conjugation of ATG8s to single membranes (CASM) describes a group of non-canonical autophagy processes in which ATG8s are targeted to pre-existing single-membrane compartments. CASM occurs in response to disrupted intracellular pH gradients, when the V-ATPase proton pump recruits ATG16L1 in a process called V-ATPase-ATG16L1-induced LC3 lipidation (VAIL). Recent work has demonstrated a parallel, alternative axis for CASM induction, triggered when the membrane recruitment factor TECPR1 recognises sphingomyelin exposed on the cytosolic face of a membrane and forms an alternative E3-ligase-like complex. This sphingomyelin-TECPR1-induced LC3 lipidation (STIL) is independent of the V-ATPase and ATG16L1. In light of these discoveries, this Cell Science at a Glance article summarises these two mechanisms of CASM to highlight how they differ from canonical macroautophagy, and from each other.


Subject(s)
Autophagy-Related Protein 8 Family , Autophagy , Humans , Autophagy-Related Protein 8 Family/metabolism , Autophagy-Related Protein 8 Family/genetics , Animals , Autophagosomes/metabolism , Microtubule-Associated Proteins/metabolism , Autophagy-Related Proteins/metabolism , Cell Membrane/metabolism
11.
Nat Commun ; 15(1): 6927, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39138175

ABSTRACT

Autophagy is a key lysosomal degradative mechanism allowing a prosurvival response to stresses, especially nutrient starvation. Here we investigate the mechanism of autophagy induction in response to sulfur starvation in Saccharomyces cerevisiae. We found that sulfur deprivation leads to rapid and widespread transcriptional induction of autophagy-related (ATG) genes in ways not seen under nitrogen starvation. This distinctive response depends mainly on the transcription activator of sulfur metabolism Met4. Consistently, Met4 is essential for autophagy under sulfur starvation. Depletion of either cysteine, methionine or SAM induces autophagy flux. However, only SAM depletion can trigger strong transcriptional induction of ATG genes and a fully functional autophagic response. Furthermore, combined inactivation of Met4 and Atg1 causes a dramatic decrease in cell survival under sulfur starvation, highlighting the interplay between sulfur metabolism and autophagy to maintain cell viability. Thus, we describe a pathway of sulfur starvation-induced autophagy depending on Met4 and involving SAM as signaling sulfur metabolite.


Subject(s)
Autophagy , S-Adenosylmethionine , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Signal Transduction , Sulfur , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Autophagy/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Sulfur/metabolism , S-Adenosylmethionine/metabolism , Gene Expression Regulation, Fungal , Autophagy-Related Proteins/metabolism , Autophagy-Related Proteins/genetics , Methionine/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Protein Kinases , Basic-Leucine Zipper Transcription Factors
12.
Mol Cell ; 84(15): 2966-2983.e9, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39089251

ABSTRACT

Defects in organellar acidification indicate compromised or infected compartments. Recruitment of the autophagy-related ATG16L1 complex to pathologically neutralized organelles targets ubiquitin-like ATG8 molecules to perturbed membranes. How this process is coupled to proton gradient disruption is unclear. Here, we reveal that the V1H subunit of the vacuolar ATPase (V-ATPase) proton pump binds directly to ATG16L1. The V1H/ATG16L1 interaction only occurs within fully assembled V-ATPases, allowing ATG16L1 recruitment to be coupled to increased V-ATPase assembly following organelle neutralization. Cells lacking V1H fail to target ATG8s during influenza infection or after activation of the immune receptor stimulator of interferon genes (STING). We identify a loop within V1H that mediates ATG16L1 binding. A neuronal V1H isoform lacks this loop and is associated with attenuated ATG8 targeting in response to ionophores in primary murine and human iPSC-derived neurons. Thus, V1H controls ATG16L1 recruitment following proton gradient dissipation, suggesting that the V-ATPase acts as a cell-intrinsic damage sensor.


Subject(s)
Autophagy-Related Proteins , Vacuolar Proton-Translocating ATPases , Vacuolar Proton-Translocating ATPases/metabolism , Vacuolar Proton-Translocating ATPases/genetics , Humans , Autophagy-Related Proteins/metabolism , Autophagy-Related Proteins/genetics , Animals , Mice , Protein Binding , Neurons/metabolism , Autophagy-Related Protein 8 Family/metabolism , Autophagy-Related Protein 8 Family/genetics , Autophagy , HEK293 Cells , Induced Pluripotent Stem Cells/metabolism , Influenza, Human/virology , Influenza, Human/metabolism , Influenza, Human/genetics , Mice, Inbred C57BL , Signal Transduction , Carrier Proteins/metabolism , Carrier Proteins/genetics , Mice, Knockout
13.
Proc Natl Acad Sci U S A ; 121(33): e2405964121, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39121161

ABSTRACT

Ubiquitination is one of the most common posttranslational modifications in eukaryotic cells. Depending on the architecture of polyubiquitin chains, substrate proteins can meet different cellular fates, but our understanding of how chain linkage controls protein fate remains limited. UBL-UBA shuttle proteins, such as UBQLN2, bind to ubiquitinated proteins and to the proteasome or other protein quality control machinery elements and play a role in substrate fate determination. Under physiological conditions, UBQLN2 forms biomolecular condensates through phase separation, a physicochemical phenomenon in which multivalent interactions drive the formation of a macromolecule-rich dense phase. Ubiquitin and polyubiquitin chains modulate UBQLN2's phase separation in a linkage-dependent manner, suggesting a possible link to substrate fate determination, but polyubiquitinated substrates have not been examined directly. Using sedimentation assays and microscopy we show that polyubiquitinated substrates induce UBQLN2 phase separation and incorporate into the resulting condensates. This substrate effect is strongest with K63-linked substrates, intermediate with mixed-linkage substrates, and weakest with K48-linked substrates. Proteasomes can be recruited to these condensates, but proteasome activity toward K63-linked and mixed linkage substrates is inhibited in condensates. Substrates are also protected from deubiquitinases by UBQLN2-induced phase separation. Our results suggest that phase separation could regulate the fate of ubiquitinated substrates in a chain-linkage-dependent manner, thus serving as an interpreter of the ubiquitin code.


Subject(s)
Adaptor Proteins, Signal Transducing , Autophagy-Related Proteins , Ubiquitination , Autophagy-Related Proteins/metabolism , Autophagy-Related Proteins/chemistry , Autophagy-Related Proteins/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/genetics , Humans , Polyubiquitin/metabolism , Proteasome Endopeptidase Complex/metabolism , Biomolecular Condensates/metabolism , Biomolecular Condensates/chemistry , Ubiquitin/metabolism , Ubiquitin/chemistry , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/genetics , Ubiquitinated Proteins/metabolism , Ubiquitinated Proteins/isolation & purification , Ubiquitinated Proteins/chemistry , Phase Separation
14.
Theranostics ; 14(10): 3984-3996, 2024.
Article in English | MEDLINE | ID: mdl-38994020

ABSTRACT

Rationale: Cataract is the leading cause of blindness and low vision worldwide, yet its pathological mechanism is not fully understood. Although macroautophagy/autophagy is recognized as essential for lens homeostasis and has shown potential in alleviating cataracts, its precise mechanism remains unclear. Uncovering the molecular details of autophagy in the lens could provide targeted therapeutic interventions alongside surgery. Methods: We monitored autophagic activities in the lens and identified the key autophagy protein ATG16L1 by immunofluorescence staining, Western blotting, and transmission electron microscopy. The regulatory mechanism of ATG16L1 ubiquitination was analyzed by co-immunoprecipitation and Western blotting. We used the crystal structure of E3 ligase gigaxonin and conducted the docking screening of a chemical library. The effect of the identified compound riboflavin was tested in vitro in cells and in vivo animal models. Results: We used HLE cells and connexin 50 (cx50)-deficient cataract zebrafish model and confirmed that ATG16L1 was crucial for lens autophagy. Stabilizing ATG16L1 by attenuating its ubiquitination-dependent degradation could promote autophagy activity and relieve cataract phenotype in cx50-deficient zebrafish. Mechanistically, the interaction between E3 ligase gigaxonin and ATG16L1 was weakened during this process. Leveraging these mechanisms, we identified riboflavin, an E3 ubiquitin ligase-targeting drug, which suppressed ATG16L1 ubiquitination, promoted autophagy, and ultimately alleviated the cataract phenotype in autophagy-related models. Conclusions: Our study identified an unrecognized mechanism of cataractogenesis involving ATG16L1 ubiquitination in autophagy regulation, offering new insights for treating cataracts.


Subject(s)
Autophagy-Related Proteins , Autophagy , Cataract , Lens, Crystalline , Zebrafish , Animals , Cataract/metabolism , Cataract/drug therapy , Autophagy/drug effects , Autophagy-Related Proteins/metabolism , Lens, Crystalline/metabolism , Lens, Crystalline/drug effects , Humans , Ubiquitination/drug effects , Riboflavin/pharmacology , Disease Models, Animal , Cell Line
15.
Cell Mol Life Sci ; 81(1): 323, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080084

ABSTRACT

Autophagy is a highly conserved catabolic mechanism by which unnecessary or dysfunctional cellular components are removed. The dysregulation of autophagy has been implicated in various neurodegenerative diseases, including Alzheimer's disease (AD). Understanding the molecular mechanism(s)/molecules that influence autophagy may provide important insights into developing therapeutic strategies against AD and other neurodegenerative disorders. Engulfment adaptor phosphotyrosine-binding domain-containing protein 1 (GULP1) is an adaptor that interacts with amyloid precursor protein (APP) to promote amyloid-ß peptide production via an unidentified mechanism. Emerging evidence suggests that GULP1 has a role in autophagy. Here, we show that GULP1 is involved in autophagy through an interaction with autophagy-related 14 (ATG14), which is a regulator of autophagosome formation. GULP1 potentiated the stimulatory effect of ATG14 on autophagy by modulating class III phosphatidylinositol 3-kinase complex 1 (PI3KC3-C1) activity. The effect of GULP1 is attenuated by a GULP1 mutation (GULP1m) that disrupts the GULP1-ATG14 interaction. Conversely, PI3KC3-C1 activity is enhanced in cells expressing APP but not in those expressing an APP mutant that does not bind GULP1, which suggests a role of GULP1-APP in regulating PI3KC3-C1 activity. Notably, GULP1 facilitates the targeting of ATG14 to the endoplasmic reticulum (ER). Moreover, the levels of both ATG14 and APP are elevated in the autophagic vacuoles (AVs) of cells expressing GULP1, but not in those expressing GULP1m. APP processing is markedly enhanced in cells co-expressing GULP1 and ATG14. Hence, GULP1 alters APP processing by promoting the entry of APP into AVs. In summary, we unveil a novel role of GULP1 in enhancing the targeting of ATG14 to the ER to stimulate autophagy and, consequently, APP processing.


Subject(s)
Adaptor Proteins, Signal Transducing , Amyloid beta-Protein Precursor , Autophagy-Related Proteins , Autophagy , Humans , Amyloid beta-Protein Precursor/metabolism , Amyloid beta-Protein Precursor/genetics , Autophagy-Related Proteins/metabolism , Autophagy-Related Proteins/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Vesicular Transport/metabolism , Adaptor Proteins, Vesicular Transport/genetics , HEK293 Cells , Protein Binding , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Class III Phosphatidylinositol 3-Kinases/metabolism , Class III Phosphatidylinositol 3-Kinases/genetics , Vesicular Transport Proteins/metabolism , Vesicular Transport Proteins/genetics
16.
J Cell Biol ; 223(9)2024 Sep 02.
Article in English | MEDLINE | ID: mdl-38980288

ABSTRACT

Autophagy is essential for maintaining glucose homeostasis. However, the mechanism by which cells sense and respond to glucose starvation to induce autophagy remains incomplete. Here, we show that calcium serves as a fundamental triggering signal that connects environmental sensing to the formation of the autophagy initiation complex during glucose starvation. Mechanistically, glucose starvation instigates the release of vacuolar calcium into the cytoplasm, thus triggering the activation of Rck2 kinase. In turn, Rck2-mediated Atg11 phosphorylation enhances Atg11 interactions with Bmh1/2 bound to the Snf1-Sip1-Snf4 complex, leading to recruitment of vacuolar membrane-localized Snf1 to the PAS and subsequent Atg1 activation, thereby initiating autophagy. We also identified Glc7, a protein phosphatase-1, as a critical regulator of the association between Bmh1/2 and the Snf1 complex. We thus propose that calcium-triggered Atg11-Bmh1/2-Snf1 complex assembly initiates autophagy by controlling Snf1-mediated Atg1 activation in response to glucose starvation.


Subject(s)
Autophagy , Glucose , Protein Serine-Threonine Kinases , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Autophagy-Related Proteins/metabolism , Autophagy-Related Proteins/genetics , Calcium/metabolism , Glucose/metabolism , Multiprotein Complexes/metabolism , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Vacuoles/metabolism , Vacuoles/genetics
17.
J Cancer Res Clin Oncol ; 150(7): 335, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38969831

ABSTRACT

BACKGROUND: Ubiquilin-4 (UBQLN4), a member of the ubiquilin family, has received limited attention in cancer research to date. Here, we investigated for the first time the functional role and mechanism of UBQLN4 in non-small cell lung cancer (NSCLC). METHODS: The Cancer Genome Atlas (TCGA) database was employed to validate UBQLN4 as a differentially expressed gene. Expression differences of UBQLN4 in NSCLC cells and tissues were assessed using immunohistochemistry (IHC) experiment and western blotting (WB) experiment. Kaplan-Meier analysis was conducted to examine the association between UBQLN4 expression and NSCLC prognosis. Functional analyses of UBQLN4 were performed through cell counting kit-8 (CCK-8), colony formation, and transwell invasion assays. The impact of UBQLN4 on tumor-associated signaling pathways was assessed using the path scan intracellular signaling array. In vivo tumorigenesis experiments were conducted to further investigate the influence of UBQLN4 on tumor formation. RESULTS: UBQLN4 exhibited up-regulation in both NSCLC tissues and cells. Additionally, over-expression of UBQLN4 was associated with an unfavorable prognosis in NSCLC patients. Functional loss analyses demonstrated that inhibiting UBQLN4 could suppress the proliferation and invasion of NSCLC cells in both in vitro and in vivo settings. Conversely, functional gain experiments yielded opposite results. Path scan intracellular signaling array results suggested that the role of UBQLN4 is associated with the PI3K/AKT pathway, a correlation substantiated by in vitro and in vivo tumorigenesis experiments. CONCLUSION: We validated that UBQLN4 promotes proliferation and invasion of NSCLC cells by activating the PI3K/AKT pathway, thereby facilitating the progression of NSCLC. These findings underscore the potential of targeting UBQLN4 as a therapeutic strategy for NSCLC.


Subject(s)
Autophagy-Related Proteins , Carcinoma, Non-Small-Cell Lung , Cell Proliferation , Lung Neoplasms , Neoplasm Invasiveness , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Animals , Mice , Female , Male , Prognosis , Cell Line, Tumor , Mice, Nude , Cell Movement , Gene Expression Regulation, Neoplastic , Middle Aged , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Carrier Proteins , Nuclear Proteins
18.
FEMS Yeast Res ; 242024 Jan 09.
Article in English | MEDLINE | ID: mdl-39025789

ABSTRACT

Pexophagy is a type of autophagy that selectively degrades peroxisomes and can be classified as either macropexophagy or micropexophagy. During macropexophagy, individual peroxisomes are sequestered by pexophagosomes and transported to the vacuole for degradation, while in micropexophagy, peroxisomes are directly engulfed by the septated vacuole. To date, some autophagy-related genes (ATGs) required for pexophagy have been identified through plate-based assays performed primarily under micropexophagy-induced conditions. Here, we developed a novel high-throughput screening system using fluorescence-activated cell sorting (FACS) to identify genes required for macropexophagy. Using this system, we discovered KpATG14, a gene that could not be identified previously in the methylotrophic yeast Komagataella phaffii due to technical limitations. Microscopic and immunoblot analyses found that KpAtg14 was required for both macropexophagy and micropexophagy. We also revealed that KpAtg14 was necessary for recruitment of the downstream factor KpAtg5 at the preautophagosomal structure (PAS), and consequently, for bulk autophagy. We anticipate our assay to be used to identify novel genes that are exclusively required for macropexophagy, leading to better understanding of the physiological significance of the existing two types of autophagic degradation pathways for peroxisomes.


Subject(s)
Flow Cytometry , Peroxisomes , Saccharomycetales , Peroxisomes/metabolism , Peroxisomes/genetics , Saccharomycetales/genetics , Saccharomycetales/metabolism , High-Throughput Screening Assays , Autophagy , Vacuoles/metabolism , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Macroautophagy/genetics
19.
Immunity ; 57(8): 1908-1922.e6, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39079535

ABSTRACT

In squamous cell carcinoma (SCC), macrophages responding to interleukin (IL)-33 create a TGF-ß-rich stromal niche that maintains cancer stem cells (CSCs), which evade chemotherapy-induced apoptosis in part via activation of the NRF2 antioxidant program. Here, we examined how IL-33 derived from CSCs facilitates the development of an immunosuppressive microenvironment. CSCs with high NRF2 activity redistributed nuclear IL-33 to the cytoplasm and released IL-33 as cargo of large oncosomes (LOs). Mechanistically, NRF2 increased the expression of the lipid scramblase ATG9B, which exposed an "eat me" signal on the LO surface, leading to annexin A1 (ANXA1) loading. These LOs promoted the differentiation of AXNA1 receptor+ myeloid precursors into immunosuppressive macrophages. Blocking ATG9B's scramblase activity or depleting ANXA1 decreased niche macrophages and hindered tumor progression. Thus, IL-33 is released from live CSCs via LOs to promote the differentiation of alternatively activated macrophage, with potential relevance to other settings of inflammation and tissue repair.


Subject(s)
Cell Differentiation , Interleukin-33 , Macrophages , Neoplastic Stem Cells , Interleukin-33/metabolism , Animals , Humans , Mice , Macrophages/immunology , Macrophages/metabolism , Neoplastic Stem Cells/immunology , Neoplastic Stem Cells/metabolism , Tumor Microenvironment/immunology , Carcinoma, Squamous Cell/immunology , Carcinoma, Squamous Cell/metabolism , Mice, Inbred C57BL , Autophagy-Related Proteins/metabolism , Cell Line, Tumor
20.
Zool Res ; 45(4): 937-950, 2024 07 18.
Article in English | MEDLINE | ID: mdl-39021082

ABSTRACT

Autophagy plays a pivotal role in diverse biological processes, including the maintenance and differentiation of neural stem cells (NSCs). Interestingly, while complete deletion of Fip200 severely impairs NSC maintenance and differentiation, inhibiting canonical autophagy via deletion of core genes, such as Atg5, Atg16l1, and Atg7, or blockade of canonical interactions between FIP200 and ATG13 (designated as FIP200-4A mutant or FIP200 KI) does not produce comparable detrimental effects. This highlights the likely critical involvement of the non-canonical functions of FIP200, the mechanisms of which have remained elusive. Here, utilizing genetic mouse models, we demonstrated that FIP200 mediates non-canonical autophagic degradation of p62/sequestome1, primarily via TAX1BP1 in NSCs. Conditional deletion of Tax1bp1 in fip200 hGFAP conditional knock-in (cKI) mice led to NSC deficiency, resembling the fip200 hGFAP conditional knockout (cKO) mouse phenotype. Notably, reintroducing wild-type TAX1BP1 not only restored the maintenance of NSCs derived from tax1bp1-knockout fip200 hGFAP cKI mice but also led to a marked reduction in p62 aggregate accumulation. Conversely, a TAX1BP1 mutant incapable of binding to FIP200 or NBR1/p62 failed to achieve this restoration. Furthermore, conditional deletion of Tax1bp1 in fip200 hGFAP cKO mice exacerbated NSC deficiency and p62 aggregate accumulation compared to fip200 hGFAP cKO mice. Collectively, these findings illustrate the essential role of the FIP200-TAX1BP1 axis in mediating the non-canonical autophagic degradation of p62 aggregates towards NSC maintenance and function, presenting novel therapeutic targets for neurodegenerative diseases.


Subject(s)
Autophagy-Related Proteins , Autophagy , Neural Stem Cells , Animals , Neural Stem Cells/physiology , Neural Stem Cells/metabolism , Mice , Autophagy/physiology , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Mice, Knockout , Sequestosome-1 Protein/metabolism , Sequestosome-1 Protein/genetics , Gene Expression Regulation , Neoplasm Proteins
SELECTION OF CITATIONS
SEARCH DETAIL