Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.653
Filter
1.
Arch Virol ; 169(7): 155, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951272

ABSTRACT

Given the high prevalence of avian leukosis virus subgroup K (ALV-K) in chickens in China, the positive rate of ALV-K in local chickens in Henan province was investigated, and the genetic region encoding the glycoprotein gp85 of isolates from positive chickens was analyzed. The positive rate of ALV-K in local chickens in Henan was found to be 87.2% (41/47). Phylogenetic analysis of gp85 sequences revealed six clusters that differed in their host range regions (hr1 and hr2) and variable regions (vr1, vr2, and vr3). Evidence of recombination of hr1, hr2, vr1, vr2, and vr3 was observed between the different clusters. The isolate HN23LS02 appears to have obtained its hr1 and hr2 regions from separate lineages via recombination but without having a significant affect on the replication capacity of the virus.


Subject(s)
Avian Leukosis Virus , Avian Leukosis , Chickens , Host Specificity , Phylogeny , Poultry Diseases , Recombination, Genetic , Viral Envelope Proteins , Animals , Avian Leukosis Virus/genetics , Avian Leukosis Virus/classification , Avian Leukosis Virus/isolation & purification , Chickens/virology , Avian Leukosis/virology , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , Poultry Diseases/virology , China
2.
Poult Sci ; 103(7): 103835, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38772092

ABSTRACT

Avian leukemia virus subgroup J (ALV-J) and chicken infectious anemia virus (CIAV) can be vertically transmitted; however, the pathogenicity of vertically transmitted coinfection with these 2 pathogens has not been studied. In this study, we created a model of chick morbidity in which chicks carried either ALV-J, CIAV, or both viruses via embryo inoculation. Thereafter, we analyzed the effects of vertically transmitted coinfection with CIAV and ALV-J on the pathogenicity of ALV-J and performed a purification assay based on hatching, mortality viremia positivity, and detection of fecal ALV-p27 antigen rates, and body weight. The hatching rate of the ALV-J+CIAV group was 68.57%, lower than those of the single infection and control groups. The survival curve showed that the mortality rates of the CIAV and ALV-J coinfection groups were higher than those of the single infection and control groups. Body weight statistics showed that coinfection aggravated the 7-d growth inhibition effect. The results of ALV-p27 antigen detection in cell culture supernatants showed that the positivity rates of the ALV-J and ALV-J+CIAV groups were 100% at all ages and 0% in the control group. The results of ALV-p27 antigen detection by anal swabs showed that the positivity rates of the ALV-J group were 92.86, 90.90, 88.89, and 93.33% at all ages, and that the ALV-J p27 positivity detection rate of anal swabs was lower than that of plasma virus isolation. The immune organ index of the ALV-J+CIAV group was significantly or very significantly lower than those of the single infection and control groups. The immune organ viral load showed that coinfection with CIAV and ALV-J promoted the proliferation of ALV-J and CIAV in immune organs. Coinfection with ALV-J and CIAV reduced chicken embryo hatchability and increased chick mortality and growth inhibition relative to their respective single infections. Additionally, coinfection with ALV-J + CIAV was even more detrimental in inducing immune organ atrophy (e.g., the thymus, spleen, and bursa), and promoted individual virus replication during coinfection.


Subject(s)
Avian Leukosis Virus , Avian Leukosis , Chicken anemia virus , Chickens , Circoviridae Infections , Coinfection , Infectious Disease Transmission, Vertical , Poultry Diseases , Animals , Avian Leukosis Virus/physiology , Avian Leukosis Virus/pathogenicity , Chickens/virology , Avian Leukosis/virology , Coinfection/veterinary , Coinfection/virology , Poultry Diseases/virology , Chicken anemia virus/physiology , Chicken anemia virus/pathogenicity , Circoviridae Infections/veterinary , Circoviridae Infections/virology , Infectious Disease Transmission, Vertical/veterinary , Virulence , Chick Embryo
3.
Poult Sci ; 103(6): 103755, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38663206

ABSTRACT

Avian leukosis virus subgroup K (ALV-K) is composed of newly emerging isolates, which cluster separately from the well-characterized subgroups A, B, C, D, E, and J in sequence analysis, and exhibits a specific host range and a unique pattern of superinfection interference. Avian leukosis virus subgroup K replicate more slowly in avian cells than other ALV strains, leading to escaped detection during ALV eradication, but the underlying mechanism are largely unknown. In our previous study, we have reported that JS11C1 and most of other suspected ALV-K strains possessed unique mutations in the U3 region. Here, we selected 5 mutations in some important transcriptional regulation elements to explore the possible factor contributing for the lower activity of LTR, including CA-TG mutation in the CAAT box, 21 nt deletion in the CAAT box, A-G and A-T mutations in the CArG boxes, 11 nt insertion in the PRE boxes, and C-T mutation in the TATA box. On the basis of infectious clone of JS11C1, we demonstrated that the 11 nt fragment in the PRE boxes was associated with the transcription activity of LTR, the enhancer ability of U3, and the replication capacity of the virus. Notably, we determined the differential U3-protein interaction profile of ALVs and found that the 11 nt fragment specifically binds to cellular SERPINE1 mRNA binding protein 1 (SERBP1) to increase the LTR activity and enhance virus replication. Collectively, these findings reveal that a 11 nt fragment in the U3 gene contributed to its binding ability to the cellular SERBP1 to enhance its transcription and the infectious virus productions in avian cells. This study highlighted the vital role of host factor in retrovirus replication and thus provides a new perspective to elucidate the interaction between retrovirus and its host and a molecular basis to develop efficient strategies against retroviruses.


Subject(s)
Avian Leukosis Virus , Avian Leukosis , Chickens , Avian Leukosis Virus/physiology , Avian Leukosis Virus/genetics , Animals , Avian Leukosis/virology , Poultry Diseases/virology , Transcription, Genetic , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Virus Replication , Cell Line , Mutation
4.
Poult Sci ; 103(6): 103671, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38569240

ABSTRACT

N6-methyladenosine (m6A) methylation in transcripts has been suggested to influence tumorigenesis in liver tumors caused by the avian leukosis virus subgroup J (ALV-J). However, m6A modifications during ALV-J infection in vitro remain unclear. Herein, we performed m6A and RNA sequencing in ALV-J-infected chicken fibroblasts (DF-1). A total of 51 differentially expressed genes containing differentially methylated peaks were identified, which were markedly enriched in microRNAs (miRNAs) in cancer cells as well as apoptosis, mitophagy and autophagy, RNA degradation, and Hippo and MAPK signaling pathways. Correlation analysis indicated that YTHDC1 (m6A-reader gene) plays a key role in m6A modulation during ALV-J infection. The env gene of ALV-J harbored the strongest peak, and untranslated regions and long terminal repeats also contained peaks of different degrees. To the best of our knowledge, this is the first thorough analysis of m6A patterns in ALV-J-infected DF-1 cells. Combined with miRNA profiles, this study provides a useful basis for future research into the key pathways of ALV-J infection associated with m6A alteration.


Subject(s)
Adenosine , Avian Leukosis Virus , Avian Leukosis , Chickens , MicroRNAs , Poultry Diseases , Transcriptome , Animals , Avian Leukosis Virus/physiology , MicroRNAs/genetics , MicroRNAs/metabolism , Avian Leukosis/virology , Poultry Diseases/virology , Poultry Diseases/genetics , Adenosine/analogs & derivatives , Adenosine/metabolism , Fibroblasts/virology
5.
Poult Sci ; 103(6): 103693, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38598912

ABSTRACT

Avian leukosis virus subgroup J (ALV-J) is a retrovirus that can cause immunosuppression and tumors in chicken. However, relative pathogenesis is still not clear. At present, metabolomics has shown great potential in the screening of tumor metabolic markers, prognostic evaluation, and drug target design. In this study, we utilize an untargeted metabolomics approach based on ultrahigh-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UHPLC-QTOF-MS) to analyze the metabolic changes in chicken embryo fibroblast (CEF) cells infected by ALV-J. We found that ALV-J infection significantly altered a wealth of metabolites compared with control group. Additionally, most of the differentially expressed metabolites belonged to lipid metabolism, purine nucleotide metabolism and amino acid metabolism. Among them, the proportion of lipid metabolites account for the highest proportion (around 31%). Results suggest that these changes may be conductive to the formation of virion, thereby promoting the replication of ALV-J. These data provided metabolic evidence and potential biomarkers for the cellular metabolic changes induced by ALV-J, and provided important insight for further understanding the replication needs and pathogenesis of ALV-J.


Subject(s)
Avian Leukosis Virus , Fibroblasts , Metabolomics , Poultry Diseases , Animals , Avian Leukosis Virus/physiology , Metabolomics/methods , Chick Embryo , Fibroblasts/virology , Chromatography, High Pressure Liquid/veterinary , Poultry Diseases/virology , Tandem Mass Spectrometry/veterinary , Avian Leukosis/virology , Chickens , Metabolome
6.
Analyst ; 149(9): 2747-2755, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38563739

ABSTRACT

Avian leukemia is an infectious tumorous disease of chickens caused by subgroup A of the avian leukemia virus (ALV-A), which mainly causes long-term viremia, slow growth, immune suppression, decreased production performance, multi-tissue tumors, and even death. The infection rate of this disease is very high in chicken herds in China, causing huge economic losses to the poultry industry every year. We successfully expressed the specific antigen protein of ALV (P27) through recombinant protein technology and screened a pair of highly sensitive monoclonal antibodies (mAbs) through mouse immunity, cell fusion, and antibody pairing. Based on this pair of antibodies, we established a dual antibody sandwich ELISA and gold nanoparticle immunochromatographic strip (AuNP-ICS) detection method. In addition, the parameters of the dual antibody sandwich ELISA and AuNP-ICS were optimized under different reaction conditions, which resulted in the minimum detection limits of 0.2 ng mL-1 and 1.53 ng ml-1, respectively. Commonly available ELISA and AuNP-ICS products on the market were compared, and we found that our established immune rapid chromatography had higher sensitivity. This established AuNP-ICS had no cross-reactivity with Influenza A (H1N1), Influenza A (H9N2), respiratory syncytial virus (RSV), varicella-zoster virus (VZV), Listeria monocytogenes listeriolysin (LLO), and Staphylococcal enterotoxin SED or SEC. Finally, the established AuNP-ICS was used to analyze 35 egg samples, and the results showed 5 positive samples and 30 negative samples. The AuNP-ICS rapid detection method established by our group had good specificity, high sensitivity, and convenience, and could be applied to the clinical sample detection of ALV-A.


Subject(s)
Avian Leukosis Virus , Chromatography, Affinity , Enzyme-Linked Immunosorbent Assay , Gold , Metal Nanoparticles , Gold/chemistry , Metal Nanoparticles/chemistry , Animals , Avian Leukosis Virus/isolation & purification , Avian Leukosis Virus/immunology , Chromatography, Affinity/methods , Enzyme-Linked Immunosorbent Assay/methods , Antigens, Viral/immunology , Antigens, Viral/analysis , Egg White/chemistry , Reagent Strips , Chickens , Limit of Detection , Mice , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/chemistry
7.
Virol J ; 21(1): 83, 2024 04 10.
Article in English | MEDLINE | ID: mdl-38600532

ABSTRACT

BACKGROUND: Avian leukosis virus Subgroup-J (ALV-J) is a rapidly oncogenic evolving retrovirus infecting a variety of avian species; causing severe economic losses to the local poultry industry. METHODS: To investigate ALV-J, a total of 117 blood samples and 57 tissue specimens of different organs were collected for virological, and pathological identification, serological examinations, molecular characterization, and sequencing analysis. To the best of our knowledge, this is the first detailed report recorded in broiler flocks in Egypt. The present study targets the prevalence of a viral tumor disease circulating in broiler flocks in the El-Sharqia, El-Dakahliya, and Al-Qalyubiyya Egyptian governorates from 2021 to 2023 using different diagnostic techniques besides ALV-J gp85 genetic diversity determination. RESULT: We first isolated ALV-J on chicken embryo rough cell culture; showing aggregation, rounding, and degeneration. Concerning egg inoculation, embryonic death, stunting, and curling were observed. Only 79 serum samples were positive for ALV-J (67.52%) based on the ELISA test. Histopathological investigation showed tumors consist of uniform masses, usually well-differentiated myelocytes, lymphoid cells, or both in the liver, spleen, and kidneys. Immunohistochemical examination showed that the myelocytomatosis-positive signals were in the spleen, liver, and kidney. The PCR assay of ALV-J gp85 confirmed 545 base pairs with only 43 positive samples (75.4%). Two positive samples were sequenced and submitted to the Genbank with accession numbers (OR509852-OR509853). Phylogenetic analysis based on the gp85 gene showed that the ALV-J Dakahlia-2 isolate is genetically related to ALV-EGY/YA 2021.3, ALV-EGY/YA 2021.4, ALV-EGY/YA 2021.14, and ALV-EGY/YA 2021.9 with amino acid identity percentage 96%, 97%; 96%, 96%; respectively. Furthermore, ALV-J Sharqia-1 isolate is highly genetically correlated to ALV-EGY/YA 2021.14, and ALV-EGY/YA 2021.9, ALV-J isolate QL1, ALV-J isolate QL4, ALV-J isolate QL3, ALV-EGY/YA 2021.4 with amino acid identity percentage 97%, 97%; 98%, 97%, 97%, 95%; respectively. CONCLUSIONS: This study confirmed that ALV-J infection had still been prevalent in broilers in Egypt, and the genetic characteristics of the isolates are diverse.


Subject(s)
Avian Leukosis Virus , Avian Leukosis , Poultry Diseases , Chick Embryo , Animals , Chickens , Avian Leukosis/pathology , Avian Leukosis Virus/genetics , Egypt/epidemiology , Phylogeny , Evolution, Molecular , Amino Acids/genetics
8.
Arch Virol ; 169(5): 94, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594417

ABSTRACT

Considering that avian leukosis virus (ALV) infection has inflicted massive economic losses on the poultry breeding industry in most countries, its early diagnosis remains an important measure for timely treatment and control of the disease, for which a rapid and sensitive point-of-care test is required. We established a user-friendly, economical, and rapid visualization method for ALV amplification products based on reverse transcription loop-mediated isothermal amplification (RT-LAMP) combined with an immunochromatographic strip in a lateral flow device (LFD). Using the ALVp27 gene as the target, five RT-LAMP primers and one fluorescein-isothiocyanate-labeled probe were designed. After 60 min of RT-LAMP amplification at 64 °C, the products could be visualized directly using the LFD. The detection limit of this assay for ALV detection was 102 RNA copies/µL, and the sensitivity was 100 times that of reverse transcription polymerase chain reaction (RT-PCR), showing high specificity and sensitivity. To verify the clinical practicality of this assay for detecting ALV, the gold standard RT-PCR method was used for comparison, and consistent results were obtained with both assays. Thus, the assay described here can be used for rapid detection of ALV in resource-limited environments.


Subject(s)
Avian Leukosis Virus , Molecular Diagnostic Techniques , Reverse Transcription , Animals , Avian Leukosis Virus/genetics , Sensitivity and Specificity , Nucleic Acid Amplification Techniques/methods
9.
Poult Sci ; 103(6): 103617, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38547674

ABSTRACT

Avian leukosis virus Subgroup J (ALV-J) exhibits high morbidity and pathogenicity, affecting approximately 20% of poultry farms. It induces neoplastic diseases and immunosuppression. Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1), a proapoptotic mitochondrial protein in the B-cell lymphoma-2 (Bcl-2) family, plays a role in apoptosis in cancer cells. However, the connection between the PMAIP1 gene and ALV-J pathogenicity remains unexplored. This study investigates the potential impact of the PMAIP1 gene on ALV-J replication and its regulatory mechanisms. Initially, we examined PMAIP1 expression using quantitative real-time PCR (qRT-PCR) in vitro and in vivo. Furthermore, we manipulated PMAIP1 expression in chicken fibroblast cells (DF-1) and assessed its effects on ALV-J infection through qRT-PCR, immunofluorescence assay (IFA), and western blotting (WB). Our findings reveal a significant down-regulation of PMAIP1 in the spleen, lung, and kidney, coupled with an up-regulation in the bursa and liver of ALV-J infected chickens compared to uninfected ones. Additionally, DF-1 cells infected with ALV-J displayed a notable up-regulation of PMAIP1 at 6, 12, 24, 48, 74, and 108 h. Over-expression of PMAIP1 enhanced ALV-J replication, interferon expression, and proinflammatory factors. Conversely, interference led to contrasting results. Furthermore, we observed that PMAIP1 promotes virus replication by modulating mitochondrial function. In conclusion, the PMAIP1 gene facilitates virus replication by regulating mitochondrial function, thereby enriching our understanding of mitochondria-related genes and their involvement in ALV-J infection, offering valuable insights for avian leukosis disease resistance strategies.


Subject(s)
Avian Leukosis Virus , Avian Leukosis , Chickens , Mitochondria , Poultry Diseases , Virus Replication , Animals , Avian Leukosis Virus/physiology , Poultry Diseases/virology , Poultry Diseases/genetics , Mitochondria/metabolism , Avian Leukosis/virology , Avian Proteins/genetics , Avian Proteins/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism
10.
Sci Rep ; 14(1): 2870, 2024 02 04.
Article in English | MEDLINE | ID: mdl-38311642

ABSTRACT

Lymphoid leukosis is a poultry neoplastic disease caused by avian leukosis virus (ALV) and is characterized by high morbidity and variable mortality rates in chicks. Currently, no effective treatment and vaccination is the only means to control it. This study exploited the immunoinformatics approaches to construct multi-epitope vaccine against ALV. ABCpred and IEDB servers were used to predict B and T lymphocytes epitopes from the viral proteins, respectively. Antigenicity, allergenicity and toxicity of the epitopes were assessed and used to construct the vaccine with suitable adjuvant and linkers. Secondary and tertiary structures of the vaccine were predicted, refined and validated. Structural errors, solubility, stability, immune simulation, dynamic simulation, docking and in silico cloning were also evaluated.The constructed vaccine was hydrophilic, antigenic and non-allergenic. Ramchandran plot showed most of the residues in the favored and additional allowed regions. ProsA server showed no errors in the vaccine structure. Immune simulation showed significant immunoglobulins and cytokines levels. Stability was enhanced by disulfide engineering and molecular dynamic simulation. Docking of the vaccine with chicken's TLR7 revealed competent binding energies.The vaccine was cloned in pET-30a(+) vector and efficiently expressed in Escherichia coli. This study provided a potent peptide vaccine that could assist in tailoring a rapid and cost-effective vaccine that helps to combat ALV. However, experimental validation is required to assess the vaccine efficiency.


Subject(s)
Avian Leukosis Virus , Animals , Molecular Docking Simulation , Protein Subunit Vaccines , Immunoinformatics , Chickens , Epitopes, T-Lymphocyte , Molecular Dynamics Simulation , Epitopes, B-Lymphocyte , Vaccines, Subunit , Computational Biology
11.
BMC Vet Res ; 20(1): 41, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38302973

ABSTRACT

The coinfection of ALVs (ALV-J plus ALV-A or/and ALV-B) has played an important role in the incidence of tumors recently found in China in local breeds of yellow chickens. The study aims to obtain a better knowledge of the function and relevance of ALV coinfection in the clinical disease of avian leukosis, as well as its unique effect on the pathogenicity in Three-yellow chickens. One-day-old Three-yellow chicks (one day old) were infected with ALV-A, ALV-B, and ALV-J mono-infections, as well as ALV-A + J, ALV-B + J, and ALV-A + B + J coinfections, via intraperitoneal injection, and the chicks were then grown in isolators until they were 15 weeks old. The parameters, including the suppression of body weight gain, immune organ weight, viremia, histopathological changes and tumor incidence, were observed and compared with those of the uninfected control birds. The results demonstrated that coinfection with ALVs could induce more serious suppression of body weight gain (P < 0.05), damage to immune organs (P < 0.05) and higher tumor incidences than monoinfection, with triple infection producing the highest pathogenicity. The emergence of visible tumors and viremia occurred faster in the coinfected birds than in the monoinfected birds. These findings demonstrated that ALV coinfection resulted in considerably severe pathogenic and immunosuppressive consequences.


Subject(s)
Avian Leukosis Virus , Avian Leukosis , Coinfection , Neoplasms , Poultry Diseases , Animals , Chickens , Coinfection/veterinary , Virulence , Viremia/veterinary , Avian Leukosis/epidemiology , Neoplasms/veterinary , Body Weight , Poultry Diseases/epidemiology
12.
PLoS Pathog ; 20(2): e1011928, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38324558

ABSTRACT

The subgroup J avian leukosis virus (ALV-J), a retrovirus, uses its gp85 protein to bind to the receptor, the chicken sodium hydrogen exchanger isoform 1 (chNHE1), facilitating viral invasion. ALV-J is the main epidemic subgroup and shows noteworthy mutations within the receptor-binding domain (RBD) region of gp85, especially in ALV-J layer strains in China. However, the implications of these mutations on viral replication and transmission remain elusive. In this study, the ALV-J layer strain JL08CH3-1 exhibited a more robust replication ability than the prototype strain HPRS103, which is related to variations in the gp85 protein. Notably, the gp85 of JL08CH3-1 demonstrated a heightened binding capacity to chNHE1 compared to HPRS103-gp85 binding. Furthermore, we showed that the specific N123I mutation within gp85 contributed to the enhanced binding capacity of the gp85 protein to chNHE1. Structural analysis indicated that the N123I mutation primarily enhanced the stability of gp85, expanded the interaction interface, and increased the number of hydrogen bonds at the interaction interface to increase the binding capacity between gp85 and chNHE1. We found that the N123I mutation not only improved the viral replication ability of ALV-J but also promoted viral shedding in vivo. These comprehensive data underscore the notion that the N123I mutation increases receptor binding and intensifies viral replication.


Subject(s)
Avian Leukosis Virus , Avian Leukosis , Poultry Diseases , Animals , Avian Leukosis Virus/genetics , Avian Leukosis Virus/chemistry , Mutation , Chickens , Protein Isoforms/genetics , Viral Envelope Proteins/genetics
13.
Vet Microbiol ; 291: 110012, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38387235

ABSTRACT

The ubiquitin-binding enzyme E2J1 is located on the endoplasmic reticulum membrane. It plays a role in transport throughout the process of ubiquitination. In mammals, UBE2J1 can promote RNA virus replication. However, the biological function of chicken UBE2J1 is unclear. In this study, chicken UBE2J1 was cloned for the first time, and UBE2J1 overexpression and shRNA knockdown plasmids were constructed. In chicken embryo fibroblasts, overexpression of UBE2J1 promoted the replication of subtype A avian leukosis virus, while knockdown of UBE2J1 inhibited the replication of ALV-A virus. In addition, we divided virus replication into virus adsorption and invasion into DF-1 cells, synthesis of proviral DNA, and release of viral particles. UBE2J1 promoted the replication of ALV-A virus by promoting the synthesis of proviral DNA. This result was caused by UBE2J1 inhibiting the production of interferon by inhibiting the STAT3/IRF1 pathway. We mutated ser at position 184 of UBE2J1 to Gly and found that this site plays a role as the phosphorylation site of UBE2J1. We confirmed that UBE2J1 promotes ALV-A replication in chicken embryo fibroblasts by inhibiting the STAT3/IRF1 pathway. This study provides new ideas and insights into ubiquitin-related proteins and antiviral immunity.


Subject(s)
Avian Leukosis Virus , Avian Leukosis , Animals , Chick Embryo , Avian Leukosis Virus/genetics , Avian Leukosis Virus/metabolism , Chickens , Mammals , Proviruses , Signal Transduction , Ubiquitins , STAT3 Transcription Factor/metabolism , Interferon Regulatory Factors/metabolism , Ubiquitin-Conjugating Enzymes/metabolism
14.
J Virol ; 97(11): e0093723, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37909729

ABSTRACT

IMPORTANCE: The synergy of two oncogenic retroviruses is an essential phenomenon in nature. The synergistic replication of ALV-J and REV in poultry flocks increases immunosuppression and pathogenicity, extends the tumor spectrum, and accelerates viral evolution, causing substantial economic losses to the poultry industry. However, the mechanism of synergistic replication between ALV-J and REV is still incompletely elusive. We observed that microRNA-155 targets a dual pathway, PRKCI-MAPK8 and TIMP3-MMP2, interacting with the U3 region of ALV-J and REV, enabling synergistic replication. This work gives us new targets to modulate ALV-J and REV's synergistic replication, guiding future research on the mechanism.


Subject(s)
Avian Leukosis Virus , Avian Leukosis , MicroRNAs , Poultry Diseases , Reticuloendotheliosis virus , Animals , Reticuloendotheliosis virus/genetics , Avian Leukosis Virus/genetics , Chickens , MicroRNAs/genetics , Virus Replication
15.
J Virol ; 97(11): e0115223, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37902396

ABSTRACT

IMPORTANCE: 3'UTRs can affect gene transcription and post-transcriptional regulation in multiple ways, further influencing the function of proteins in a unique manner. Recently, ALV-J has been mutating and evolving rapidly, especially the 3'UTR of viral genome. Meanwhile, clinical symptoms caused by ALV-J have changed significantly. In this study, we found that the ALV-J strains containing △-r-TM-type 3'UTR are the most abundant. By constructing ALV-J infectious clones and subgenomic vectors containing different 3'UTRs, we prove that 3'UTRs directly affect viral tissue preference and can promote virus replication as an enhancer. ALV-J strain containing 3'UTR of △-r-TM proliferated fastest in primary cells. All five forms of 3'UTRs can assist intron-containing viral mRNA nuclear export, with similar efficiency. ALV-J mRNA half-life is not influenced by different 3'UTRs. Our results dissect the roles of 3'UTR on regulating viral replication and pathogenicity, providing novel insights into potential anti-viral strategies.


Subject(s)
3' Untranslated Regions , Active Transport, Cell Nucleus , Avian Leukosis Virus , Virus Replication , Gene Expression , Gene Expression Regulation , Avian Leukosis Virus/genetics , Avian Leukosis Virus/physiology
16.
Viruses ; 15(9)2023 08 23.
Article in English | MEDLINE | ID: mdl-37766196

ABSTRACT

Avian leukosis (AL), caused by avian leukosis virus (ALV), is a contagious tumor disease that results in significant economic losses for the poultry industry. Currently, ALV-A, B, J, and K subgroups are the most common in commercial poultry and cause possible coinfections. Therefore, close monitoring is necessary to avoid greater economic losses. In this study, a novel multiplex quantitative polymerase chain reaction (qPCR) assay was developed to detect ALV-A, ALV-B, ALV-J, and ALV-K with limits of detection of 40, 11, 13.7, and 96 copies/µL, respectively, and no cross-reactivity with other ALV subtypes and avian pathogens. We detected 852 cell cultures inoculated with clinical samples using this method, showing good consistency with conventional PCR and ELISA. The most prevalent ALV strain in Hubei Province, China, was still ALV-J (11.74%). Although single infections with ALV-A, ALV-B, and ALV-K were not found, coinfections with different subgroup strains were identified: 0.7% for ALV-A/J, 0.35% for ALV-B/J, 0.25% for ALV-J/K, and 0.12% for ALV-A/B/K and ALV-A/B/J. Therefore, our novel multiplex qPCR may be a useful tool for molecular epidemiology, clinical detection of ALV, and ALV eradication programs.


Subject(s)
Avian Leukosis Virus , Avian Leukosis , Coinfection , Animals , Avian Leukosis Virus/genetics , Coinfection/diagnosis , Coinfection/veterinary , Avian Leukosis/diagnosis , Cell Culture Techniques , Multiplex Polymerase Chain Reaction
17.
J Virol ; 97(8): e0026723, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37582207

ABSTRACT

Avian leukemia virus subgroup J (ALV-J) causes various diseases associated with tumor formation and decreased fertility and induced immunosuppressive disease, resulting in significant economic losses in the poultry industry globally. Virus usually exploits the host cellular machinery for their replication. Although there are increasing evidences for the cellular proteins involving viral replication, the interaction between ALV-J and host proteins leading to the pivotal steps of viral life cycle are still unclear. Here, we reported that ribonucleoside-diphosphate reductase subunit M2 (RRM2) plays a critical role during ALV-J infection by interacting with capsid protein P27 and activating Wnt/ß-catenin signaling. We found that the expression of RRM2 is effectively increased during ALV-J infection, and that RRM2 facilitates ALV-J replication by interacting with viral capsid protein P27. Furthermore, ALV-J P27 activated Wnt/ß-catenin signaling by promoting ß-catenin entry into the nucleus, and RRM2 activated Wnt/ß-catenin signaling by enhancing its phosphorylation at Ser18 during ALV-J infection. These data suggest that the upregulation of RRM2 expression by ALV-J infection favors viral replication in host cells via activating Wnt/ß-catenin signaling. IMPORTANCE Our results revealed a novel mechanism by which RRM2 facilitates ALV-J growth. That is, the upregulation of RRM2 expression by ALV-J infection favors viral replication by interacting with capsid protein P27 and activating Wnt/ß-catenin pathway in host cells. Furthermore, the phosphorylation of serine at position 18 of RRM2 was verified to be the important factor regulating the activation of Wnt/ß-catenin signaling. This study provides insights for further studies of the molecular mechanism of ALV-J infection.


Subject(s)
Avian Leukosis Virus , Avian Leukosis , Ribonucleoside Diphosphate Reductase , Wnt Signaling Pathway , Animals , Avian Leukosis Virus/metabolism , beta Catenin/metabolism , Capsid Proteins/metabolism , Chickens , Ribonucleoside Diphosphate Reductase/metabolism
18.
Vet Microbiol ; 284: 109821, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37536160

ABSTRACT

While the presence of host cell proteins in virions and their role in viral life cycles have been demonstrated in various viruses, such characteristics have remained largely unknown in avian leukosis virus (ALV). To investigate whether this is the case in ALV, we purified high-integrity and high-purity virions from the avian leukosis virus subgroup J (ALV-J) and subjected them to proteome analysis using nano LC-MS/MS. This analysis identified 53 cellular proteins that are incorporated into mature ALV-J virions, and we verified the reliability of the packaged cellular proteins through subtilisin digestion and immunoblot analysis. Functional annotation revealed the potential functions of these proteins in the viral life cycle and tumorigenesis. Overall, our findings have important implications for understanding the interaction between ALV-J and its host, and provide new insights into the cellular requirements that define ALV-J infection.


Subject(s)
Avian Leukosis Virus , Avian Leukosis , Animals , Chickens , Avian Leukosis Virus/genetics , Tandem Mass Spectrometry/veterinary , Proteomics , Reproducibility of Results
19.
J Vet Diagn Invest ; 35(5): 484-491, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37452573

ABSTRACT

The fowl glioma-inducing virus prototype (FGVp) and its variants, which belong to avian leukosis virus subgroup A (ALV-A), induce cardiomyocyte abnormalities and gliomas in chickens. However, the molecular mechanisms underlying these myocardial changes remain unclear, and ALV-induced tumorigenesis, which is caused by proviral insertional mutagenesis, does not explain the early development of cardiac changes in infected chickens. We established a quantitative PCR (qPCR) assay to measure ALV-A proviral loads in the brains and hearts of FGV-infected Japanese bantam chickens and compared these results with morphologic lesions. Four of 22 bantams had both gliomas and cardiac lesions. Hearts with cardiac lesions had a higher proviral load (10.3 ± 2.7 proviral copies/nucleus) than those without cardiac lesions (0.4 ± 0.4), suggesting that the proviral load in hearts is correlated with the frequency of myocardial changes. Our qPCR method may be useful in the study of ALV-induced cardiomyocyte abnormalities.


Subject(s)
Avian Leukosis Virus , Glioma , Poultry Diseases , Viral Load , Animals , Avian Leukosis Virus/genetics , Chickens , Glioma/pathology , Glioma/veterinary , Poultry Diseases/virology , Proviruses/genetics
20.
Avian Pathol ; 52(4): 264-276, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37194644

ABSTRACT

We previously described cardiomyocyte abnormality caused by Km_5666 strain, a variant of fowl glioma-inducing virus (FGV) prototype, which is an avian leukosis virus (ALV). However, the cardiac involvement appeared to be eradicated from the flock after a few years. An epidemiological survey from 2017 to 2020 was performed to elucidate the current prevalence of the cardiopathogenic strains in this flock. Four of the 71 bantams pathologically examined showed both glioma and cardiomyocyte abnormality, from which three ALV strains were detected. DNA sequencing revealed that several different ALV strains coexisted in each bantam and that the conserved Km_5666 virus fluid also contained at least two different ALV strains. We generated three infectious molecular clones from these samples, named KmN_77_clone_A, KmN_77_clone_B, and Km_5666_clone. The envSU of KmN_77_clone_A shared high sequence identity with that of Km_5666 (94.1%). In contrast, the envSU of KmN_77_clone_B showed >99.2% nucleotide similarity with that of an FGV variant without cardiopathogenicity. Furthermore, Km_5666_clone experimentally reproduced both gliomas and cardiomyocyte abnormality in chickens. From these results, it is suggested that the pathogenic determinant of cardiomyocyte abnormality is located in envSU similar to that of Km_5666. The cloning technique described here is beneficial for evaluating the viral pathogenicity in cases where affected birds are coinfected with several different ALV strains.


Subject(s)
Avian Leukosis Virus , Avian Leukosis , Glioma , Poultry Diseases , Animals , Avian Leukosis Virus/genetics , Chickens , Glioma/veterinary , Clone Cells/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...