Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.058
Filter
1.
J Immunol ; 213(2): 187-203, 2024 07 15.
Article in English | MEDLINE | ID: mdl-38829131

ABSTRACT

The RING finger (RNF) family, a group of E3 ubiquitin ligases, plays multiple essential roles in the regulation of innate immunity and resistance to viral infection in mammals. However, it is still unclear whether RNF proteins affect the production of IFN-I and the replication of avian influenza virus (AIV) in ducks. In this article, we found that duck RNF216 (duRNF216) inhibited the duRIG-I signaling pathway. Conversely, duRNF216 deficiency enhanced innate immune responses in duck embryonic fibroblasts. duRNF216 did not interacted with duRIG-I, duMDA5, duMAVS, duSTING, duTBK1, or duIRF7 in the duck RIG-I pathway. However, duRNF216 targeted duTRAF3 and inhibited duMAVS in the recruitment of duTRAF3 in a dose-dependent manner. duRNF216 catalyzed K48-linked polyubiquitination of duck TRAF3, which was degraded by the proteasome pathway. Additionally, AIV PB1 protein competed with duTRAF3 for binding to duRNF216 to reduce degradation of TRAF3 by proteasomes in the cytoplasm, thereby slightly weakening duRNF216-mediated downregulation of IFN-I. Moreover, although duRNF216 downregulated the IFN-ß expression during virus infection, the expression level of IFN-ß in AIV-infected duck embryonic fibroblasts overexpressing duRNF216 was still higher than that in uninfected cells, which would hinder the viral replication. During AIV infection, duRNF216 protein targeted the core protein PB1 of viral polymerase to hinder viral polymerase activity and viral RNA synthesis in the nucleus, ultimately strongly restricting viral replication. Thus, our study reveals a new mechanism by which duRNF216 downregulates innate immunity and inhibits AIV replication in ducks. These findings broaden our understanding of the mechanisms by which the duRNF216 protein affects AIV replication in ducks.


Subject(s)
Ducks , Immunity, Innate , Influenza A Virus, H5N1 Subtype , Influenza in Birds , Signal Transduction , Ubiquitin-Protein Ligases , Virus Replication , Animals , Ducks/immunology , Ducks/virology , Virus Replication/immunology , Signal Transduction/immunology , Influenza in Birds/immunology , Influenza in Birds/virology , Influenza A Virus, H5N1 Subtype/immunology , Influenza A Virus, H5N1 Subtype/physiology , Immunity, Innate/immunology , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/immunology , Fibroblasts/immunology , Fibroblasts/virology , Avian Proteins/immunology , Avian Proteins/genetics , Avian Proteins/metabolism , Ubiquitination , DEAD Box Protein 58/metabolism , DEAD Box Protein 58/immunology
2.
Poult Sci ; 103(7): 103866, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38833957

ABSTRACT

Avian pathogenic Escherichia coli (APEC) is the causative agent of chicken colibacillosis. Paeoniflorin, a natural ingredient extracted from Paeonia lactiflora, has a variety of pharmacological effects including anti-inflammatory and immunomodulatory. However, its effects and mechanism in APEC-induced acute lung injury (ALI) in chicken is not clear. The aim of this study was to investigate the protective effect of paeoniflorin on APEC-induced ALI and its possible mechanism. Paeoniflorin (25, 50, and 100 mg/kg) was administered by gavage for 5 d starting at 9 d of age and the chicken were infected with APEC by intraperitoneal injection at 12 d of age. The tissues were collected after APEC infection for 36 h for analysis. The results showed that paeoniflorin significantly alleviated the symptoms, increased the survival rate and body weight gain of APEC-infected chicken, and improved the histopathological damages, and reduced APEC loads in lung tissues. In addition, paeoniflorin restored the gene expression of ZO-1, Occludin and Claudin-3 during APEC infection. Moreover, paeoniflorin pretreatment significantly affected the endocannabinoid system (ECs) by increasing DAGL, decreasing MAGL, increasing secretion of 2-AG. Then, paeoniflorin significantly decreased the secretion of IL-1ß, IL-6 and TNF-α in lung tissues, and decreased the mRNA expression of CXCL8, CXCL12, CCL1, CCL5, and CCL17. In addition, paeoniflorin significantly reduced the phosphorylation levels of PI3K, AKT, P65, and IκB. In summary, we found that paeoniflorin inhibited APEC-induced ALI, and its mechanism may be through affecting ECs and inhibiting the activation of PI3K/AKT and NF-κB signaling pathways, which provides a new idea for the prevention and treatment of chicken colibacillosis.


Subject(s)
Acute Lung Injury , Chickens , Escherichia coli Infections , Glucosides , Monoterpenes , NF-kappa B , Phosphatidylinositol 3-Kinases , Poultry Diseases , Proto-Oncogene Proteins c-akt , Signal Transduction , Animals , Acute Lung Injury/prevention & control , Acute Lung Injury/etiology , Acute Lung Injury/veterinary , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Glucosides/pharmacology , Glucosides/administration & dosage , Monoterpenes/pharmacology , Monoterpenes/administration & dosage , Poultry Diseases/prevention & control , Poultry Diseases/drug therapy , Signal Transduction/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , NF-kappa B/metabolism , NF-kappa B/genetics , Escherichia coli Infections/veterinary , Escherichia coli Infections/drug therapy , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Avian Proteins/metabolism , Avian Proteins/genetics , Dose-Response Relationship, Drug , Escherichia coli/drug effects
3.
Poult Sci ; 103(7): 103820, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38759565

ABSTRACT

The "KNDy neurons" located in the hypothalamic arcuate nucleus (ARC) of mammals are known to co-express kisspeptin, neurokinin B (NKB), and dynorphin (DYN), and have been identified as key mediators of the feedback regulation of steroid hormones on gonadotropin-releasing hormone (GnRH). However, in birds, the genes encoding kisspeptin and its receptor GPR54 are genomic lost, leaving unclear mechanisms for feedback regulation of GnRH by steroid hormones. Here, the genes tachykinin 3 (TAC3) and prodynorphin (PDYN) encoding chicken NKB and DYN neuropeptides were successfully cloned. Temporal expression profiling indicated that TAC3, PDYN and their receptor genes (TACR3, OPRK1) were mainly expressed in the hypothalamus, with significantly higher expression at 30W than at 15W. Furthermore, overexpression or interference of TAC3 and PDYN can regulate the GnRH mRNA expression. In addition, in vivo and in vitro assays showed that estrogen (E2) could promote the mRNA expression of TAC3, PDYN, and GnRH, as well as the secretion of GnRH/LH. Mechanistically, E2 could dimerize the nuclear estrogen receptor 1 (ESR1) to regulate the expression of TAC3 and PDYN, which promoted the mRNA and protein expression of GnRH gene as well as the secretion of GnRH. In conclusion, these results revealed that E2 could regulate the GnRH expression through TAC3 and PDYN systems, providing novel insights for reproductive regulation in chickens.


Subject(s)
Avian Proteins , Chickens , Gonadotropin-Releasing Hormone , Protein Precursors , Tachykinins , Animals , Chickens/genetics , Chickens/metabolism , Gonadotropin-Releasing Hormone/metabolism , Gonadotropin-Releasing Hormone/genetics , Tachykinins/genetics , Tachykinins/metabolism , Protein Precursors/genetics , Protein Precursors/metabolism , Avian Proteins/genetics , Avian Proteins/metabolism , Estrogens/metabolism , Enkephalins/genetics , Enkephalins/metabolism , Gene Expression Regulation/drug effects , Female , Male
4.
Poult Sci ; 103(7): 103860, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38795514

ABSTRACT

A large amount of hydrogen sulfide (H2S) is produced in the process of chicken breeding, which can cause serious inflammation and oxidative damage to the respiratory system of chickens. Tea tree oil (TTO) has antioxidant and anti-inflammatory properties. No studies have been reported on the use of TTO in H2S-induced lung injury in chickens. Therefore, in this study, 240 one-day-old Roman pink laying hens were randomly and equally divided into 3 groups: control group (CON), H2S exposure group (AVG, containing H2S), and TTO treatment group (TTG, containing H2S and 0.02 mL/L TTO) to establish an experimental model of TTO treatment with H2S exposure for a period of 42 d. Hematoxylin and eosin (H&E) staining was used to detect lung histopathology. Gene expression profiles were analyzed using transcriptomics. The underlying mechanism of the amelioration of lung injury by TTO was further revealed by antioxidant enzyme assays and qRT-PCR. The results showed that H2S exposure induced significant gene expression of CYP450s (CYP1B1 and CYP1C1) (P < 0.05), and caused intense oxidative stress, apoptosis and inflammation compared with CON. TTO could reduce ROS production and enhance antioxidant capacity (SOD, CAT, T-AOC, and GSH-PX) by regulating the CYP450s/ROS pathway (P < 0.05). Compared with the control group, the treatment group showed significantly decreased expression of apoptotic (Caspase-8, Caspase-3, Bid and Fas) (P < 0.05) and inflammatory (IL-4, IL-16, NF-κB, TNF-α and IFN-γ) (P < 0.05) factors in the lung. This study revealed that TTO regulated CYP450s/ROS pathway to alleviate H2S-induced lung injury in chickens. These results enrich the theory of the action mechanism of TTO on H2S-exposed chicken lungs and are of great value for the treatment of H2S-exposed animals.


Subject(s)
Chickens , Cytochrome P-450 Enzyme System , Hydrogen Sulfide , Lung , Oxidative Stress , Tea Tree Oil , Animals , Hydrogen Sulfide/metabolism , Oxidative Stress/drug effects , Tea Tree Oil/pharmacology , Tea Tree Oil/administration & dosage , Lung/drug effects , Lung/metabolism , Lung/pathology , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/genetics , Female , Reactive Oxygen Species/metabolism , Poultry Diseases/chemically induced , Antioxidants/metabolism , Antioxidants/pharmacology , Avian Proteins/metabolism , Avian Proteins/genetics , Random Allocation , Lung Injury/chemically induced , Lung Injury/veterinary , Lung Injury/drug therapy
5.
Poult Sci ; 103(7): 103833, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38810563

ABSTRACT

The family of cell cycle-dependent kinases (CDKs) serves as catalytic subunits within protein kinase complexes, playing a crucial role in cell cycle progression. While the function of CDK proteins in regulating mammalian innate immune responses and virus replication is well-documented, their role in chickens remains unclear. To address this, we cloned several chicken CDKs, specifically CDK6 through CDK10. We observed that CDK6 is widely expressed across various chicken tissues, with localization in the cytoplasm, nucleus, or both in DF-1 cells. In addition, we also found that multiple chicken CDKs negatively regulate IFN-ß signaling induced by chicken MAVS or chicken STING by targeting different steps. Moreover, during infection with infectious bursal disease virus (IBDV), various chicken CDKs, except CDK10, were recruited and co-localized with viral protein VP1. Interestingly, overexpression of CDK6 in chickens significantly enhanced IBDV replication. Conversely, knocking down CDK6 led to a marked increase in IFN-ß production, triggered by chMDA5. Furthermore, targeting endogenous CDK6 with RNA interference substantially reduced IBDV replication. These findings collectively suggest that chicken CDKs, particularly CDK6, act as suppressors of IFN-ß production and play a facilitative role in IBDV replication.


Subject(s)
Avian Proteins , Chickens , Cyclin-Dependent Kinases , Virus Replication , Animals , Chickens/genetics , Avian Proteins/metabolism , Avian Proteins/genetics , Cyclin-Dependent Kinases/metabolism , Cyclin-Dependent Kinases/genetics , Infectious bursal disease virus/physiology , Poultry Diseases/virology , Poultry Diseases/metabolism , Poultry Diseases/genetics , Birnaviridae Infections/veterinary , Birnaviridae Infections/virology , Immunity, Innate
6.
Br Poult Sci ; 65(3): 273-286, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38727584

ABSTRACT

1. The Wulong goose is a Chinese breed and a source of high-quality meat and eggs. A characteristic of the Wulong goose is that a proportion of the birds do not have eyelids, known as the Huoyon trait.2. Wulong geese exhibiting the Huoyan trait at embryonic stages of 9 days (E9), 12 days (E12) and 14 days (E14) were selected alongside those with normal eyelids for comprehensive transcriptome sequencing. Differentially expressed gene (DEG) and functional enrichment analyses were performed and finally, eight DEG were chosen to verify the accuracy of qPCR sequencing.3. Overall, 466, 962 and 550 DEG were obtained from the three control groups, D9 vs. N9, D12 vs. N12 and D14 vs. N14, respectively, by differential analysis (p < 0.05). CDKN1C, CRH, CROCC and TYSND1 were significantly expressed in the three groups. Enrichment analysis revealed the enrichment of CROCC and TYSND1 in pathways of cell cycle process, endocytosis, microtubule-based process, microtubule organising centre organisation, protein processing and protein maturation. CDKN1C and CRH were enriched in the cell cycle and cAMP signalling pathway.4. Some collagen family genes were detected among the DEGs, including COL3A1, COL4A5, COL4A2 and COL4A1. FREM1 and FREM2 genes were detected in both Huoyan and normal eyelids. There was a significant difference (p < 0.01) in FREM1 expression between ED9 and ED14 in female embryos, but this difference was not observed in male embryos.


Subject(s)
Geese , Gene Expression Profiling , Animals , Geese/genetics , Geese/embryology , Gene Expression Profiling/veterinary , Transcriptome , Avian Proteins/genetics , Avian Proteins/metabolism , Gene Expression Regulation, Developmental , Embryonic Development/genetics
7.
Poult Sci ; 103(6): 103724, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701630

ABSTRACT

Sertoli cells (SC) are a type of important cells in the testes, which can provide transport proteins, regulatory proteins, growth factors, and other cytokines for the spermatogenic process. They participate in the regulation of the maturation and differentiation of spermatogenic cells and play an important supporting role in the migration, proliferation, and differentiation of germ cells at all levels in the testes. Previous studies found differential expression of LINC9137, miR-140-3p, and Sodium/Potassium Transporting ATPase Interacting 3 (NKAIN3) genesin high and low sperm motility goose testicular tissues. This study investigated the effects of the LINC9137-miR-140-3p-NKAIN3 signal axis on the proliferation and apoptosis of goose testicular sertoli cells at the cellular level, respectively. The results showed that through acridine orange staining, oil red O staining, Alkaline phosphatase (AKP) staining, and RT qPCR assay, it was comprehensively identified that the cultured testicular sertoli cells were purified in vitro. Through the dual luciferase activity detection test, it was found that LINC9137 has a targeted binding site with miR-140-3p and NKAIN3. In addition, this study found that overexpression of miR-140-3p significantly inhibited the expression of LINC9137 and NKAIN3 in sertoli cells, and their expression was significantly increased when miR-140-3p was interfered with. By measuring cell proliferation activity and apoptosis related gene expression, it was found that overexpression of LINC9137 decreased cell proliferation activity (P > 0.05), while the expression level of apoptosis factor Bcl2 Associated X Protein (Bax)/B-cell lymphoma-2 (Bcl2) increased (P > 0.05). On the contrary, when interfering with LINC9137, the cell proliferation activity of sertoli cells was significantly increased (P < 0.01), and the expression level of apoptosis factor Bax/Bcl2 was significantly reduced (P < 0.05); The effect of miR-140-3p on the proliferation and apoptosis of sertoli cells is opposite to that of LINC9137. Meanwhile, this study co transfected overexpressed LINC9137 and miR-140-3p plasmids into sertoli cells, and found that the effect of LINC9137 overexpression on supporting cell proliferation was weakened by miR-140-3p. This study elucidates the role and function of the LINC9137 miR-140-3p-NKAIN3 signaling axis in the development of goose testes and spermatogenesis, establishes a regulatory network related to spermatogenesis, and provides a theoretical basis for studying the genetic regulation of goose spermatogenesis.


Subject(s)
Avian Proteins , Geese , MicroRNAs , Sertoli Cells , Signal Transduction , Animals , Male , Sertoli Cells/metabolism , Sertoli Cells/physiology , MicroRNAs/genetics , MicroRNAs/metabolism , Geese/genetics , Geese/physiology , Avian Proteins/genetics , Avian Proteins/metabolism , Apoptosis , Testis/metabolism , Testis/growth & development , Cell Proliferation , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
8.
Poult Sci ; 103(7): 103757, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38697006

ABSTRACT

Stress is known to disrupt the intestinal barrier and induce intestinal dysfunction. A critical role for gonadotropin inhibitory hormone (GnIH) in stress has emerged. However, whether GnIH mediates stress-induced intestinal dysfunction remains unknown. The present study explored this question through in vivo and in vitro experiments in hens. Our in vivo experiments showed that continuous intraperitoneal injection of GnIH not only significantly increased the concentration of stress hormones in serum, but also significantly elevated the mRNA expression of glucocorticoid receptor (GR) in the duodenum and jejunum. Moreover, morphological and molecular analyses revealed that GnIH disrupted the physical and chemical barriers of the intestine and dramatically increased inflammatory factor levels in the intestine and serum of hens. Interestingly, the microbiomics results showed that GnIH altered the structure and composition of the gut flora in the cecum, revealing an increased abundance of harmful intestinal bacteria such as Desulfovibrionaceae. Similar results were found in in vitro studies in which the GnIH-induced intestinal mucosal barrier was disrupted, and inflammation increased in jejunal explants, although no significant difference was found in the expression of GR between the control and GnIH groups. Our results demonstrated that GnIH not only directly damaged intestinal barriers and elevated intestinal inflammation but also mediated stress and microflora imbalance-induced intestinal function disorder, suggesting that GnIH is a potential therapeutic target for gut dysfunction, stress-induced intestinal function disorder, and inflammatory bowel disease in animals and humans.


Subject(s)
Chickens , Gastrointestinal Microbiome , Stress, Physiological , Animals , Chickens/physiology , Female , Gastrointestinal Microbiome/physiology , Hypothalamic Hormones/metabolism , Hypothalamic Hormones/genetics , Poultry Diseases/microbiology , Poultry Diseases/physiopathology , Avian Proteins/metabolism , Avian Proteins/genetics , Intestinal Diseases/veterinary , Intestinal Diseases/microbiology
9.
Differentiation ; 138: 100782, 2024.
Article in English | MEDLINE | ID: mdl-38810379

ABSTRACT

The mandible is composed of several musculoskeletal tissues including bone, cartilage, and tendon that require precise patterning to ensure structural and functional integrity. Interestingly, most of these tissues are derived from one multipotent cell population called cranial neural crest cells (CNCCs). How CNCCs are properly instructed to differentiate into various tissue types remains nebulous. To better understand the mechanisms necessary for the patterning of mandibular musculoskeletal tissues we utilized the avian mutant talpid2 (ta2) which presents with several malformations of the facial skeleton including dysplastic tendons, mispatterned musculature, and bilateral ectopic cartilaginous processes extending off Meckel's cartilage. We found an ectopic epithelial BMP signaling domain in the ta2 mandibular prominence (MNP) that correlated with the subsequent expansion of SOX9+ cartilage precursors. These findings were validated with conditional murine models suggesting an evolutionarily conserved mechanism for CNCC-derived musculoskeletal patterning. Collectively, these data support a model in which cilia are required to define epithelial signal centers essential for proper musculoskeletal patterning of CNCC-derived mesenchyme.


Subject(s)
Mandible , Neural Crest , Animals , Neural Crest/cytology , Neural Crest/metabolism , Mice , Mandible/growth & development , Mandible/metabolism , Body Patterning/genetics , Cartilage/metabolism , Cartilage/growth & development , Cartilage/cytology , Cilia/metabolism , Cilia/genetics , Mesoderm/cytology , Mesoderm/metabolism , Mesoderm/growth & development , Gene Expression Regulation, Developmental , Avian Proteins/genetics , Avian Proteins/metabolism , Signal Transduction , Cell Differentiation , Chick Embryo , Chickens/genetics , SOX9 Transcription Factor/metabolism , SOX9 Transcription Factor/genetics
10.
Poult Sci ; 103(7): 103841, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38806000

ABSTRACT

Circular RNAs (circRNAs) are a class of endogenous non-coding RNAs that have been implicated in mediating granulosa cell (GC) proliferation and apoptosis. CircRAB11A was found to have a significantly higher expression in normal follicles compared to atrophic follicles. In this study, we determined that the knockdown of circRAB11A resulted in the inhibition of proliferation and promotion of apoptosis in GCs of chicken. Moreover, circRAB11A was found to act as a sponge for miR-24-5p, both member RAS oncogene family (RAB11A) and epidermal growth factor receptor (EGFR) were revealed to be targets of miR-24-5p through a dual-luciferase reporter assay. RAB11A or EGFR promoted proliferation and suppressed apoptosis in GCs through the phosphatidylinositol-kinase (PI3K)/AKT or extracellular signal-regulated kinase (ERK)1/2 pathway. These findings suggest that circRAB11A may function as a competing endogenous RNA (ceRNA) by targeting the miR-24-5p/RAB11A and miR-24-5p/EGFR axes and activating the ERK1/2 and PI3K/AKT pathways, offering a potential avenue for exploring the mechanism of follicle development.


Subject(s)
Apoptosis , Cell Proliferation , Chickens , ErbB Receptors , Granulosa Cells , MicroRNAs , RNA, Circular , rab GTP-Binding Proteins , Animals , Granulosa Cells/physiology , Granulosa Cells/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Chickens/genetics , Female , RNA, Circular/genetics , RNA, Circular/metabolism , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism , ErbB Receptors/metabolism , ErbB Receptors/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Signal Transduction , MAP Kinase Signaling System , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Avian Proteins/metabolism , Avian Proteins/genetics
11.
Poult Sci ; 103(7): 103784, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38713992

ABSTRACT

Hatchability could be quite different among individuals of indigenous chicken breed which might be affected by the egg quality. In this study, hatchability was individually recorded among 800 forty-wk-old Huainan partridge chickens. The chickens were then divided into high and low hatchability groups (HH and LH group) with 50 birds in each group. Egg quality was further determined in the 2 groups. Eight birds from each group were selected for slaughtering and tissue, responsible for egg formation, collection for structure observation by staining and candidate gene expression by transcriptome analysis. The hatchability in HH was 100% and 61.18% in LH. The eggshell thickness and shell strength were significantly lower, while the albumen height and Haugh unit were significantly higher in HH group than those in LH group (P < 0.05). The magnum weight and index, and the expression of polypeptide N-acetylgalactosaminyltransferase 9 (GALNT9), which responsible for thick albumen synthesis, in HH group were also significantly higher than that of LH group (P < 0.05). Compared with the LH group, there were 702 differentially expressed genes (DEGs) in HH group, of which 402 were up-regulated and 300 were down-regulated. Candidate genes of calbindin 1 (CALB1) and solute carrier family 26 member 9 (SLC26A9), which regulate calcium signaling pathway so as to affect Ca2+ transportation, exhibited significant high and low expression, respectively, in HH group compared to those in LH group (P < 0.05). Therefore, indigenous chicken with high expression of GALNT9 in magnum to form thick albumen to provide more protein for embryo, while high CALB1 and low expression of SLC26A9 to decrease Ca2+ transportation so as to form a thinner eggshell and provide better gas exchange during embryo development.


Subject(s)
Chickens , Egg Shell , N-Acetylgalactosaminyltransferases , Animals , Egg Shell/physiology , Chickens/genetics , Chickens/physiology , N-Acetylgalactosaminyltransferases/genetics , N-Acetylgalactosaminyltransferases/metabolism , Calcium/metabolism , Avian Proteins/genetics , Avian Proteins/metabolism , Albumins/metabolism , Albumins/genetics , Ovum/physiology , Gene Expression , Gene Expression Profiling/veterinary
12.
Poult Sci ; 103(7): 103818, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38733755

ABSTRACT

Mule ducks tend to accumulate abundant fat in their livers via feeding, which leads to the formation of a fatty liver that is several times larger than a normal liver. However, the mechanism underlying fatty liver formation has not yet been elucidated. Fibroblast growth factor 1 (FGF1), a member of the FGF superfamily, is involved in cellular lipid metabolism and mitosis. This study aims to investigate the regulatory effect of FGF1 on lipid metabolism disorders induced by complex fatty acids in primary mule duck liver cells and elucidate the underlying molecular mechanism. Hepatocytes were induced by adding 1,500:750 µmol/L oleic and palmitic acid concentrations for 36 h, which were stimulated with FGF1 concentrations of 0, 10, 100, and 1000 ng/mL for 12 h. The results showed that FGF1 significantly reduced the hepatic lipid droplet deposition and triglyceride content induced by complex fatty acids; it also reduced oxidative stress; decreased reactive oxygen species fluorescence intensity and malondialdehyde content; upregulated the expression of antioxidant factors nuclear factor erythroid 2 related factor 2 (Nrf2), HO-1, and NQO-1; significantly enhanced liver cell activity; promoted cell cycle progression; inhibited cell apoptosis; upregulated cyclin-dependent kinase 1 (CDK1) and BCL-2 mRNA expression; and downregulated Bax and Caspase-3 expression. In addition, FGF1 promoted AMPK phosphorylation, activated the AMPK pathway, upregulated AMPK gene expression, and downregulated the expression of SREBP1 and ACC1 genes, thereby alleviating excessive fat accumulation in liver cells induced by complex fatty acids. In summary, FGF1 may alleviate lipid metabolism disorders induced by complex fatty acids in primary mule duck liver cells by activating the AMPK signaling pathway.


Subject(s)
Ducks , Fatty Liver , Fibroblast Growth Factor 1 , Poultry Diseases , Animals , Fatty Liver/veterinary , Fatty Liver/metabolism , Fibroblast Growth Factor 1/metabolism , Fibroblast Growth Factor 1/genetics , Poultry Diseases/metabolism , Lipid Metabolism/drug effects , Hepatocytes/metabolism , Hepatocytes/drug effects , Avian Proteins/metabolism , Avian Proteins/genetics , Liver/metabolism , Liver/drug effects
13.
Int J Biol Macromol ; 270(Pt 2): 132476, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38777016

ABSTRACT

Gasdermin (GSDM) proteins are executioners of pyroptosis in many species. Gasdermin proteins can be cleaved at their linker region between the amino domain (NT) and carboxyl domain (CT) by enzymes. The released GSDM-NTs bind cell membrane and form pores, thereby leading to the release of cellular components and lytic cell death. GSDM-mediated pyroptosis is considered to play important role in immune responses. However, little is known about the GSDM proteins and GSDM-mediated pyroptosis in birds. In the current study, genes encoding chicken gasdermin A (chGSDMA) and chGSDME were cloned. The cleavage of chGSDMA and chGSDME by chicken caspase-1 (chCASP1), chCASP3 and chCASP7 and the cleavage sites were determined. The chGSDMA-NT obtained form chCASP1-mediated cleavage and chGSDME-NT obtained from chCASP3/chCASP7-mediated cleavage could bind and damage cell membrane and lead to cell death of HEK293 cells. chGSDMA-NT also strongly localized to and formed puncta in nucleus. Besides, both chGSDMA-NT and chGSDME-NT showed growth inhibition and bactericidal activity to bacteria. In chickens challenged with Pasteurella multocida and Salmonella typhimurium, the expression of chGSDMA and chGSDME was upregulated and the activation of chCASP3 and the cleavage of chGSDME were observed. The work provides essential information for expanding our knowledge on pyroptosis in birds.


Subject(s)
Caspases , Chickens , Pyroptosis , Animals , Humans , HEK293 Cells , Caspases/metabolism , Pasteurella multocida , Proteolysis , Avian Proteins/metabolism , Avian Proteins/genetics , Amino Acid Sequence , Gasdermins
14.
J Agric Food Chem ; 72(21): 12240-12250, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38764183

ABSTRACT

LIM domain binding 3 (LDB3) serves as a striated muscle-specific Z-band alternatively spliced protein that plays an important role in mammalian skeletal muscle development, but its regulatory role and molecular mechanism in avian muscle development are still unclear. In this study, we reanalyzed RNA sequencing data sets of 1415 samples from 21 chicken tissues published in the NCBI GEO database. First, three variants (LDB3-X, LDB3-XN1, and LDB3-XN2) generated by alternative splicing of the LDB3 gene were identified in chicken skeletal muscle, among which LDB3-XN1 and LDB3-XN2 are novel variants. LDB3-X and LDB3-XN1 are derived from exon skipping in chicken skeletal muscle at the E18-D7 stage and share three LIM domains, but LDB3-XN2 lacks a LIM domain. Our results preliminarily suggest that the formation of three variants of LDB3 is regulated by RBM20. The three splice isomers have divergent functions in skeletal muscle according to in vitro and in vivo assays. Finally, we identified the mechanism by which different variants play different roles through interactions with IGF2BP1 and MYHC, which promote the proliferation and differentiation of chicken myoblasts, in turn regulating chicken myogenesis. In conclusion, this study revealed the divergent roles of three LDB3 variants in chicken myogenesis and muscle remodeling and demonstrated their regulatory mechanism through protein-protein interactions.


Subject(s)
Alternative Splicing , Chickens , LIM Domain Proteins , Muscle Development , Muscle, Skeletal , Animals , Chickens/genetics , Muscle, Skeletal/metabolism , Muscle, Skeletal/chemistry , Muscle, Skeletal/growth & development , Muscle Development/genetics , LIM Domain Proteins/genetics , LIM Domain Proteins/metabolism , Myoblasts/metabolism , Avian Proteins/genetics , Avian Proteins/metabolism , Avian Proteins/chemistry , Cell Differentiation , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/chemistry
15.
PLoS One ; 19(4): e0297853, 2024.
Article in English | MEDLINE | ID: mdl-38635504

ABSTRACT

During vertebrate embryo development, the body is progressively segmented along the anterior-posterior (A-P) axis early in development. The rate of somite formation is controlled by the somitogenesis embryo clock (EC), which was first described as gene expression oscillations of hairy1 (hes4) in the presomitic mesoderm of chick embryos with 15-20 somites. Here, the EC displays the same periodicity as somite formation, 90 min, whereas the posterior-most somites (44-52) only arise every 150 minutes, matched by a corresponding slower pace of the EC. Evidence suggests that the rostral-most somites are formed faster, however, their periodicity and the EC expression dynamics in these early stages are unknown. In this study, we used time-lapse imaging of chicken embryos from primitive streak to somitogenesis stages with high temporal resolution (3-minute intervals). We measured the length between the anterior-most and the last formed somitic clefts in each captured frame and developed a simple algorithm to automatically infer both the length and time of formation of each somite. We found that the occipital somites (up to somite 5) form at an average rate of 75 minutes, while somites 6 onwards are formed approximately every 90 minutes. We also assessed the expression dynamics of hairy1 using half-embryo explants cultured for different periods of time. This showed that EC hairy1 expression is highly dynamic prior to somitogenesis and assumes a clear oscillatory behaviour as the first somites are formed. Importantly, using ex ovo culture and live-imaging techniques, we showed that the hairy1 expression pattern recapitulates with the formation of each new pair of somites, indicating that somite segmentation is coupled with EC oscillations since the onset of somitogenesis.


Subject(s)
Avian Proteins , Somites , Animals , Chick Embryo , Chickens , Basic Helix-Loop-Helix Transcription Factors/genetics , Avian Proteins/genetics , Mesoderm/metabolism
16.
Poult Sci ; 103(6): 103712, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38603935

ABSTRACT

The effects of the administration of the opioid agonist, morphine, on plasma and tissue concentrations of Met-enkephalin were determined in 14 wk old female chickens. In addition, effects of morphine on proenkephalin (PENK) expression were examined. Plasma concentrations of Met-enkephalin were reduced 10 minutes after morphine administration. Plasma concentrations of peptides that contain Met-enkephalin motifs were decreased 30 minutes after morphine administration. Tissue concentrations of Met-enkephalin tended to be depressed following morphine administration. Adrenal concentrations of PENK peptides containing Met-enkephalin motifs were decreased in chickens challenged with morphine. Expression of PENK in the anterior pituitary gland and adrenal glands were decreased in morphine treated compared to control pullets. In contrast, plasma concentrations of corticosterone were elevated 10 min after morphine treatment. Morphine also induced changes in mu (µ) opioid receptors and delta (δ) opioid receptors in both anterior pituitary tissue and adrenal tissues.


Subject(s)
Chickens , Corticosterone , Enkephalin, Methionine , Enkephalins , Morphine , Protein Precursors , Animals , Morphine/administration & dosage , Morphine/pharmacology , Chickens/metabolism , Enkephalin, Methionine/metabolism , Female , Corticosterone/blood , Protein Precursors/metabolism , Enkephalins/metabolism , Analgesics, Opioid/administration & dosage , Analgesics, Opioid/pharmacology , Adrenal Glands/drug effects , Adrenal Glands/metabolism , Avian Proteins/metabolism , Avian Proteins/genetics
17.
Poult Sci ; 103(6): 103706, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38631227

ABSTRACT

Skeletal disorders can seriously threaten the health and the performance of poultry, such as tibial dyschondroplasia (TD) and osteoporosis (OP). Oligomeric proanthocyanidins (OPC) are naturally occurring polyphenolic flavonoid compounds that can be used as potential substances to improve the bone health and the growth performance of poultry. Eighty 7-day-old green-eggshell yellow feather layer chickens were randomly divided into 4 groups: basal diet and basal diet supplementation with 25, 50, and 100 mg/kg OPC. The results have indicated that the growth performance and bone parameters of chickens were significantly improved supplementation with OPC in vivo, including the bone volume (BV), the bone mineral density (BMD) and the activities of antioxidative enzymes, but ratio of osteoprotegerin (OPG)/receptor activator of NF-κB (RANK) ligand (RANKL) was decreased. Furthermore, primary bone marrow mesenchymal stem cells (BMSCs) and bone marrow monocytes/macrophages (BMMs) were successfully isolated from femur and tibia of chickens, and co-cultured to differentiate into osteoclasts in vitro. The osteogenic differentiation derived from BMSCs was promoted treatment with high concentrations of OPC (10, 20, and 40 µmol/L) groups in vitro, but emerging the inhibition of osteoclastogenesis by increasing the ratio of OPG/RANKL. In contrary, the osteogenic differentiation was also promoted treatment with low concentrations of OPC (2.5, 5, and 10 µmol/L) groups, but osteoclastogenesis was enhanced by decreasing the ratio of OPG/RANKL in vitro. In addition, OPG inhibits the differentiation and activity of osteoclasts by increasing the autophagy in vitro. Dietary supplementation of OPC can improve the growth performance of bone and alter the balance of osteoblasts and osteoclasts, thereby improving the bone health of chickens.


Subject(s)
Animal Feed , Chickens , Osteogenesis , Osteoprotegerin , Proanthocyanidins , RANK Ligand , Animals , Osteoprotegerin/metabolism , Osteoprotegerin/genetics , RANK Ligand/metabolism , Proanthocyanidins/pharmacology , Proanthocyanidins/administration & dosage , Chickens/growth & development , Osteogenesis/drug effects , Chick Embryo , Animal Feed/analysis , Osteoclasts/drug effects , Diet/veterinary , Random Allocation , Dietary Supplements/analysis , Avian Proteins/metabolism , Avian Proteins/genetics , Dose-Response Relationship, Drug
18.
Poult Sci ; 103(6): 103730, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38631229

ABSTRACT

Atrazine (ATR) is widely used worldwide as a commercial herbicide, Diaminochlorotriazine (DACT) is the main metabolite of ATR in the organism. Both of them disrupt the production of steroids and induce abnormal reproductive development. The granulosa cells (GCs) are important for growth and reproduction of animals. However, the toxicity of ATR on the GCs of birds is not well clarified. To evaluate the effect of the environmental pollutant ATR on bird GCs. The quail GCs were allotted into 7 groups, C (The medium of M199), A20 (20 µM ATR), A100 (100 µM ATR), A250 (250 µM ATR), D20 (20 µM DACT), D100 (100 µM DACT) and D200 (200 µM DACT). The results demonstrated that ATR reduced the viability of GCs, disrupted mitochondrial structure (including mitochondrial cristae fragmentation and the mitochondrial morphology disappearance) and decreased mitochondrial membrane potential. Meanwhile, ATR interfered with the expression of key factors in the steroid synthesis pathway, inducing the secretion of the sex hormones E2 and P in GCs. which in turn induced apoptosis. Furthermore, the Nrf2/ARE pathway as a potential target to ameliorate ATR-induced endocrine disruption in GCs for proper reproductive functions. Our research provides a new perspective for understanding the effects of ATR on reproductive functions in birds.


Subject(s)
Atrazine , Endocrine Disruptors , Granulosa Cells , Herbicides , NF-E2-Related Factor 2 , Animals , Atrazine/toxicity , Granulosa Cells/drug effects , Female , Herbicides/toxicity , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Endocrine Disruptors/toxicity , Coturnix , Avian Proteins/metabolism , Avian Proteins/genetics , Signal Transduction/drug effects
19.
Poult Sci ; 103(6): 103703, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38631228

ABSTRACT

Granular cell apoptosis is a key factor leading to follicular atresia and decreased laying rate in aged laying hens. Endoplasmic reticulum stress (ERS) induced cell apoptosis is a new type of apoptosis pathway. Previous studies have shown that the ERS pathway is involved in the regulation of follicular development and atresia, and can be regulated by mTOR. Melatonin (MEL) can protect the normal development of follicles, but the precise mechanism by which MEL regulates follicular development is not yet clear. So, we investigated the potential relationship between MEL and ERS and mTOR signaling pathway in vivo through intraperitoneal injection of MEL in aged laying hens. The results show that the laying rate, ovarian follicle number, plasma MEL, E2, LH, FSH concentrations, as well as the mRNA expression of mTOR signaling-associated genes TSC1, TSC2, mTOR, 4E-BP1, and S6K in old later-period chicken control (Old-CN) group was significantly decreased (P < 0.01). In contrast, the ERS-related of plasma and granular cell layer mRNA expression of Grp78, CHOP, and Caspase-3 was significantly increased (P < 0.01). While both of the effects were reversed by MEL. Then, aging granulosa cells were treated with MEL in vitro, followed by RNA seq analysis, and it was found that 259 and 322 genes were upregulated and downregulated. After performing GO enrichment analysis, it was found that DEGs significantly contribute to the biological processes including cell growth and apoptosis. Using pathway enrichment analysis, we found significant overrepresentation of cellular processes related to mTOR signaling and endoplasmic reticulum (ER) stress, involving genes such as GRB10, SGK1, PRKCA, RPS6KA2, RAF1, PIK3R3, FOXO1, DERL3, HMOX1, TLR7, VAMP7 and INSIG2. The obtained results of RT-PCR showed consistency with the RNA-Seq data. In summary, the underlined results revealed that MEL has significantly contributed to follicular development via activating the mTOR signaling pathway-related genes and alleviating ERS-related genes in laying hens. The current study provides a theoretical background for enhancing the egg-laying capability of hens and also providing a basis for elucidating the molecular mechanism of follicular selection.


Subject(s)
Chickens , Endoplasmic Reticulum Stress , Melatonin , Signal Transduction , TOR Serine-Threonine Kinases , Animals , Female , Melatonin/pharmacology , Melatonin/administration & dosage , Chickens/physiology , Endoplasmic Reticulum Stress/drug effects , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/genetics , Signal Transduction/drug effects , Avian Proteins/metabolism , Avian Proteins/genetics , Ovary/drug effects , Ovary/physiology , Aging , Granulosa Cells/drug effects , Granulosa Cells/physiology
20.
Poult Sci ; 103(6): 103672, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38564834

ABSTRACT

The development of the avian wing pattern has been the subject of heated debate due to its special shape. The Suppressor of cytokine signaling 2 (SOCS2) gene encodes a negative regulator of growth hormone (GH) signaling and bone growth and is known to be strongly expressed in the third digit of chicken forelimbs. These observations suggest that SOCS2 might regulate the morphology of the avian wing, however, the function of SOCS2 in avian limb development remains unknown. Here, we reexamined SOCS2 expression in successive developmental stages of chicken limb development by in situ hybridization (ISH) and describe extended expression from the posterior of the stypolod to the third digit of the forelimbs. We used the RCAS avian retrovirus to overexpress SOCS2 in the developing chicken limb buds, which resulted in reduced or malformed chicken wings while hindlimbs developed normally. Transcriptome sequencing (mRNA-Seq) revealed changes in expression of genes known to be associated with growth and development in forelimbs with overexpressed SOCS2. This study highlights a pivotal role for SOCS2 during the development of the wing in the chicken and provides new insight into molecular mechanisms regulating avian limb development.


Subject(s)
Avian Proteins , Chickens , Suppressor of Cytokine Signaling Proteins , Wings, Animal , Animals , Suppressor of Cytokine Signaling Proteins/genetics , Suppressor of Cytokine Signaling Proteins/metabolism , Chick Embryo , Wings, Animal/growth & development , Avian Proteins/genetics , Avian Proteins/metabolism , Chickens/growth & development , Chickens/genetics , Forelimb , Limb Buds/metabolism , Gene Expression Regulation, Developmental
SELECTION OF CITATIONS
SEARCH DETAIL
...