Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.281
Filter
1.
Oncotarget ; 15: 361-373, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829622

ABSTRACT

Histone deacetylase inhibitors (HDACi) can modulate the acetylation status of proteins, influencing the genomic instability exhibited by cancer cells. Poly (ADP ribose) polymerase (PARP) inhibitors (PARPi) have a direct effect on protein poly (ADP-ribosyl)ation, which is important for DNA repair. Decitabine is a nucleoside cytidine analogue, which when phosphorylated gets incorporated into the growing DNA strand, inhibiting methylation and inducing DNA damage by inactivating and trapping DNA methyltransferase on the DNA, thereby activating transcriptionally silenced DNA loci. We explored various combinations of HDACi and PARPi +/- decitabine (hypomethylating agent) in pancreatic cancer cell lines BxPC-3 and PL45 (wild-type BRCA1 and BRCA2) and Capan-1 (mutated BRCA2). The combination of HDACi (panobinostat or vorinostat) with PARPi (talazoparib or olaparib) resulted in synergistic cytotoxicity in all cell lines tested. The addition of decitabine further increased the synergistic cytotoxicity noted with HDACi and PARPi, triggering apoptosis (evidenced by increased cleavage of caspase 3 and PARP1). The 3-drug combination treatments (vorinostat, talazoparib, and decitabine; vorinostat, olaparib, and decitabine; panobinostat, talazoparib, and decitabine; panobinostat, olaparib, and decitabine) induced more DNA damage (increased phosphorylation of histone 2AX) than the individual drugs and impaired the DNA repair pathways (decreased levels of ATM, BRCA1, and ATRX proteins). The 3-drug combinations also altered the epigenetic regulation of gene expression (NuRD complex subunits, reduced levels). This is the first study to demonstrate synergistic interactions between the aforementioned agents in pancreatic cancer cell lines and provides preclinical data to design individualized therapeutic approaches with the potential to improve pancreatic cancer treatment outcomes.


Subject(s)
Azacitidine , Decitabine , Drug Synergism , Histone Deacetylase Inhibitors , Pancreatic Neoplasms , Poly(ADP-ribose) Polymerase Inhibitors , Humans , Decitabine/pharmacology , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Cell Line, Tumor , Histone Deacetylase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Azacitidine/pharmacology , Azacitidine/analogs & derivatives , Apoptosis/drug effects , Antineoplastic Combined Chemotherapy Protocols/pharmacology
2.
Life Sci Alliance ; 7(9)2024 Sep.
Article in English | MEDLINE | ID: mdl-38906675

ABSTRACT

Decitabine and azacytidine are considered as epigenetic drugs that induce DNA methyltransferase (DNMT)-DNA crosslinks, resulting in DNA hypomethylation and damage. Although they are already applied against myeloid cancers, important aspects of their mode of action remain unknown, highly limiting their clinical potential. Using a combinatorial approach, we reveal that the efficacy profile of both compounds primarily depends on the level of induced DNA damage. Under low DNMT activity, only decitabine has a substantial impact. Conversely, when DNMT activity is high, toxicity and cellular response to both compounds are dramatically increased, but do not primarily depend on DNA hypomethylation or RNA-associated processes. By investigating proteome dynamics on chromatin, we show that decitabine induces a strictly DNMT-dependent multifaceted DNA damage response based on chromatin recruitment, but not expression-level changes of repair-associated proteins. The choice of DNA repair pathway hereby depends on the severity of decitabine-induced DNA lesions. Although under moderate DNMT activity, mismatch (MMR), base excision (BER), and Fanconi anaemia-dependent DNA repair combined with homologous recombination are activated in response to decitabine, high DNMT activity and therefore immense replication stress induce activation of MMR and BER followed by non-homologous end joining.


Subject(s)
Azacitidine , DNA Damage , DNA Methylation , DNA Repair , Decitabine , Decitabine/pharmacology , DNA Damage/drug effects , Humans , DNA Repair/drug effects , DNA Methylation/drug effects , Azacitidine/analogs & derivatives , Azacitidine/pharmacology , Antimetabolites, Antineoplastic/pharmacology , Cell Line, Tumor , DNA (Cytosine-5-)-Methyltransferases/metabolism , Chromatin/metabolism , Chromatin/drug effects , DNA Modification Methylases/metabolism
3.
Article in English | MEDLINE | ID: mdl-38905720

ABSTRACT

Decitabine is a DNA methyltransferase inhibitor used in the treatment of acute myeloid leukemia and myelodysplastic syndrome. The notion that ongoing trials are presently exploring the combined use of decitabine, with or without the cytidine deaminase inhibitor cedazuridine, and other antileukemic drugs necessitates a comprehensive understanding of pharmacokinetic properties and an evaluation of drug-drug interaction liabilities. We report here the development and validation of a sensitive UHPLC-MS/MS method for quantifying decitabine in mouse plasma, which should be useful for such studies. The method involved a one-step protein precipitation extraction, and chromatographic separation on an XBridge HILIC column using gradient elution. The method was found to be robust, accurate, precise, and sufficiently sensitive (lower limit of quantitation, 0.4 ng/mL) to determine decitabine concentrations in microvolumes of plasma from mice receiving the agent orally or intravenously in the presence or absence of cedazuridine.


Subject(s)
Decitabine , Tandem Mass Spectrometry , Animals , Tandem Mass Spectrometry/methods , Decitabine/pharmacokinetics , Decitabine/blood , Decitabine/administration & dosage , Mice , Chromatography, High Pressure Liquid/methods , Reproducibility of Results , Azacitidine/pharmacokinetics , Azacitidine/blood , Azacitidine/analogs & derivatives , Azacitidine/administration & dosage , Azacitidine/chemistry , Linear Models , Uridine/pharmacokinetics , Uridine/blood , Uridine/analogs & derivatives , Sensitivity and Specificity , Limit of Detection
5.
J Oncol Pharm Pract ; 30(4): 721-736, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38509812

ABSTRACT

OBJECTIVE: To review the pharmacokinetic (PK)-pharmacodynamic (PD) profiles, disease setting, dosing, and safety of oral and parenteral hypomethylating agents (HMAs) for the treatment of myelodysplastic syndromes/neoplasms (MDS) and acute myeloid leukemia (AML), and to provide a multidisciplinary perspective on treatment selection and educational needs relating to HMA use. DATA SOURCES: Clinical and real-world data for parenteral decitabine and azacitidine and two oral HMAs: decitabine-cedazuridine (DEC-C) for MDS and azacitidine (CC-486) for AML maintenance therapy. DATA SUMMARY: Differences in the PK-PD profiles of oral and parenteral HMA formulations have implications for their potential toxicities and planned use. Oral DEC-C (decitabine 35 mg and cedazuridine 100 mg) has demonstrated equivalent systemic area under the concentration-time curve (AUC) exposure to a 5-day regimen of intravenous (IV) decitabine 20 mg/m2 and showed no significant difference in PD. The AUC equivalence of oral DEC-C and IV decitabine means that these regimens can be treated interchangeably (but must not be substituted within a cycle). Oral azacitidine has a distinct PK-PD profile versus IV or subcutaneous azacitidine, and the formulations are not bioequivalent or interchangeable owing to differences in plasma time-course kinetics and exposures. Clinical trials are ongoing to evaluate oral HMA combinations and novel oral HMAs, such as NTX-301 and ASTX030. CONCLUSIONS: Treatment with oral HMAs has the potential to improve quality of life, treatment adherence, and disease outcomes versus parenteral HMAs. Better education of multidisciplinary teams on the factors affecting HMA treatment selection may help to improve treatment outcomes in patients with MDS or AML.


Subject(s)
Azacitidine , Decitabine , Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Humans , Myelodysplastic Syndromes/drug therapy , Leukemia, Myeloid, Acute/drug therapy , Administration, Oral , Azacitidine/pharmacokinetics , Azacitidine/administration & dosage , Azacitidine/analogs & derivatives , Azacitidine/therapeutic use , Decitabine/pharmacokinetics , Decitabine/administration & dosage , Antimetabolites, Antineoplastic/pharmacokinetics , Antimetabolites, Antineoplastic/administration & dosage , Antimetabolites, Antineoplastic/therapeutic use , Uridine/pharmacokinetics , Uridine/analogs & derivatives , Uridine/administration & dosage , Uridine/therapeutic use , Uridine/pharmacology
6.
J Transl Med ; 22(1): 223, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38429759

ABSTRACT

BACKGROUND: Glioblastoma multiforme (GBM) is a highly aggressive primary brain tumor, that is refractory to standard treatment and to immunotherapy with immune-checkpoint inhibitors (ICI). Noteworthy, melanoma brain metastases (MM-BM), that share the same niche as GBM, frequently respond to current ICI therapies. Epigenetic modifications regulate GBM cellular proliferation, invasion, and prognosis and may negatively regulate the cross-talk between malignant cells and immune cells in the tumor milieu, likely contributing to limit the efficacy of ICI therapy of GBM. Thus, manipulating the tumor epigenome can be considered a therapeutic opportunity in GBM. METHODS: Microarray transcriptional and methylation profiles, followed by gene set enrichment and IPA analyses, were performed to study the differences in the constitutive expression profiles of GBM vs MM-BM cells, compared to the extracranial MM cells and to investigate the modulatory effects of the DNA hypomethylating agent (DHA) guadecitabine among the different tumor cells. The prognostic relevance of DHA-modulated genes was tested by Cox analysis in a TCGA GBM patients' cohort. RESULTS: The most striking differences between GBM and MM-BM cells were found to be the enrichment of biological processes associated with tumor growth, invasion, and extravasation with the inhibition of MHC class II antigen processing/presentation in GBM cells. Treatment with guadecitabine reduced these biological differences, shaping GBM cells towards a more immunogenic phenotype. Indeed, in GBM cells, promoter hypomethylation by guadecitabine led to the up-regulation of genes mainly associated with activation, proliferation, and migration of T and B cells and with MHC class II antigen processing/presentation. Among DHA-modulated genes in GBM, 7.6% showed a significant prognostic relevance. Moreover, a large set of immune-related upstream-regulators (URs) were commonly modulated by DHA in GBM, MM-BM, and MM cells: DHA-activated URs enriched for biological processes mainly involved in the regulation of cytokines and chemokines production, inflammatory response, and in Type I/II/III IFN-mediated signaling; conversely, DHA-inhibited URs were involved in metabolic and proliferative pathways. CONCLUSIONS: Epigenetic remodeling by guadecitabine represents a promising strategy to increase the efficacy of cancer immunotherapy of GBM, supporting the rationale to develop new epigenetic-based immunotherapeutic approaches for the treatment of this still highly deadly disease.


Subject(s)
Azacitidine/analogs & derivatives , Glioblastoma , Humans , Glioblastoma/genetics , Glioblastoma/therapy , Glioblastoma/metabolism , Azacitidine/therapeutic use , Epigenesis, Genetic , Immunotherapy
7.
Int J Cancer ; 154(10): 1794-1801, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38312102

ABSTRACT

DNA methyltransferase inhibitors (DNMTi) have demonstrated benefit in reversing resistance to systemic therapies for several cancer types. In a phase II trial of guadecitabine and irinotecan compared to regorafenib or TAS-102 in pts with advanced mCRC refractory to irinotecan. Patients with mCRC refractory to irinotecan were randomized 2:1 to guadecitabine and irinotecan (Arm A) vs standard of care regorafenib or TAS-102 (Arm B) on a 28-day cycle. Between January 15, 2016 and October 24, 2018, 104 pts were randomized at four international sites, with 96 pts undergoing treatment, 62 in Arm A and 34 in Arm B. Median overall survival was 7.15 months for Arm A and 7.66 months for Arm B (HR 0.93, 95% CI: 0.58-1.47, P = .75). The Kaplan-Meier rates of progression free survival at 4 months were 32% in Arm A and 26% in Arm B. Common ≥Grade 3 treatment related adverse events in Arm A were neutropenia (42%), anemia (18%), diarrhea (11%), compared to Arm B pts with neutropenia (12%), anemia (12%). Guadecitabine and irinotecan had similar OS compared to standard of care TAS-102 or regorafenib, with evidence of target modulation. Clinical trial information: NCT01896856.


Subject(s)
Anemia , Azacitidine/analogs & derivatives , Colonic Neoplasms , Colorectal Neoplasms , Neutropenia , Phenylurea Compounds , Pyridines , Pyrrolidines , Rectal Neoplasms , Thymine , Trifluridine , Humans , Irinotecan/therapeutic use , Colorectal Neoplasms/pathology , Treatment Outcome , Colonic Neoplasms/drug therapy , Rectal Neoplasms/drug therapy , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Anemia/drug therapy , Drug Combinations
8.
Blood Adv ; 8(8): 2020-2029, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38231126

ABSTRACT

ABSTRACT: Guadecitabine is a novel hypomethylating agent (HMA) resistant to deamination by cytidine deaminase. Patients with relapsed/refractory acute myeloid leukemia (AML) were randomly assigned to guadecitabine or a preselected treatment choice (TC) of high-intensity chemotherapy, low-intensity treatment with HMAs or low-dose cytarabine, or best supportive care (BSC). The primary end point was overall survival (OS). A total of 302 patients were randomly assigned to guadecitabine (n = 148) or TC (n = 154). Preselected TCs were low-intensity treatment (n = 233 [77%; mainly HMAs]), high-intensity chemotherapy (n = 63 [21%]), and BSC (n = 6 [2%]). The median OS were 6.4 and 5.4 months for guadecitabine and TC, respectively (hazard ratio 0.88 [95% confidence interval, 0.67-1.14]; log-rank P = .33). Survival benefit for guadecitabine was suggested in several prospective subgroups, including age <65 years, Eastern Cooperative Oncology Group performance status 0 to 1, refractory AML, and lower peripheral blood blasts ≤30%. Complete response (CR) + CR with partial hematologic recovery rates were 17% for guadecitabine vs 8% for TC (P < .01); CR+CR with incomplete count recovery rates were 27% for guadecitabine vs 14% for TC (P < .01). Safety was comparable for the 2 arms, but guadecitabine had a higher rate of grade ≥3 neutropenia (32% vs 17%; P < .01). This study did not demonstrate an OS benefit for guadecitabine. Clinical response rates were higher for guadecitabine, with comparable safety to TC. There was an OS benefit for guadecitabine in several prespecified subgroups. This study was registered at www.clinicaltrials.gov as #NCT02920008.


Subject(s)
Azacitidine , Azacitidine/analogs & derivatives , Leukemia, Myeloid, Acute , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/mortality , Female , Middle Aged , Male , Aged , Adult , Azacitidine/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Recurrence , Treatment Outcome , Cytarabine/therapeutic use , Aged, 80 and over , Young Adult , Drug Resistance, Neoplasm
9.
BMC Med ; 20(1): 222, 2022 07 18.
Article in English | MEDLINE | ID: mdl-35843958

ABSTRACT

BACKGROUND: At present, the extent and clinical relevance of epigenetic differences between upper tract urothelial carcinoma (UTUC) and urothelial carcinoma of the bladder (UCB) remain largely unknown. Here, we conducted a study to describe the global DNA methylation landscape of UTUC and UCB and to address the prognostic value of DNA methylation subtype and responses to the DNA methyltransferase inhibitor SGI-110 in urothelial carcinoma (UC). METHODS: Using whole-genome bisulfite sequencing (n = 49 samples), we analyzed epigenomic features and profiles of UTUC (n = 36) and UCB (n = 9). Next, we characterized potential links between DNA methylation, gene expression (n = 9 samples), and clinical outcomes. Then, we integrated an independent UTUC cohort (Fujii et al., n = 86) and UCB cohort (TCGA, n = 411) to validate the prognostic significance. Furthermore, we performed an integrative analysis of genome-wide DNA methylation and gene expression in two UC cell lines following transient DNA methyltransferase inhibitor SGI-110 treatment to identify potential epigenetic driver events that contribute to drug efficacy. RESULTS: We showed that UTUC and UCB have very similar DNA methylation profiles. Unsupervised DNA methylation classification identified two epi-clusters, Methy-High and Methy-Low, associated with distinct muscle-invasive statuses and patient outcomes. Methy-High samples were hypermethylated, immune-infiltrated, and enriched for exhausted T cells, with poor clinical outcome. SGI-110 inhibited the migration and invasion of Methy-High UC cell lines (UMUC-3 and T24) by upregulating multiple antitumor immune pathways. CONCLUSIONS: DNA methylation subtypes pave the way for predicting patient prognosis in UC. Our results provide mechanistic rationale for evaluating SGI-110 in treating UC patients in the clinic.


Subject(s)
Azacitidine , Carcinoma, Transitional Cell , DNA Methylation , DNA Modification Methylases , Urinary Bladder Neoplasms , Azacitidine/analogs & derivatives , Azacitidine/pharmacology , Carcinoma, Transitional Cell/drug therapy , Carcinoma, Transitional Cell/genetics , Carcinoma, Transitional Cell/metabolism , DNA Modification Methylases/antagonists & inhibitors , DNA Modification Methylases/genetics , DNA Modification Methylases/metabolism , Humans , Prognosis , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/metabolism
10.
J Immunother Cancer ; 10(6)2022 06.
Article in English | MEDLINE | ID: mdl-35717027

ABSTRACT

BACKGROUND: Data suggest that immunomodulation induced by DNA hypomethylating agents can sensitize tumors to immune checkpoint inhibitors. We conducted a phase 1 dose-escalation trial (NCT02998567) of guadecitabine and pembrolizumab in patients with advanced solid tumors. We hypothesized that guadecitabine will overcome pembrolizumab resistance. METHODS: Patients received guadecitabine (45 mg/m2 or 30 mg/m2, administered subcutaneously on days 1-4), with pembrolizumab (200 mg administered intravenously starting from cycle 2 onwards) every 3 weeks. Primary endpoints were safety, tolerability and maximum tolerated dose; secondary and exploratory endpoints included objective response rate (ORR), changes in methylome, transcriptome, immune contextures in pre-treatment and on-treatment tumor biopsies. RESULTS: Between January 2017 and January 2020, 34 patients were enrolled. The recommended phase II dose was guadecitabine 30 mg/m2, days 1-4, and pembrolizumab 200 mg on day 1 every 3 weeks. Two dose-limiting toxicities (neutropenia, febrile neutropenia) were reported at guadecitabine 45 mg/m2 with none reported at guadecitabine 30 mg/m2. The most common treatment-related adverse events (TRAEs) were neutropenia (58.8%), fatigue (17.6%), febrile neutropenia (11.8%) and nausea (11.8%). Common, grade 3+ TRAEs were neutropaenia (38.2%) and febrile neutropaenia (11.8%). There were no treatment-related deaths. Overall, 30 patients were evaluable for antitumor activity; ORR was 7% with 37% achieving disease control (progression-free survival) for ≥24 weeks. Of 12 evaluable patients with non-small cell lung cancer, 10 had been previously treated with immune checkpoint inhibitors with 5 (42%) having disease control ≥24 weeks (clinical benefit). Reduction in LINE-1 DNA methylation following treatment in blood (peripheral blood mononuclear cells) and tissue samples was demonstrated and methylation at transcriptional start site and 5' untranslated region gene regions showed enriched negative correlation with gene expression. Increases in intra-tumoural effector T-cells were seen in some responding patients. Patients having clinical benefit had high baseline inflammatory signature on RNAseq analyses. CONCLUSIONS: Guadecitabine in combination with pembrolizumab is tolerable with biological and anticancer activity. Reversal of previous resistance to immune checkpoint inhibitors is demonstrated.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Neoplasms , Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Azacitidine/analogs & derivatives , Azacitidine/therapeutic use , Humans , Immune Checkpoint Inhibitors , Neoplasms/drug therapy
11.
Leuk Lymphoma ; 63(9): 2180-2188, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35491816

ABSTRACT

This phase 1 b study evaluated the safety, efficacy, and pharmacokinetics of atezolizumab in combination with guadecitabine in patients with relapsed/refractory (R/R) or first-line acute myeloid leukemia (AML). Patients received atezolizumab 840 mg (days [D] 8 and 22) and guadecitabine 60 mg/m2 (D1 and D5) over 28-day cycles. Sixteen patients (median age 73.0 years) enrolled (R/R cohort, n = 11; first-line cohort, n = 5). All patients reported at least 1 AE; 15 patients (93.8%) reported grade ≥ 3 AEs, and 15 patients (93.8%) reported SAEs. Fourteen of the 16 patients (87.5%) died during the trial period due to disease progression (8/14) or AEs (6/14), hence the study was terminated early. One patient (from the R/R AML cohort) achieved a response (CR with incomplete platelet recovery) with a DOR of 27.8 months at study termination. Atezolizumab plus guadecitabine had limited clinical activity in AML and an overall unfavorable benefit-risk profile at the investigated dose levels.


Subject(s)
Azacitidine , Leukemia, Myeloid, Acute , Aged , Antibodies, Monoclonal, Humanized/adverse effects , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Azacitidine/analogs & derivatives , Azacitidine/therapeutic use , Humans , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/drug therapy
12.
Leukemia ; 36(6): 1654-1665, 2022 06.
Article in English | MEDLINE | ID: mdl-35459873

ABSTRACT

Peripheral T-cell lymphoma (PTCL) is a rare, heterogenous malignancy with dismal outcomes at relapse. Hypomethylating agents (HMA) have an emerging role in PTCL, supported by shared mutations with myelodysplasia (MDS). Response rates to azacitidine in PTCL of follicular helper cell origin are promising. Guadecitabine is a decitabine analogue with efficacy in MDS. In this phase II, single-arm trial, PTCL patients received guadecitabine on days 1-5 of 28-day cycles. Primary end points were overall response rate (ORR) and safety. Translational sub-studies included cell free plasma DNA sequencing and functional genomic screening using an epigenetically-targeted CRISPR/Cas9 library to identify response predictors. Among 20 predominantly relapsed/refractory patients, the ORR was 40% (10% complete responses). Most frequent grade 3-4 adverse events were neutropenia and thrombocytopenia. At 10 months median follow-up, median progression free survival (PFS) and overall survival (OS) were 2.9 and 10.4 months respectively. RHOAG17V mutations associated with improved PFS (median 5.47 vs. 1.35 months; Wilcoxon p = 0.02, Log-Rank p = 0.06). 4/7 patients with TP53 variants responded. Deletion of the histone methyltransferase SETD2 sensitised to HMA but TET2 deletion did not. Guadecitabine conveyed an acceptable ORR and toxicity profile; decitabine analogues may provide a backbone for future combinatorial regimens co-targeting histone methyltransferases.


Subject(s)
Azacitidine , Lymphoma, T-Cell, Peripheral , Azacitidine/adverse effects , Azacitidine/analogs & derivatives , Decitabine/therapeutic use , Genomics , Humans , Lymphoma, T-Cell, Peripheral/drug therapy , Lymphoma, T-Cell, Peripheral/genetics , Myelodysplastic Syndromes/pathology , Neoplasm Recurrence, Local/chemically induced , Neutropenia/chemically induced , Treatment Outcome
13.
J Mol Biol ; 433(18): 167111, 2021 09 03.
Article in English | MEDLINE | ID: mdl-34153286

ABSTRACT

5-aza-cytidine (5-aza-C) has been shown to be a potent human immunodeficiency virus type 1 (HIV-1) mutagen that induces G-to-C hypermutagenesis by incorporation of the reduced form (i.e., 5-aza-dC, 5-aza-dCTP). Evidence to date suggests that this lethal mutagenesis is the primary antiretroviral mechanism for 5-aza-C. To investigate the breadth of application of 5-aza-C as an antiretroviral mutagen, we have conducted a comparative, parallel analysis of the antiviral mechanism of 5-aza-C between HIV-1 and gammaretroviruses - i.e., murine leukemia virus (MuLV) and feline leukemia virus (FeLV). Intriguingly, in contrast to the hallmark G-to-C hypermutagenesis observed with HIV-1, MuLV and FeLV did not reveal the presence of a significant increase in mutational burden, particularly that of G-to-C transversion mutations. The effect of 5-aza-dCTP on DNA synthesis revealed that while HIV-1 RT was not inhibited by 5-aza-dCTP even at 100 µM, 5-aza-dCTP was incorporated and significantly inhibited MuLV RT, generating pause sites and reducing the fully extended product. 5-aza-dCTP was found to be incorporated into DNA by MuLV RT or HIV-1 RT, but only acted as a non-obligate chain terminator for MuLV RT. This biochemical data provides an independent line of experimental evidence in support of the conclusion that HIV-1 and MuLV have distinct primary mechanisms of antiretroviral action with 5-aza-C. Taken together, our data provides striking evidence that an antiretroviral mutagen can have strong potency via distinct mechanisms of action among closely related viruses, unlinking antiviral activity from antiviral mechanism of action.


Subject(s)
Antiviral Agents/pharmacology , Azacitidine/analogs & derivatives , Cytidine Triphosphate/analogs & derivatives , HIV Infections/drug therapy , Leukemia, Experimental/drug therapy , Mutation/drug effects , Retroviridae Infections/drug therapy , Tumor Virus Infections/drug therapy , Animals , Azacitidine/pharmacology , Cats , Cytidine Triphosphate/pharmacology , HIV/drug effects , HIV Infections/virology , Humans , Leukemia Virus, Feline/drug effects , Leukemia Virus, Murine/drug effects , Leukemia, Experimental/virology , Mice , Mutagenesis , Mutagens , Retroviridae Infections/virology , Tumor Virus Infections/virology , Virus Replication
14.
Mol Cancer Ther ; 20(6): 1092-1101, 2021 06.
Article in English | MEDLINE | ID: mdl-33785648

ABSTRACT

Ovarian cancer is a chemoresponsive tumor with very high initial response rates to standard therapy consisting of platinum/paclitaxel. However, most women eventually develop recurrence, which rapidly evolves into chemoresistant disease. Persistence of ovarian cancer stem cells (OCSCs) at the end of therapy has been shown to contribute to resistant tumors. In this study, we demonstrate that the long noncoding RNA HOTAIR is overexpressed in HGSOC cell lines. Furthermore, HOTAIR expression was upregulated in OCSCs compared with non-CSC, ectopic overexpression of HOTAIR enriched the ALDH+ cell population and HOTAIR overexpression increased spheroid formation and colony-forming ability. Targeting HOTAIR using peptide nucleic acid-PNA3, which acts by disrupting the interaction between HOTAIR and EZH2, in combination with a DNMT inhibitor inhibited OCSC spheroid formation and decreased the percentage of ALDH+ cells. Disrupting HOTAIR-EZH2 with PNA3 in combination with the DNMTi on the ability of OCSCs to initiate tumors in vivo as xenografts was examined. HGSOC OVCAR3 cells were treated with PNA3 in vitro and then implanted in nude mice. Tumor growth, initiation, and stem cell frequency were inhibited. Collectively, these results demonstrate that blocking HOTAIR-EZH2 interaction combined with inhibiting DNA methylation is a potential approach to eradicate OCSCs and block disease recurrence.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , DNA Methylation/drug effects , Neoplastic Stem Cells/drug effects , Ovarian Neoplasms/drug therapy , RNA, Long Noncoding/antagonists & inhibitors , Animals , Azacitidine/administration & dosage , Azacitidine/analogs & derivatives , Azacitidine/pharmacology , Cell Line, Tumor/drug effects , Cell Proliferation/drug effects , DNA (Cytosine-5-)-Methyltransferases/antagonists & inhibitors , Disease Models, Animal , Female , Humans , Mice , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Peptide Nucleic Acids/administration & dosage , Peptide Nucleic Acids/pharmacology , Xenograft Model Antitumor Assays
15.
Clin Epigenetics ; 13(1): 25, 2021 02 02.
Article in English | MEDLINE | ID: mdl-33531075

ABSTRACT

Epigenetic therapies may modulate the tumor microenvironment. We evaluated the safety and optimal sequence of combination DNA methyltransferase inhibitor guadecitabine with a granulocyte macrophage-colony-stimulating-factor (GM-CSF) secreting colon cancer (CRC) vaccine (GVAX) using a primary endpoint of change in CD45RO + T cells. 18 patients with advanced CRC enrolled, 11 underwent paired biopsies and were evaluable for the primary endpoint. No significant increase in CD45RO + cells was noted. Grade 3-4 toxicities were expected and manageable. Guadecitabine + GVAX was tolerable but demonstrated no significant immunologic activity in CRC. We report a novel trial design to efficiently evaluate investigational therapies with a primary pharmacodynamic endpoint.Trial registry Clinicaltrials.gov: NCT01966289. Registered 21 October, 2013.


Subject(s)
Azacitidine/analogs & derivatives , Cancer Vaccines/pharmacology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , DNA (Cytosine-5-)-Methyltransferase 1/antagonists & inhibitors , Adult , Aged , Aged, 80 and over , Azacitidine/administration & dosage , Azacitidine/adverse effects , Azacitidine/pharmacology , Azacitidine/therapeutic use , Biopsy , Cancer Vaccines/administration & dosage , Cancer Vaccines/adverse effects , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Combined Modality Therapy/methods , DNA Methylation/drug effects , Epigenomics/methods , Feasibility Studies , Female , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Humans , Immunotherapy/methods , Immunotherapy, Active/methods , Leukocyte Common Antigens/drug effects , Leukocyte Common Antigens/metabolism , Male , Middle Aged , Safety , Severity of Illness Index , Tumor Microenvironment
16.
Clin Cancer Res ; 27(7): 1882-1892, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33472913

ABSTRACT

PURPOSE: Preclinical data indicate that DNA methyltransferase inhibition will circumvent cisplatin resistance in various cancers. PATIENT AND METHODS: SPIRE comprised a dose-escalation phase for incurable metastatic solid cancers, followed by a randomized dose expansion phase for neoadjuvant treatment of T2-4a N0 M0 bladder urothelial carcinoma. The primary objective was a recommended phase II dose (RP2D) for guadecitabine combined with gemcitabine and cisplatin. Treatment comprised 21-day gemcitabine and cisplatin cycles (cisplatin 70 mg/m2, i.v., day 8 and gemcitabine 1,000 mg/m2, i.v., days 8 + 15). Guadecitabine was injected subcutaneously on days 1-5, within escalation phase cohorts, and to half of 20 patients in the expansion phase. Registration ID: ISRCTN 16332228. RESULTS: Within the escalation phase, dose-limiting toxicities related predominantly to myelosuppression requiring G-CSF prophylaxis from cohort 2 (guadecitabine 20 mg/m2, days 1-5). The most common grade ≥3 adverse events in 17 patients in the dose-escalation phase were neutropenia (76.5%), thrombocytopenia (64.7%), leukopenia (29.4%), and anemia (29.4%). Addition of guadecitabine to gemcitabine and cisplatin in the expansion phase resulted in similar rates of severe hematologic adverse events, similar cisplatin dose intensity, but modestly reduced gemcitabine dose intensity. Radical treatment options after chemotherapy were not compromised. Pharmacodynamics evaluations indicated guadecitabine maximal target effect at the point of cisplatin administration. Pharmacokinetics were consistent with prior data. No treatment-related deaths occurred. CONCLUSIONS: The guadecitabine RP2D was 20 mg/m2, days 1-5, in combination with gemcitabine and cisplatin and required GCSF prophylaxis. Gene promoter methylation pharmacodynamics are optimal with this schedule. Addition of guadecitabine to gemcitabine and cisplatin was tolerable, despite some additional myelosuppression, and warrants further investigation to assess efficacy.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma, Transitional Cell/drug therapy , Urinary Bladder Neoplasms/drug therapy , Adult , Aged , Azacitidine/administration & dosage , Azacitidine/adverse effects , Azacitidine/analogs & derivatives , Cisplatin/administration & dosage , Cisplatin/adverse effects , Deoxycytidine/administration & dosage , Deoxycytidine/adverse effects , Deoxycytidine/analogs & derivatives , Female , Granulocyte Colony-Stimulating Factor/therapeutic use , Humans , Male , Middle Aged , Gemcitabine
17.
Cancer Med ; 10(1): 156-163, 2021 01.
Article in English | MEDLINE | ID: mdl-33135391

ABSTRACT

PURPOSE: Germ cell tumors (GCTs) are cured with therapy based on cisplatin, although a clinically significant number of patients are refractory and die of progressive disease. Based on preclinical studies indicating that refractory testicular GCTs are hypersensitive to hypomethylating agents (HMAs), we conducted a phase I trial combining the next-generation HMA guadecitabine (SGI-110) with cisplatin in recurrent, cisplatin-resistant GCT patients. METHODS: Patients with metastatic GCTs were treated for five consecutive days with guadecitabine followed by cisplatin on day 8, for a 28-day cycle for up to six cycles. The primary endpoint was safety and toxicity including dose-limiting toxicity (DLT) and maximum tolerated dose (MTD). RESULTS: The number of patients enrolled was 14. The majority of patients were heavily pretreated. MTD was determined to be 30 mg/m2 guadecitabine followed by 100 mg/m2 cisplatin. The major DLTs were neutropenia and thrombocytopenia. Three patients had partial responses by RECIST criteria, two of these patients, including one with primary mediastinal disease, completed the study and qualified as complete responses by serum tumor marker criteria with sustained remissions of 5 and 13 months and survival of 16 and 26 months, respectively. The overall response rate was 23%. Three patients also had stable disease indicating a clinical benefit rate of 46%. CONCLUSIONS: The combination of guadecitabine and cisplatin was tolerable and demonstrated activity in patients with platinum refractory germ cell cancer.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Azacitidine/analogs & derivatives , Cisplatin/therapeutic use , Neoplasms, Germ Cell and Embryonal/drug therapy , Testicular Neoplasms/drug therapy , Adult , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Azacitidine/adverse effects , Azacitidine/therapeutic use , Cisplatin/adverse effects , Dose-Response Relationship, Drug , Drug Resistance, Neoplasm , Humans , Indiana , Male , Maximum Tolerated Dose , Middle Aged , Neoplasms, Germ Cell and Embryonal/secondary , Testicular Neoplasms/pathology , Time Factors , Treatment Outcome , Young Adult
19.
Nagoya J Med Sci ; 82(2): 151-160, 2020 05.
Article in English | MEDLINE | ID: mdl-32581396

ABSTRACT

Among elderly patients with acute myeloid leukemia (AML), especially those who are unfit for intensive chemotherapy, a policy of reduced-intensity chemotherapy or conservative observation has been chosen, resulting in unmet medical needs. Clinical trials using anticancer drugs including antimetabolites or drugs targeted to cell cycle-related molecules failed to show superiority over conventional treatments. Recently, drugs targeted to Bcl-2, SMO, FLT3, and IDH1/2 have been shown to prolong overall survival alone or in combination with reduced-intensity chemotherapy. These treatments are likely to reshape the therapeutic landscape of AML, which will be personalized for individual patients based on leukemia genetics.


Subject(s)
Antineoplastic Agents/therapeutic use , Leukemia, Myeloid, Acute/drug therapy , Aged , Aged, 80 and over , Aminopyridines/therapeutic use , Aniline Compounds/therapeutic use , Arsenic Trioxide/therapeutic use , Azacitidine/analogs & derivatives , Azacitidine/therapeutic use , Benzimidazoles/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Decitabine/therapeutic use , Humans , Isocitrate Dehydrogenase/antagonists & inhibitors , Isocitrate Dehydrogenase/genetics , Molecular Targeted Therapy , Phenylurea Compounds/therapeutic use , Precision Medicine , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Pyrazines/therapeutic use , Smoothened Receptor/antagonists & inhibitors , Staurosporine/analogs & derivatives , Staurosporine/therapeutic use , Sulfonamides/therapeutic use , Survival Rate , Tretinoin/therapeutic use , Triazines/therapeutic use , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , fms-Like Tyrosine Kinase 3/genetics
20.
Cancer Res ; 80(14): 3046-3056, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32354737

ABSTRACT

Rhabdomyosarcoma is the most common childhood soft-tissue sarcoma, yet patients with metastatic or recurrent disease continue to do poorly, indicating a need for new treatments. The SRC family tyrosine kinase YES1 is upregulated in rhabdomyosarcoma and is necessary for growth, but clinical trials using single agent dasatinib, a SRC family kinase inhibitor, have failed in sarcomas. YAP1 (YES-associated protein) is highly expressed in rhabdomyosarcoma, driving growth and survival when the upstream Hippo tumor suppressor pathway is silenced, but efforts to pharmacologically inhibit YAP1 have been unsuccessful. Here we demonstrate that treatment of rhabdomyosarcoma with DNA methyltransferase inhibitor (DNMTi) upregulates Hippo activators RASSF1 and RASSF5 by promoter demethylation, activating canonical Hippo signaling and increasing inactivation of YAP1 by phosphorylation. Treatment with DNMTi decreased rhabdomyosarcoma cell growth and increased apoptosis and differentiation, an effect partially rescued by expression of constitutively active YAP (S127A), suggesting the effects of DNMTi treatment are, in part, due to Hippo-dependent inhibition of YAP1. In addition, YES1 and YAP1 interacted in the nucleus of rhabdomyosarcoma cells, and genetic or pharmacologic suppression of YES1 resulted in cytoplasmic retention of YAP1 and decreased YAP1 target gene expression, suggesting YES1 regulates YAP1 in a Hippo-independent manner. Combined treatment with DNMTi and dasatinib targeted both Hippo-dependent and Hippo-independent regulation of YAP1, ablating rhabdomyosarcoma cell growth in vitro and trending toward decreased tumor growth in vivo. These results show that the mechanisms regulating YAP1 in rhabdomyosarcoma can be inhibited by combinatorial therapy of DNMTi and dasatinib, laying the groundwork for future clinical investigations. SIGNIFICANCE: This study elucidates the signaling pathways that regulate the oncogenic protein YAP1 and identifies a combination therapy to target these pathways in the childhood tumor rhabdomyosarcoma.


Subject(s)
Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Azacitidine/analogs & derivatives , Molecular Targeted Therapy , Protein Serine-Threonine Kinases/antagonists & inhibitors , Rhabdomyosarcoma/drug therapy , Signal Transduction , Transcription Factors/antagonists & inhibitors , Animals , Antineoplastic Agents/pharmacology , Apoptosis , Azacitidine/pharmacology , Cell Proliferation , Child , Female , Gene Expression Regulation, Neoplastic , Hippo Signaling Pathway , Humans , Mice , Mice, SCID , Rhabdomyosarcoma/metabolism , Rhabdomyosarcoma/pathology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays , YAP-Signaling Proteins
SELECTION OF CITATIONS
SEARCH DETAIL